Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Recent advances in the genetic epidemiology and molecular genetics of substance use disorders

Abstract

This article reviews current advances in the genetics of substance use disorders (SUDs). Both genetic and environmental sources of risk are required to develop a complete picture of SUD etiology. Genetic sources of risk for SUDs are not highly substance specific in their effects. Genetic and environmental risks for SUDs typically do not only add together but also interact with each other over development. Risk gene identification for SUDs has been difficult, with one recent success in identifying nicotinic receptor variants that affect risk for nicotine dependence. The impact of genetic variants on SUD risk will individually be small. Although genetic epidemiologic methods are giving us an increasingly accurate map of broad causal pathways to SUDs, gene discovery will be needed to identify the specific biological systems. Identifying these risk genes and understanding their action will require large clinical samples, and interaction between these studies and work in model organisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Parameter estimates for the best-fitting confirmatory model for symptoms of cannabis, cocaine, alcohol, caffeine and nicotine dependence.
Figure 2: Parameter estimates for the contributions to variation in liability to psychoactive drug use of additive genetic effects (a2, red), familial environmental factors (c2, light blue) and the individual-specific environment (e2, dark blue) by year for average daily number of cigarettes, ages 13–40.
Figure 3: An example of gene-environment interaction: as parental monitoring increases, the importance of genetic factors significantly decreases, and the influence of common environmental factors becomes more important such that the most important etiological factors affecting adolescent smoking vary markedly as a function of parental monitoring.
Figure 4: Hypothetical item response curves for SUD diagnostic criteria.

Similar content being viewed by others

References

  1. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders 4th edn. revised (Washington, DC, 2000).

  2. Kendler, K.S. & Prescott, C.A. Genes, Environment, and Psychopathology: Understanding the Causes of Psychiatric and Substance Use Disorders (Guilford, New York, 2006).

  3. Goldman, D., Oroszi, G. & Ducci, F. The genetics of addictions: uncovering the genes. Nat. Rev. Genet. 6, 521–532 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Bienvenu, O.J., Davydow, D.S. & Kendler, K.S. Psychiatric 'diseases' versus behavioral disorders and degree of genetic influence. Psychol. Med. 41, 33–40 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Li, M.D., Cheng, R., Ma, J.Z. & Swan, G.E. A meta-analysis of estimated genetic and environmental effects on smoking behavior in male and female adult twins. Addiction 98, 23–31 (2003).

    Article  PubMed  Google Scholar 

  6. Tsuang, M.T. et al. Co-occurrence of abuse of different drugs in men: the role of drug- specific and shared vulnerabilities. Arch. Gen. Psychiatry 55, 967–972 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Kendler, K.S., Jacobson, K.C., Prescott, C.A. & Neale, M.C. Specificity of genetic and environmental risk factors for use and abuse/dependence of cannabis, cocaine, hallucinogens, sedatives, stimulants, and opiates in male twins. Am. J. Psychiatry 160, 687–695 (2003).

    Article  PubMed  Google Scholar 

  8. Kendler, K.S., Myers, J. & Prescott, C.A. Specificity of genetic and environmental risk factors for symptoms of cannabis, cocaine, alcohol, caffeine, and nicotine dependence. Arch. Gen. Psychiatry 64, 1313–1320 (2007).

    Article  PubMed  Google Scholar 

  9. Kendler, K.S. et al. The structure of genetic and environmental risk factors for syndromal and subsyndromal common DSM-IV Axis I and all Axis II disorders. Am. J. Psychiatry 168, 29–39 (2011).

    Article  PubMed  Google Scholar 

  10. Hicks, B.M., Krueger, R.F., Iacono, W.G., McGue, M. & Patrick, C.J. Family transmission and heritability of externalizing disorders: a twin-family study. Arch. Gen. Psychiatry 61, 922–928 (2004).

    Article  PubMed  Google Scholar 

  11. Kendler, K.S., Schmitt, E., Aggen, S.H. & Prescott, C.A. Genetic and environmental influences on alcohol, caffeine, cannabis, and nicotine use from early adolescence to middle adulthood. Arch. Gen. Psychiatry 65, 674–682 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kendler, K.S. & Eaves, L.J. Models for the joint effect of genotype and environment on liability to psychiatric illness. Am. J. Psychiatry 143, 279–289 (1986).

    Article  CAS  PubMed  Google Scholar 

  13. Kendler, K.S. et al. Creating a social world: a developmental study of peer deviance. Arch. Gen. Psychiatry 64, 958–965 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Boardman, J.D., Blalock, C.L. & Pampel, F.C. Trends in the genetic influences on smoking. J. Health Soc. Behav. 51, 108–123 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Dick, D.M., Rose, R.J., Viken, R.J., Kaprio, J. & Koskenvuo, M. Exploring gene-environment interactions: socioregional moderation of alcohol use. J. Abnorm. Psychol. 110, 625–632 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Koopmans, J.R., Slutske, W.S., van Baal, G.C. & Boomsma, D.I. The influence of religion on alcohol use initiation: evidence for genotype X environment interaction. Behav. Genet. 29, 445–453 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Timberlake, D.S. et al. The moderating effects of religiosity on the genetic and environmental determinants of smoking initiation. Nicotine Tob. Res. 8, 123–133 (2006).

    Article  PubMed  Google Scholar 

  18. Dick, D.M. et al. Parental monitoring moderates the importance of genetic and environmental influences on adolescent smoking. J. Abnorm. Psychol. 116, 213–218 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Boardman, J.D., Saint Onge, J.M., Haberstick, B.C., Timberlake, D.S. & Hewitt, J.K. Do schools moderate the genetic determinants of smoking? Behav. Genet. 38, 234–246 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kendler, K.S., Thornton, L.M. & Pedersen, N.L. Tobacco consumption in Swedish twins reared apart and reared together. Arch. Gen. Psychiatry 57, 886–892 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Koob, G.F. A role for brain stress systems in addiction. Neuron 59, 11–34 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hicks, B.M., South, S.C., DiRago, A.C., Iacono, W.G. & McGue, M. Environmental adversity and increasing genetic risk for externalizing disorders. Arch. Gen. Psychiatry 66, 640–648 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Covault, J. et al. Interactive effects of the serotonin transporter 5-HTTLPR polymorphism and stressful life events on college student drinking and drug use. Biol. Psychiatry 61, 609–616 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Blomeyer, D. et al. Interaction between CRHR1 gene and stressful life events predicts adolescent heavy alcohol use. Biol. Psychiatry 63, 146–151 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Kaufman, J. et al. Genetic and environmental predictors of early alcohol use. Biol. Psychiatry 61, 1228–1234 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Maes, H.H. et al. A twin study of genetic and environmental influences on tobacco initiation, regular tobacco use and nicotine dependence. Psychol. Med. 34, 1251–1261 (2004).

    Article  PubMed  Google Scholar 

  27. Kendler, K.S. et al. A population-based twin study in women of smoking initiation and nicotine dependence. Psychol. Med. 29, 299–308 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Gillespie, N.A., Neale, M.C. & Kendler, K.S. Pathways to cannabis abuse: a multi-stage model from cannabis availability, cannabis initiation and progression to abuse. Addiction 104, 430–438 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Agrawal, A., Neale, M.C., Jacobson, K.C., Prescott, C.A. & Kendler, K.S. Illicit drug use and abuse/dependence: modeling of two-stage variables using the CCC approach. Addict. Behav. 30, 1043–1048 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Muthén, B. & Muthén, L.K. Integrating person-centered and variable-centered analyses: growth mixture modeling with latent trajectory classes. Alcohol. Clin. Exp. Res. 24, 882–891 (2000).

    Article  PubMed  Google Scholar 

  31. Lubke, G. & Neale, M. Distinguishing between latent classes and continuous factors with categorical outcomes: Class invariance of parameters of factor mixture models. Multivariate Behav. Res. 43, 592–620 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Neale, M.C., Aggen, S.H., Maes, H., Kubarych, T.S. & Schmitt, J.E. Methodological issues in the assessment of substance use phenotypes. Addict. Behav. 31, 1010–1034 (2006).

    Article  PubMed  Google Scholar 

  33. Gillespie, N.A., Kendler, K.S. & Neale, M.C. Psychometric modeling of cannabis initiation and use and the symptoms of cannabis abuse, dependence and withdrawal in a sample of male and female twins. Drug Alcohol Depend. 118, 166–172 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Gillespie, N.A., Neale, M.C., Prescott, C.A., Aggen, S.H. & Kendler, K.S. Factor and item-response analysis of DSM-IV criteria for abuse of and dependence on cannabis, cocaine, hallucinogens, sedatives, stimulants and opioids. Addiction 102, 920–930 (2007).

    Article  PubMed  Google Scholar 

  35. Maes, H.H. & Neale, M.C. Genetic modeling of tobacco use behavior and trajectories. in NCI Tobacco Control Monograph Series 20: Phenotypes and Endophenotypes: Foundations for Genetic Studies of Nicotine Use and Dependence (eds. Swan, G.E. et al.) publication no. 09–6366 (US National Institutes of Health, 2009).

  36. Conway, K.P. et al. Measuring addiction propensity and severity: the need for a new instrument. Drug Alcohol Depend. 111, 4–12 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Koob, G.F. & Volkow, N.D. Neurocircuitry of addiction. Neuropsychopharmacology 35, 217–238 (2010).

    Article  PubMed  Google Scholar 

  38. Vanyukov, M.M. et al. Measurement of the risk for substance use disorders: phenotypic and genetic analysis of an index of common liability. Behav. Genet. 39, 233–244 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Saccone, S.F. et al. Cholinergic nicotinic receptor genes implicated in a nicotine dependence association study targeting 348 candidate genes with 3713 SNPs. Hum. Mol. Genet. 16, 36–49 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Berrettini, W. et al. α-5/α-3 nicotinic receptor subunit alleles increase risk for heavy smoking. Mol. Psychiatry 13, 368–373 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Spitz, M.R., Amos, C.I., Dong, Q., Lin, J. & Wu, X. The CHRNA5–A3 region on chromosome 15q24–25.1 is a risk factor both for nicotine dependence and for lung cancer. J. Natl. Cancer Inst. 100, 1552–1556 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Thorgeirsson, T.E. et al. A variant associated with nicotine dependence, lung cancer and peripheral arterial disease. Nature 452, 638–642 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chen, X. et al. Variants in nicotinic acetylcholine receptors α5 and α3 increase risks to nicotine dependence. Am. J. Med. Genet. B. Neuropsychiatr. Genet. 150B, 926–933 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Heatherton, T.F., Kozlowski, L.T., Frecker, R.C. & Fagerstrom, K.O. The Fagerstrom Test for Nicotine Dependence: a revision of the Fagerstrom Tolerance Questionnaire. Br. J. Addict. 86, 1119–1127 (1991).

    Article  CAS  PubMed  Google Scholar 

  45. Liu, J.Z. et al. Meta-analysis and imputation refines the association of 15q25 with smoking quantity. Nat. Genet. 42, 436–440 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Saccone, N.L. et al. Multiple independent loci at chromosome 15q25.1 affect smoking quantity: a meta-analysis and comparison with lung cancer and COPD. PLoS Genet. 6, e1001053 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Furberg, H. et al. Genome-wide meta-analyses identify multiple loci associated with smoking behavior. Nat. Genet. 42, 441–447 (2010).

    Article  CAS  Google Scholar 

  48. Grucza, R.A. et al. A risk allele for nicotine dependence in CHRNA5 is a protective allele for cocaine dependence. Biol. Psychiatry 64, 922–929 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Joslyn, G. et al. Chromosome 15q25.1 genetic markers associated with level of response to alcohol in humans. Proc. Natl. Acad. Sci. USA 105, 20368–20373 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Erlich, P.M. et al. Nicotinic acetylcholine receptor genes on chromosome 15q25.1 are associated with nicotine and opioid dependence severity. Hum. Genet. 128, 491–499 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Amos, C.I. et al. Genome-wide association scan of tag SNPs identifies a susceptibility locus for lung cancer at 15q25.1. Nat. Genet. 40, 616–622 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hung, R.J. et al. A susceptibility locus for lung cancer maps to nicotinic acetylcholine receptor subunit genes on 15q25. Nature 452, 633–637 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. DeMeo, D.L. et al. Integration of genomic and genetic approaches implicates IREB2 as a COPD susceptibility gene. Am. J. Hum. Genet. 85, 493–502 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hansen, H.M. et al. Fine mapping of chromosome 15q25.1 lung cancer susceptibility in African-Americans. Hum. Mol. Genet. 19, 3652–3661 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wang, J. et al. Mediating effects of smoking and chronic obstructive pulmonary disease on the relation between the CHRNA5–A3 genetic locus and lung cancer risk. Cancer 116, 3458–3462 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. Lips, E.H. et al. Association between a 15q25 gene variant, smoking quantity and tobacco-related cancers among 17 000 individuals. Int. J. Epidemiol. 39, 563–577 (2010).

    Article  PubMed  Google Scholar 

  57. Munafo, M.R. et al. Chromosome 15 genetic variants are associated with objective measures of tobacco exposure: implications for genetic and epidemiological studies. J. Natl. Cancer Inst. (in the press).

  58. Thorgeirsson, T.E. et al. Sequence variants at CHRNB3–CHRNA6 and CYP2A6 affect smoking behavior. Nat. Genet. 42, 448–453 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bierut, L.J. et al. Variants in nicotinic receptors and risk for nicotine dependence. Am. J. Psychiatry 165, 1163–1171 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Kuryatov, A., Berrettini, W. & Lindstrom, J. Acetylcholine receptor (AChR) α5 subunit variant associated with risk for nicotine dependence and lung cancer reduces (α4β2)2α5 AChR function. Mol. Pharmacol. 79, 119–125 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hong, L.E. et al. A genetically modulated, intrinsic cingulate circuit supports human nicotine addiction. Proc. Natl. Acad. Sci. USA 107, 13509–13514 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Changeux, J.P. Nicotine addiction and nicotinic receptors: lessons from genetically modified mice. Nat. Rev. Neurosci. 11, 389–401 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. Maes, H.H., Neale, M.C., Chen, X., Prescott, C.A. & Kendler, K.S. A twin association study of nicotine dependence with markers in the CHRNA3 and CHRNA5 genes. Behav. Genet. 41, 680–690 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Schuckit, M.A., Smith, T.L. & Tipp, J.E. The Self-Rating of the Effects of Alcohol (SRE) form as a retrospective measure of the risk for alcoholism. Addiction 92, 979–988 (1997).

    Article  CAS  PubMed  Google Scholar 

  65. Shen, Y.C. et al. Polymorphism of ADH and ALDH genes among four ethnic groups in China and effects upon the risk for alcoholism. Alcohol. Clin. Exp. Res. 21, 1272–1277 (1997).

    Article  CAS  PubMed  Google Scholar 

  66. Osier, M. et al. Linkage disequilibrium at the ADH2 and ADH3 loci and risk of alcoholism. Am. J. Hum. Genet. 64, 1147–1157 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Goedde, H.W. et al. Distribution of ADH2 and ALDH2 genotypes in different populations. Hum. Genet. 88, 344–346 (1992).

    Article  CAS  PubMed  Google Scholar 

  68. Neale, M.C. et al. Distinguishing population stratification from genuine allelic effects with Mx: association of ADH2 with alcohol consumption. Behav. Genet. 29, 233–243 (1999).

    Article  Google Scholar 

  69. Thomasson, H.R. et al. Low frequency of the ADH2*2 allele among Atayal natives of Taiwan with alcohol use disorders. Alcohol. Clin. Exp. Res. 18, 640–643 (1994).

    Article  CAS  PubMed  Google Scholar 

  70. Dickson, P.A. et al. Effects of variation at the ALDH2 locus on alcohol metabolism, sensitivity, consumption, and dependence in Europeans. Alcohol. Clin. Exp. Res. 30, 1093–1100 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Grobin, A.C., Matthews, D.B., Devaud, L.L. & Morrow, A.L. The role of GABAA receptors in the acute and chronic effects of ethanol. Psychopharmacology (Berl.) 139, 2–19 (1998).

    Article  CAS  Google Scholar 

  72. Long, J.C. et al. Evidence for genetic linkage to alcohol dependence on chromosomes 4 and 11 from an autosome-wide scan in an American Indian population. Am. J. Med. Genet. 81, 216–221 (1998).

    Article  CAS  PubMed  Google Scholar 

  73. Reich, T. et al. Genome-wide search for genes affecting the risk for alcohol dependence. Am. J. Med. Genet. 81, 207–215 (1998).

    Article  CAS  PubMed  Google Scholar 

  74. Edenberg, H.J. et al. Variations in GABRA2, encoding the α2 subunit of the GABAA receptor, are associated with alcohol dependence and with brain oscillations. Am. J. Hum. Genet. 74, 705–714 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Covault, J., Gelernter, J., Hesselbrock, V., Nellissery, M. & Kranzler, H.R. Allelic and haplotypic association of GABRA2 with alcohol dependence. Am. J. Med. Genet. B. Neuropsychiatr. Genet. 129B, 104–109 (2004).

    Article  PubMed  Google Scholar 

  76. Lappalainen, J. et al. Association between alcoholism and γ-amino butyric acid α2 receptor subtype in a Russian population. Alcohol. Clin. Exp. Res. 29, 493–498 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. Dick, D.M. et al. Marital status, alcohol dependence, and GABRA2: evidence for gene-environment correlation and interaction. J. Stud. Alcohol 67, 185–194 (2006).

    Article  PubMed  Google Scholar 

  78. Enoch, M.A., Schwartz, L., Albaugh, B., Virkkunen, M. & Goldman, D. Dimensional anxiety mediates linkage of GABRA2 haplotypes with alcoholism. Am. J. Med. Genet. B. Neuropsychiatr. Genet. 141B, 599–607 (2006).

    Article  PubMed  Google Scholar 

  79. Agrawal, A. et al. Association of GABRA2 with drug dependence in the collaborative study of the genetics of alcoholism sample. Behav. Genet. 36, 640–650 (2006).

    Article  PubMed  Google Scholar 

  80. Dick, D.M. et al. The role of GABRA2 in risk for conduct disorder and alcohol and drug dependence across developmental stages. Behav. Genet. 36, 577–590 (2006).

    Article  PubMed  Google Scholar 

  81. Dick, D.M. et al. Role of GABRA2 in trajectories of externalizing behavior across development and evidence of moderation by parental monitoring. Arch. Gen. Psychiatry 66, 649–657 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Treutlein, J. et al. Genome-wide association study of alcohol dependence. Arch. Gen. Psychiatry 66, 773–784 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bierut, L.J. et al. A genome-wide association study of alcohol dependence. Proc. Natl. Acad. Sci. USA 107, 5082–5087 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Dick, D.M. et al. Genome-wide association study of conduct disorder symptomatology. Mol. Psychiatry 16, 800–808 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Kendler, K.S. et al. Genomewide association analysis of symptoms of alcohol dependence in the Molecular Genetics of Schizophrenia (MGS2) control sample. Alcohol. Clin. Exp. Res. 35, 963–975 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Davies, A.G. et al. A central role of the BK potassium channel in behavioral responses to ethanol in C. elegans. Cell 115, 655–666 (2003).

    Article  CAS  PubMed  Google Scholar 

  87. Wang, Z.W., Saifee, O., Nonet, M.L. & Salkoff, L. SLO-1 potassium channels control quantal content of neurotransmitter release at the C. elegans neuromuscular junction. Neuron 32, 867–881 (2001).

    Article  CAS  PubMed  Google Scholar 

  88. Dopico, A.M., Widmer, H., Wang, G., Lemos, J.R. & Treistman, S.N. Rat supraoptic magnocellular neurones show distinct large conductance, Ca2+-activated K+ channel subtypes in cell bodies versus nerve endings. J. Physiol. (Lond.) 519, 101–114 (1999).

    Article  CAS  Google Scholar 

  89. Gruss, M. et al. Ethanol reduces excitability in a subgroup of primary sensory neurons by activation of BKCa channels. Eur. J. Neurosci. 14, 1246–1256 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by US National Institutes of Health grants DA18673 (M.C.N., H.M.), AA011408, AA017828, DA030005 (K.S.K., B.R.), AA018755, AA15416 (D.D.), DA023549 (N.G.), DA025109, DA022989, DA024413, DA027070, MH084952 (H.M.) and DA019498 (X.C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth S Kendler.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kendler, K., Chen, X., Dick, D. et al. Recent advances in the genetic epidemiology and molecular genetics of substance use disorders. Nat Neurosci 15, 181–189 (2012). https://doi.org/10.1038/nn.3018

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3018

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing