Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Application of alternative spatiotemporal metrics of ambient air pollution exposure in a time-series epidemiological study in Atlanta

Abstract

Exposure error in studies of ambient air pollution and health that use city-wide measures of exposure may be substantial for pollutants that exhibit spatiotemporal variability. Alternative spatiotemporal metrics of exposure for traffic-related and regional pollutants were applied in a time-series study of ambient air pollution and cardiorespiratory emergency department visits in Atlanta, GA, USA. Exposure metrics included daily central site monitoring for particles and gases; daily spatially refined ambient concentrations obtained from regional background monitors, local-scale dispersion, and hybrid air quality models; and spatially refined ambient exposures from population exposure models. Health risk estimates from Poisson models using the different exposure metrics were compared. We observed stronger associations, particularly for traffic-related pollutants, when using spatially refined ambient concentrations compared with a conventional central site exposure assignment approach. For some relationships, estimates of spatially refined ambient population exposures showed slightly stronger associations than corresponding spatially refined ambient concentrations. Using spatially refined pollutant metrics, we identified socioeconomic disparities in concentration–response functions that were not observed when using central site data. In some cases, spatially refined pollutant metrics identified associations with health that were not observed using measurements from the central site. Complexity and challenges in incorporating modeled pollutant estimates in time-series studies are discussed.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. US EPA. Integrated Science Assessment for Particulate Matter (Final Report). U.S. Environmental Protection Agency: Washington, DC, USA, EPA/600/R-08/139F, 2009 2009.

  2. Wilson AM, Salloway JC, Wake CP, Kelly T . Air pollution and the demand for hospital services: a review. Environ Int 2004; 30: 1109–1118.

    Article  CAS  Google Scholar 

  3. Wade KS, Mulholland JA, Marmur A, Russell AG, Hartsell B, Edgerton E et al. Effects of instrument precision and spatial variability on the assessment of the temporal variation of ambient air pollution in Atlanta, Georgia. J Air Waste Manag Assoc 2006; 56: 876–888.

    Article  CAS  Google Scholar 

  4. Zhu Y, Hinds W, Kim S, Shen S, Sioutas C . Study of ultrafine particles near a major highway with heavy-duty diesel traffic. Atmospheric Environ 2002; 36: 4323–4335.

    Article  CAS  Google Scholar 

  5. Gilbert NL, Goldberg MS, Beckerman B, Brook JR, Jerrett M . Assessing spatial variability of ambient nitrogen dioxide in Montreal, Canada, with a land-use regression model. J Air Waste Manag Assoc 2005; 55: 1059–1063.

    Article  CAS  Google Scholar 

  6. Jerrett M, Arain MA, Kanaroglou P, Beckerman B, Crouse D, Gilbert NL et al. Modeling the intraurban variability of ambient traffic pollution in Toronto, Canada. J Toxicol Environ Health Part A 2007; 70: 200–212.

    Article  CAS  Google Scholar 

  7. Zeger SL, Thomas D, Dominici F, Samet JM, Schwartz J, Dockery D et al. Exposure measurement error in time-series studies of air pollution: concepts and consequences. Environ Health Perspect 2000; 108: 419–426.

    Article  CAS  Google Scholar 

  8. Hoek G, Brunekreef B, Goldbohm S, Fischer P, van den Brandt PA . Association between mortality and indicators of traffic-related air pollution in the Netherlands: a cohort study. Lancet 2002; 360: 1203–1209.

    Article  Google Scholar 

  9. Peters A, von Klot S, Heier M, Trentinaglia I, Hormann A, Wichmann HE et al. Exposure to traffic and the onset of myocardial infarction. N Engl J Med 2004; 351: 1721–1730.

    Article  CAS  Google Scholar 

  10. Stuart AL, Mudhasakul S, Sriwatanapongse W . The social distribution of neighborhood-scale air pollution and monitoring protection. J Air Waste Manag Assoc 2009; 59: 591–602.

    Article  CAS  Google Scholar 

  11. Bravo MA, Bell ML . Spatial heterogeneity of PM10 and O3 in Sao Paulo, Brazil, and implications for human health studies. J Air Waste Manag Assoc 2011; 61: 69–77.

    Article  CAS  Google Scholar 

  12. Jerrett M, Burnett RT, Ma RJ, Pope CA, Krewski D, Newbold KB et al. Spatial analysis of air pollution and mortality in Los Angeles. Epidemiology 2005; 16: 727–736.

    Article  Google Scholar 

  13. Delfino RJ, Chang J, Wu J, Ren C, Tjoa T, Nickerson B et al. Repeated hospital encounters for asthma in children and exposure to traffic-related air pollution near the home. Ann Allergy Asthma Immunol 2009; 102: 138–144.

    Article  Google Scholar 

  14. Wu J, Wilhelm M, Chung J, Ritz B . Comparing exposure assessment methods for traffic-related air pollution in an adverse pregnancy outcome study. Environ Res 2011; 111: 685–692.

    Article  CAS  Google Scholar 

  15. Chang HH, Reich BJ, Miranda ML . Time-to-event analysis of fine particle air pollution and preterm birth: results fom North Carolina, 2001–2005. Am J Epidemiol 2012; 175: 91–98.

    Article  Google Scholar 

  16. Laurent O, Pedrono G, Segala C, Filleul L, Havard S, Deguen S et al. Air pollution, asthma attacks, and socioeconomic deprivation: a small-area case-crossover study. Am J Epidemiol 2008; 168: 58–65.

    Article  Google Scholar 

  17. Laurent O, Pedrono G, Filleul L, Segala C, Lefranc A, Schillinger C et al. Influence of socioeconomic deprivation on the relation between air pollution and beta-agonist sales for asthma. Chest 2009; 135: 717–723.

    Article  Google Scholar 

  18. Sarnat SE, Coull BA, Schwartz J, Gold DR, Suh HH . Factors affecting the association between ambient concentrations and personal exposures to particles and gases. Environ Health Perspect 2006; 114: 649–654.

    Article  CAS  Google Scholar 

  19. Sarnat JA, Brown KW, Bartell SM, Sarnat SE, Wheeler AJ, Suh HH et al. The relationship between averaged sulfate exposures and concentrations: results from Exposure Assessment Panel studies in four US cities. Environ Sci Technol 2009; 43: 5028–5034.

    Article  CAS  Google Scholar 

  20. Burke JM, Zufall MJ, Ozkaynak H . A population exposure model for particulate matter: case study results for PM2.5 in Philadelphia, PA. J Expo Sci Environ Epidemiol 2001; 11: 470–489.

    Article  CAS  Google Scholar 

  21. Georgopoulos PG, Wang S-W, Vyas VM, Sun Q, Burke JM, Vedantham R et al. A source-to-dose assessment of population exposures to fine PM and ozone in Philadelphia, PA, during a summer 1999 episode. J Expo Sci Environ Epidemiol 2005; 15: 439–457.

    Article  CAS  Google Scholar 

  22. Isakov V, Touma JS, Burke J, Lobdell DT, Palma T, Rosenbaum A et al. Combining regional- and local-scale air quality models with exposure models for use in environmental health studies. J Air Waste Manag Assoc 2009; 59: 461–472.

    Article  CAS  Google Scholar 

  23. Reich BJ, Fuentes M, Burke J . Analysis of the effects of ultrafine particulate matter while accounting for human exposure. Environmetrics 2009; 20: 131–146.

    Article  Google Scholar 

  24. Shaddick G, Lee D, Zidek JV, Salway R . Estimating exposure response functions using ambient pollution concentrations. Ann Appl Stat 2008; 2: 1249–1270.

    Article  Google Scholar 

  25. Metzger KB, Tolbert PE, Klein M, Peel JL, Flanders WD, Todd K et al. Ambient air pollution and cardiovascular emergency department visits. Epidemiology 2004; 15: 46–56.

    Article  Google Scholar 

  26. Peel JL, Tolbert PE, Klein M, Metzger KB, Flanders WD, Todd K et al. Ambient air pollution and respiratory emergency department visits. Epidemiology 2005; 16: 164–174.

    Article  Google Scholar 

  27. Tolbert PE, Klein M, Peel JL, Sarnat SE, Sarnat JA . Multipollutant modeling issues in a study of ambient air quality and emergency department visits in Atlanta. J Expo Sci Environ Epidemiol 2007; 17: S29–S35.

    Article  CAS  Google Scholar 

  28. Strickland MJ, Darrow LA, Klein M, Flanders WD, Sarnat JA, Waller LA et al. Short-term associations between ambient air pollutants and pediatric asthma emergency department visits. Am J Respir Crit Care Med 2010; 182: 307–316.

    Article  Google Scholar 

  29. Sarnat SE, Klein M, Sarnat JA, Mulholland J, Russell AG, Flanders WD et al. An examination of exposure measurement error from air pollutant spatial variability in time-series studies. J Expo Sci Environ Epidemiol 2010; 20: 135–146.

    Article  CAS  Google Scholar 

  30. Goldman GT, Mulholland JA, Russell AG, Srivastava A, Strickland MJ, Klein M et al. Ambient air pollutant measurement error: characterization and impacts in a time-series epidemiologic study in Atlanta. Environ Sci Technol 2010; 44: 7692–7698.

    Article  CAS  Google Scholar 

  31. Dionisio KL, Isakov V, Baxter L, Sarnat JA, Sarnat SE, Burke J et al. Comparison of modeling approaches for exposure assessment of multiple air pollutants in Atlanta, Georgia. J Expo Sci Environ Epidemiol, (in press).

  32. Tolbert PE, Klein M, Metzger KB, Peel J, Flanders WD, Todd K et al. Interim results of the study of particulates and health in Atlanta (SOPHIA). J Expo Anal Environ Epidemiol 2000; 10: 446–460.

    Article  CAS  Google Scholar 

  33. Ivy D, Mulholland JA, Russell AG . Development of ambient air quality population-weighted metrics for use in time-series health studies. J Air Waste Manag Assoc 2008; 58: 711–720.

    Article  CAS  Google Scholar 

  34. Cook R, Isakov V, Touma JS, Benjey W, Thurman J, Kinnee E et al. Resolving local-scale emissions for modeling air quality near roadways. J Air Waste Manag Assoc 2008; 58: 451–461.

    Article  CAS  Google Scholar 

  35. US EPA. Total Risk Integrated Methodology (TRIM) Air Pollutants Exposure Model Documentation (TRIM.Expo/APEX, Version 4.5). Volume I: User's Guide 2012.

  36. US EPA. Total Risk Integrated Methodology (TRIM) Air Pollutants Exposure Model Documentation (TRIM.Expo/APEX, Version 4.5). Volume II: Technical Support Document 2012.

  37. McCurdy T, Glen G, Smith L, Lakkadi Y . The National Exposure Research Laboratory’s consolidated human activity database. J Expo Sci Environ Epidemiol 2000; 10: 566–578.

    Article  CAS  Google Scholar 

  38. Sarnat JA, Sarnat SE, Flanders WD, Özkaynak H, Chang HH, Mulholland JA et al. Spatiotemporally resolved air exchange rate as a modifier of acute air pollution-related morbidity. J Expo Sci Environ Epidemiol, (doi:10.1038/jes.2013.32).

  39. U.S. Department of Transportation Bureau of Transportation Statistics Census Transportation Planning Package (CTPP) 2000, 2000. Part 3—Journey to Work, from http://transtats.bts.gov.

  40. Bell ML, O'Neill MS, Cifuentes LA, Braga ALF, Green C, Nweke A et al. Challenges and recommendations for the study of socioeconomic factors and air pollution health effects. Environ Sci Policy 2005; 8: 525–533.

    Article  Google Scholar 

  41. Laurent O, Bard D, Filleul L, Segala C . Effect of socioeconomic status on the relationship between atmospheric pollution and mortality. J Epidemiol Commun Health 2007; 61: 665–675.

    Article  Google Scholar 

  42. O'Neill MS, Jerrett M, Kawachi L, Levy JL, Cohen AJ, Gouveia N et al. Health, wealth, and air pollution: advancing theory and methods. Environmental Health Perspectives. 2003; 111: 1861–1870.

    Article  Google Scholar 

  43. Cohan DS, Tian D, Hu YT, Russell AG . Control strategy optimization for attainment and exposure mitigation: case study for ozone in Macon, Georgia. Environ Manag 2006; 38: 451–462.

    Article  Google Scholar 

  44. Goldman GT, Mulholland JA, Russell AG, Gass K, Strickland MJ, Tolbert PE . Characterization of ambient air pollution measurement error in a time-series health study using a geostatistical simulation approach. Atmospheric Environ 2012; 57: 101–108.

    Article  CAS  Google Scholar 

  45. Goldman GT, Mulholland JA, Russell AG, Strickland MJ, Klein M, Waller LA et al. Impact of exposure measurement error in air pollution epidemiology: effect of error type in time-series studies. Environ Health 2011; 10: 61.

    Article  Google Scholar 

  46. Carder M, McNamee R, Beverland I, Elton R, Cohen GR, Boyd J et al. Does deprivation index modify the acute effect of black smoke on cardiorespiratory mortality? Occup Environ Med 2010; 67: 104–110.

    Article  CAS  Google Scholar 

  47. Ostro BD, Feng WY, Broadwin R, Malig BJ, Green RS, Lipsett MJ . The impact of components of fine particulate matter on cardiovascular mortality in susceptible subpopulations. Occup Environ Med 2008; 65: 750–756.

    Article  CAS  Google Scholar 

  48. Lin M, Chen Y, Villeneuve PJ, Burnett RT, Lemyre L, Hertzman C et al. Gaseous air pollutants and asthma hospitalization of children with low household income in Vancouver, British Columbia, Canada. Am J Epidemiol 2004; 159: 294–303.

    Article  Google Scholar 

  49. Forastiere F, Stafoggia M, Tasco C, Picciotto S, Agabiti N, Cesaroni G et al. Socioeconomic status, particulate air pollution, and daily mortality: differential exposure or differential susceptibility. Am J Ind Med 2007; 50: 208–216.

    Article  Google Scholar 

  50. Villeneuve PJ, Burnett RT, Shi YL, Krewski D, Goldberg MS, Hertzman C et al. A time-series study of air pollution, socioeconomic status, and mortality in Vancouver, Canada. J Expo Anal Environ Epidemiol 2003; 13: 427–435.

    Article  CAS  Google Scholar 

  51. Burra TA, Moineddin R, Agha MM . Glazier RH. Social disadvantage, air pollution, and asthma physician visits in Toronto, Canada. Environ Res 2009; 109: 567–574.

    Article  CAS  Google Scholar 

  52. Gouveia N, Fletcher T . Time series analysis of air pollution and mortality: effects by cause, age and socioeconomic status. J Epidemiol Community Health 2000; 54: 750–755.

    Article  CAS  Google Scholar 

  53. Bateson TF, Schwartz J . Who is sensitive to the effecs of particulate air pollution on mortality? A case-crossover analysis of effect modifiers. Epidemiology 2004; 15: 143–149.

    Article  Google Scholar 

  54. Ren C, Melly S, Schwartz J . Modifiers of short-term effects of ozone on mortality in eastern Massachusetts—A case-crossover analysis at individual level. Environmental Health 2010; 9.

  55. O'Neill MS, Bell ML, Ranjit N, Cifuentes LA, Loomis D, Gouveia N et al. Air pollution and mortality in Latin America: the role of education. Epidemiology 2008; 19: 810–819.

    Article  Google Scholar 

  56. Chang HH, Peng RD, Dominici F . Estimating the acute health effects of coarse particulate matter accounting for exposure measurement error. Biostatistics 2011; 12: 637–652.

    Article  Google Scholar 

  57. Gryparis A, Paciorek CJ, Zeka A, Schwartz J, Coull BA . Measurement error caused by spatial misalignment in environmental epidemiology. Biostatistics 2009; 10: 258–274.

    Article  Google Scholar 

  58. Peng RD, Bell ML . Spatial misalignment in time series studies of air pollution and health data. Biostatistics 2010; 11: 720–740.

    Article  Google Scholar 

  59. Wakefield J, Shaddick G . Health-exposure modeling and the ecological fallacy. Biostatistics 2006; 7: 438–455.

    Article  Google Scholar 

Download references

Acknowledgements

We thank James Crooks, Jawad Touma, and Lisa Baxter from the US EPA/National Exposure Research Laboratory, Rich Cook from the US EPA/Office of Transportation and Air Quality, and Priya Kewada from Emory University for their efforts throughout the project. This publication was made possible by a cooperative agreement between Emory University and the US Environmental Protection Agency (US EPA) (CR-83407301-1) and a US EPA Clean Air Research Center grant to Emory University and the Georgia Institute of Technology (RD83479901). The contents of this publication are solely the responsibility of the grantee and do not necessarily represent the official views of the US EPA. Further, US EPA does not endorse the purchase of any commercial products or services mentioned in the publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefanie Ebelt Sarnat.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Journal of Exposure Science and Environmental Epidemiology website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarnat, S., Sarnat, J., Mulholland, J. et al. Application of alternative spatiotemporal metrics of ambient air pollution exposure in a time-series epidemiological study in Atlanta. J Expo Sci Environ Epidemiol 23, 593–605 (2013). https://doi.org/10.1038/jes.2013.41

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jes.2013.41

Keywords

This article is cited by

Search

Quick links