Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Association of ozone and particulate air pollution with out-of-hospital cardiac arrest in Helsinki, Finland: Evidence for two different etiologies

Abstract

Out-of-hospital cardiac arrest (OHCA) has been previously associated with exposure to particulate air pollution. However, there is uncertainty about the agents and mechanisms that are involved. We aimed to determine the association of gases and particulates with OHCA, and differences in pollutant effects on OHCAs due to acute myocardial infarction (AMI) vs those due to other causes. Helsinki Emergency Medical Services provided data on OHCAs of cardiac origin (OHCA_Cardiac). Hospital and autopsy reports determined whether OHCAs were due to AMI (OHCA_MI) or other cardiac causes (OHCA_Other). Pollutant data was obtained from central ambient monitors. A case-crossover analysis determined odds ratios (ORs) for hourly lagged exposures (Lag 0–3) and daily lagged exposures (Lag 0d–3d), expressed per interquartile range of pollutant level. For OHCA_Cardiac, elevated ORs were found for PM2.5 (Lag 0, 1.07; 95% confidence interval (CI): 1.01–1.13) and ozone (O3) (Lag 2d, 1.18; CI: 1.03–1.35). For OHCA_MI, elevated ORs were found for PM2.5 (Lag 0, 1.14; CI: 1.03–1.27; Lag 0d, 1.17; CI: 1.03–1.33), accumulation mode particulate (Acc) (Lag 0d, 1.19; CI: 1.04–1.35), NO (Lag 0d, 1.07; CI: 1.01–1.13), and ultrafine particulate (Lag 0d, 1.27; CI: 1.05–1.54). For OHCA_Other, elevated ORs were found only for O3 (Lag 1d, 1.26; CI: 1.07–1.48; Lag 2d, 1.30; CI: 1.11–1.53). Results from two-pollutant models, with one of the pollutants either PM2.5 or O3, suggested that associations were primarily due to effects of PM2.5 and O3, rather than other pollutants. The results suggest that air pollution triggers OHCA via two distinct modes: one associated with particulates leading to AMI and one associated with O3 involving etiologies other than AMI, for example, arrhythmias or respiratory insufficiency.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Forastiere F, Stafoggia M, Picciotto S, Bellander T, D’Ippoliti D, Lanki T et al A case-crossover analysis of out-of-hospital coronary deaths and air pollution in Rome, Italy. Am J Respir Crit Care Med 2005; 172: 1549–1555.

    Article  Google Scholar 

  2. Rosenthal FS, Carney JP, Olinger ML . Out-of-hospital cardiac arrest and airborne fine particulate matter: a case-crossover analysis of emergency medical services data in Indianapolis, Indiana. Environ Health Perspect 2008; 116: 631–636.

    Article  Google Scholar 

  3. Serinelli M, Vigotti MA, Stafoggia M, Berti G, Bisanti L, Mallone S et al Particulate matter and out-of-hospital coronary deaths in eight Italian cities. Occup Environ Med 2010; 67: 301–306.

    Article  Google Scholar 

  4. Dennekamp M, Akram M, Abramson MJ, Tonkin A, Sim MR, Fridman M et al Outdoor air pollution as a trigger for out-of-hospital cardiac arrests. Epidemiology 2010; 21: 494–500.

    Article  Google Scholar 

  5. Silverman RA, Ito K, Freese J, Kaufman BJ, De Claro D, Braun J et al Association of ambient fine particles with out-of-hospital cardiac arrests in New York City. Am J Epidemiol 2010; 172: 917–923.

    Article  Google Scholar 

  6. Peters A, Dockery DW, Muller JE, Mittleman MA . Increased particulate air pollution and the triggering of myocardial infarction. Circulation 2001; 103: 2810–2815.

    Article  CAS  Google Scholar 

  7. Cummins RO . The Utstein style for uniform reporting of data from out-of-hospital cardiac arrest. Ann Emerg Med 1993; 22: 37–40.

    Article  CAS  Google Scholar 

  8. Aalto P, Hämeri K, Becker E, Weber R, Salm J, Mäkela et al Physical characterization of aerosol particles during nucleation events. Tellus 2001; 53B: 344–358.

    Article  Google Scholar 

  9. Hussein T, Puustinen A, Aalto PP, Mäkelä JM, Hämeri K, Kulmala M . Urban aerosol number size distributions. Atmos Chem Phys 2004; 4: 391–411.

    Article  CAS  Google Scholar 

  10. Hussein T, Martikainen J, Junninen H, Sogacheva L, Wagner R, Dal Maso M et al Observation of regional new particle formation in the urban atmosphere. Tellus B Chem Phys Meteorol 2008; 60: 509–521.

    Article  Google Scholar 

  11. Neas LM, Schwartz J, Dockery DA . Case-crossover analysis of air pollution and mortality in Philadelphia. Environ Health Perspect 1999; 107: 629–631.

    Article  CAS  Google Scholar 

  12. Schenker N, Gentleman JF . On judging the significance of differences by examining overlap between confidence intervals. Am Statistician 2001; 55: 182–186.

    Article  Google Scholar 

  13. Lemaitre RN, Siscovick DS, Psaty BM, Pearce RM, Raghunathan TE, Whitsel EA et al Inhaled beta-2 adrenergic receptor agonists and primary cardiac arrest. Am J Med 2002; 113: 711–716.

    Article  CAS  Google Scholar 

  14. Suissa S, Hemmelgarn B, Blais L, Ernst P . Bronchodilators and acute cardiac death. Am J Respir Crit Care Med 1996; 154 (6, Part 1): 1598–1602.

    Article  CAS  Google Scholar 

  15. Macdonald WA, Hool LC . The effect of acute hypoxia on excitability in the heart and the L-type calcium channel as therapeutic target. Curr Drug Discov Technol 2008; 5: 302–311.

    Article  CAS  Google Scholar 

  16. Nadkarni VM, Larkin GL, Peberdy MA, Carey SM, Kaye W, Mancini ME et al First documented rhythm and clinical outcome from in-hospital cardiac arrest among children and adults. JAMA 2006; 295: 50–57.

    Article  CAS  Google Scholar 

  17. Luttmann-Gibson H, Suh HH, Coull BA, Dockery DW, Sarnat SE, Schwartz J et al Systemic inflammation, heart rate variability and air pollution in a cohort of senior adults. Occup Environ Med 2010; 67: 625–630.

    Article  CAS  Google Scholar 

  18. Sarnat SE, Suh HH, Coull BA, Schwartz J, Stone PH, Gold DR . Ambient particulate air pollution and cardiac arrhythmia in a panel of older adults in Steubenville, Ohio. Occup Environ Med 2006; 63: 700–706.

    Article  CAS  Google Scholar 

  19. Peters A, Liu E, Verrier RL, Schwartz J, Gold DR, Mittleman M et al Air pollution and incidence of cardiac arrhythmia. Epidemiology 2000; 11: 11–17.

    Article  CAS  Google Scholar 

  20. Rich DQ, Schwartz J, Mittleman MA, Link M, Luttmann-Gibson H, Catalano PJ et al Association of short-term ambient air pollution concentrations and ventricular arrhythmias. Am J Epidemiol 2005; 161: 1123–1132.

    Article  Google Scholar 

  21. Chugh SS, Uy-Evanado A, Teodorescu C, Reinier K, Mariani R, Gunson K et al Women have a lower prevalence of structural heart disease as a precursor to sudden cardiac arrest: The Ore-SUDS (Oregon Sudden Unexpected Death Study). J Am Coll Cardiol 2009; 54: 2006–2011.

    Article  Google Scholar 

  22. Rich DQ, Mittleman MA, Link MS, Schwartz J, Luttmann-Gibson H, Catalano PJ et al Increased risk of paroxysmal atrial fibrillation episodes associated with acute increase in ambient air pollution. Environ Health Perspect 2006; 114: 120–123.

    Article  CAS  Google Scholar 

  23. Kim JY, Burnett RT, Neas L, Thurston GD, Schwartz J, Tolbert PE et al Panel discussion review: session two — interpretation of observed associations between multiple ambient air pollutants and health effects in epidemiologic analyses. J Expo Sci Environ Epidemiol 2007; 17 (Suppl 2): S83–S89.

    Article  CAS  Google Scholar 

  24. Karppinen A, Härkönen J, Kukkonen J, Aarnio P, Koskentalo T . Statistical model for assessing the portion of fine particulate matter transported regionally and long range to urban air. Scand J Work Environ Health 2004; 30 (Suppl 2): 47–53.

    CAS  PubMed  Google Scholar 

  25. Lippmann M, Ito K, Nádas A, Burnett RT . Association of particulate matter components with daily mortality and morbidity in urban populations. Res Rep Health Eff Inst 2000; 95: 5–82.

    Google Scholar 

  26. Meng QY, Spector D, Colome S, Turpin B . Determinants of indoor and personal exposure to PM(2.5) of indoor and outdoor origin during the RIOPA study. Atmos Environ 2009; 43: 5750–5758.

    Article  CAS  Google Scholar 

  27. Janssen NA, Lanki T, Hoek G, Vallius M, de Hartog JJ, Van Grieken R et al Associations between ambient, personal, and indoor exposure to fine particulate matter constituents in Dutch and Finnish panels of cardiovascular patients. Occup Environ Med 2005; 62: 868–877.

    Article  CAS  Google Scholar 

  28. Grahame TJ, Schlesinger RB . Cardiovascular health and particulate vehicular emissions: a critical evaluation of the evidence. Air Qual Atmos Health 2010; 3: 3–27.

    Article  CAS  Google Scholar 

  29. Murakami Y, Ono M . Myocardial infarction deaths after high level exposure to particulate matter. J Epidemiol Community Health 2006; 60: 262–266.

    Article  Google Scholar 

  30. Analitis A, Katsouyanni K, Dimakopoulou K, Samoli E, Nikoloulopoulos AK, Petasakis Y et al Short-term effects of ambient particles on cardiovascular and respiratory mortality. Epidemiology 2006; 17: 230–233.

    Article  Google Scholar 

  31. Analitis A, Katsouyanni K, Dimakopoulou K, Samoli E, Nikoloulopoulos AK, Petasakis Y et al Short-term effects of ambient particles on cardiovascular and respiratory mortality. Epidemiology 2006; 17: 230–233 (online supplement).

    Article  Google Scholar 

  32. Halonen JI, Lanki T, Yli-Tuomi T, Tiittanen P, Kulmala M, Pekkanen J . Particulate air pollution and acute cardiorespiratory hospital admissions and mortality among the elderly. Epidemiology 2009; 20: 143–153.

    Article  Google Scholar 

  33. Halonen JI, Lanki T, Tiittanen P, Niemi JV, Loh M, Pekkanen J . Ozone and cause-specific cardiorespiratory morbidity and mortality. J Epidemiol Commun Health 2010; 4: 814–820.

    Article  Google Scholar 

  34. Levy D, Sheppard L, Checkoway H, Kaufman J, Lumley T, Koenig J et al A case-crossover analysis of particulate matter air pollution and out-of-hospital primary cardiac arrest. Epidemiology 2001; 12: 193–1999.

    Article  CAS  Google Scholar 

  35. Ruidavets JB, Cournot M, Cassadou S, Giroux M, Meybeck M, Ferrières J . Ozone air pollution is associated with acute myocardial infarction. Circulation 2005; 111: 563–569.

    Article  CAS  Google Scholar 

  36. City of Helsinki Brief Facts. http://www.hel.fi/hki//helsinki/en/Information+on+Helsinki/Information+on+Helsinki/Brief+Facts+about+Helsinki. (accessed on 1 February 2011).

  37. City-data.com. http://www.city-data.com/ . (accessed on 11 February 2011).

  38. Medina-Ramón M, Schwartz J . Temperature, temperature extremes, and mortality: a study of acclimatization and effect modification in 50 United States cities. Occup Environ Med 2007; 64: 827–833.

    Article  Google Scholar 

  39. Kvaløy JT, Skogvoll E . Modeling seasonal and weather dependency of cardiac arrests using the covariate order method. Stat Med 2007; 26: 3315–3329.

    Article  Google Scholar 

  40. De Lorenzo F, Sharma V, Scully M, Kakkar VV . Cold adaptation and the seasonal distribution of acute myocardial infarction. Q J Med 1999; 92: 747–751.

    Article  CAS  Google Scholar 

  41. Wolf K, Schneider A, Breitner S, von Klot S, Meisinger C, Cyrys J et alCooperative Health Research in the Region of Augsburg Study Group. Air temperature and the occurrence of myocardial infarction in Augsburg, Germany. Circulation 2009; 120: 735–742.

    Article  Google Scholar 

  42. Liang WM, Liu WP, Chou SY, Kuo HW . Ambient temperature and emergency room admissions for acute coronary syndrome in Taiwan. Int J Biometeorol 2008; 52: 223–229.

    Article  Google Scholar 

Download references

Acknowledgements

Taneli Väyrynen of the Helsinki EMS assisted in determining causes of cardiac arrest from OHCA records, and provided helpful discussions on the interpretation of these data. Air pollution data was provided by the Helsinki Metropolitan Area Council (YTV) and the University of Helsinki Department of Physics, Finland. Tarja Koskentalo provided advice on the use of YTV data. Maria Laari provided information on the procedures used to detect myocardial infarction in autopsies of cardiac arrest victims in Helsinki. Tarja Yli-Tuomi provided helpful discussions on the background of previous air pollution studies in Helsinki. Marja-Leena Hannila provided advice on statistical analysis. Bella Siangonya and Kosuke Tamura assisted with data analysis. This work was financially supported by the Laerdal Foundation for Acute Medicine, Norway. This research was initiated while Dr Rosenthal was supported by a Fulbright-Saastamoinen Foundation Grant in Environmental Health at the University of Kuopio, Finland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank S Rosenthal.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosenthal, F., Kuisma, M., Lanki, T. et al. Association of ozone and particulate air pollution with out-of-hospital cardiac arrest in Helsinki, Finland: Evidence for two different etiologies. J Expo Sci Environ Epidemiol 23, 281–288 (2013). https://doi.org/10.1038/jes.2012.121

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jes.2012.121

Keywords

This article is cited by

Search

Quick links