Skip to main content
Log in

Hormone-Induced Protection Against Breast Cancer

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

An Erratum to this article was published on 18 February 2009

Abstract

Reproductive history is a consistent risk factor for human breast cancer. Epidemiological studies have repeatedly demonstrated that early age of first full-term pregnancy is a strong protective factor against breast cancer and provides a physiologically operative model to achieve a practical mode of prevention. In rodents, the effects of full-term pregnancy can be mimicked by exposure to low doses of estrogen and progesterone or treatment with human chorionic gonadotropin. The cellular and molecular mechanisms that underlie hormone-induced refractoriness are largely unresolved. Several hypotheses have been proposed to explain the protective effects of hormones. These involve the induction of differentiation of the mammary gland to provide a less responsive cell population to carcinogens, a decrease in proliferative activity in the parous gland compared to the age-matched virgin, an altered hormonal environment mediated by a decrease in circulating growth hormone, and an alteration in cell fate mediated by specific molecular changes induced by estrogen and progesterone. The evidence for and against these hypotheses is discussed along with recent results on possible molecular alterations that may underlie the refractory state. One central question that is still unresolved is whether the refractoriness is intrinsic to the mammary epithelial cells and/or mediated by persistent alterations in the host environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. R. T. Greenlee, M. B. Hill-Harmon, T. Murray, and M. T. Thun (2001). Cancer statistics, 2001. CA Cancer J.Clin. 51:15–36.

    PubMed  Google Scholar 

  2. J. L. Kelsey and L. Bernstein (1996). Epidemiology and prevention of breast cancer. Annu.Rev.Public Health 17:47–67.

    PubMed  Google Scholar 

  3. J. L. Kelsey and M. D. Gammon (1991). The epidemiology of breast cancer. CA Cancer J.Clin. 41:146–165.

    PubMed  Google Scholar 

  4. R. Peto, J. Boreham, M. Clarke, C. Davies, and V. Beral (2000). U.K. and U.S.A. breast cancer deaths down 25% in year 2000 at ages 20–69 years. Lancet 355: 1822.

    Google Scholar 

  5. Cancer Facts and Figures (2000). American Cancer Society, Atlanta, Ga.

  6. K. McPherson, C. M. Steel, and J. M. Dixon (2000). ABC ofbreast diseases. Breast cancer-epidemiology, risk factors, andgenetics. Br.J.Cancer 321:624–628.

    Google Scholar 

  7. J. R. Harris, M. E. Lippman, U. Veronesi, and W. Willett (1992). Breast cancer (1). N.Engl.J.Med. 327:319–328.

    PubMed  Google Scholar 

  8. P. Buell (1973). Changing incidence of breast cancer in Japanese-American women. J.Natl.Cancer Inst. 51:1479–1483.

    PubMed  Google Scholar 

  9. R. G. Ziegler, R. N. Hoover, M. C. Pike, A. Hildesheim, A. M. Nomura, D. W. West, A. H. Wu-Williams, L. N. Kolonel, P. L. Horn-Ross, J. F. Rosenthal, M. B. Hyer (1993). Migration patterns and breast cancer risk in Asian-American women. J.Natl.Cancer Inst. 85:1819–1827.

    PubMed  Google Scholar 

  10. B. E. Henderson, R. K. Ross, and M. C. Pike (1991). Toward the primary prevention of cancer. Science 254:1131–1138.

    PubMed  Google Scholar 

  11. D. Medina (1982). Mammary Tumors, Academic Press, New York.

    Google Scholar 

  12. J. Russo, B. A. Gusterson, A. E. Rogers, I. H. Russo, S. R. Wellings, and M. J. van Zwieten (1990). Comparative study of human and rat mammary tumorigenesis. Lab.Invest. 62:244–278.

    PubMed  Google Scholar 

  13. B. L. Slagle and J. S. Butel (1987). Exogenous and EndogenousMouse Mammary Tumor Viruses: Replication and Cell Transformation, Plenum, New York.

    Google Scholar 

  14. M. H. Gail and M. H. Greene (2000). Gail model and breastcancer. Lancet 355: 1017.

    Google Scholar 

  15. P. M. Gullino, H. M. Pettigrew, and F. H. Grantham (1975). N-nitrosomethylurea as mammary gland carcinogen in rats. J.Natl.Cancer Inst. 54:401–414.

    PubMed  Google Scholar 

  16. C. J. Shellabarger, V. P. Bond, G. E. Aponte, and E. P. Cronkite (1966). Results of fractionation and protraction of total-body radiation on rat mammary neoplasia. Cancer Res. 26:509–513.

    PubMed  Google Scholar 

  17. J. Russo, L. K. Tay, and I. H. Russo (1982). Differentiation ofthe mammary gland and susceptibility to carcinogenesis. BreastCancer Res.Treat. 2:5–73.

    Google Scholar 

  18. C. J. Grubbs, J. C. Peckham, and K. D. Cato (1983). Mammary carcinogenesis in rats in relation to age at time of N-nitroso N-methylurea administration. J.Natl.Cancer Inst. 70:209–212.

    PubMed  Google Scholar 

  19. S. Z. Haslam (1979). Age as a modifying factor of 7,12-dimethylbenz (a) anthracene-induced mammary carcinogenesisin the Lewis rat. Int.J.Cancer 23:374–379.

    PubMed  Google Scholar 

  20. R. C. Moon (1981). Influence of Pregnancy and Lactation on Experimental Mammary Carcinogenesis, Cold Spring Harbor Laboratory, New York.

    Google Scholar 

  21. J. Yang, K. Yoshizawa, S. Nandi, and A. Tsubura (1999). Protective effects of pregnancy and lactation against N-methyl N-nitrosourea-induced mammary carcinomas in female Lewisrats. Carcinogenesis 20:623–628.

    PubMed  Google Scholar 

  22. U. Kim (1970). Metastasizing mammary carcinomas in rats: Induction and study of their immuno genicity. Science 167:72–74.

    PubMed  Google Scholar 

  23. E. R. Fisher, R. H. Shoemaker, and A. Sabnis (1975). Relationship of hyperplasia to cancer in 3-methylcholanthrene-inducedmammary tumorogenesis. Lab.Invest. 33:33–42.

    PubMed  Google Scholar 

  24. S. Z. Haslam and H. A. Bern (1977). Histopathogenesis of 7,12-diemthylbenz (a) anthracene-induced rat mammary tumors. Proc.Natl.Acad.Sci.U.S.A. 74:4020–4024.

    PubMed  Google Scholar 

  25. P. J. Middleton (1965). The histogenesis of mammary tumours induced in the rat by chemical carcinogens. Br.J.Cancer 19:830–839.

    PubMed  Google Scholar 

  26. S. Z. Haslam (1980). The effect of age on the histopathogenesis of 7,12-dimethylbenz (a)-anthracene-induced mammary tumors in the Lewis rat. Int.J.Cancer 26:349–356.

    PubMed  Google Scholar 

  27. J. Russo and I. H. Russo (1997). Role of differentiation in the pathogenesis and prevention of breast cancer. Endocr.Rel Cancer 4:7–12.

    Google Scholar 

  28. D. K. Sinha, J. E. Pazik, and T. L. Dao (1988). Prevention of mammary carcinogenesis in rats by pregnancy: Effect of full-term and interrupted pregnancy. Br.J.Cancer 57:390–394.

    PubMed  Google Scholar 

  29. L. Sivaraman, L. C. Stephens, B. M. Markaverich, J. A. Clark,S. Krnacik, O. M. Conneely, B. W. O'Malley, and D. Medina (1998). Hormone-induced refractoriness to mammary carcinogenesis in Wistar–Furth rats. Carcinogenesis 19:1573–1581.

    PubMed  Google Scholar 

  30. R. C. Guzman, J. Yang, L. Rajkumar, G. Thordarson, X. Chen, and S. Nandi (1999). Hormonal prevention of breast cancer: Mimicking the protective effect of pregnancy. Proc.Natl.Acad.Sci.U.S.A. 96:2520–2525.

    PubMed  Google Scholar 

  31. M. P. Walker, G. D. Jahnke, S. M. Snedeker, B. C. Gladen,G. W. Lucier, and R. P. DiAugustine (1992). 32P-postlabelinganalysis of the formation and persistence of DNA adducts in mammary glands of parous and nulliparous mice treated withbenzo[a]pyrene. Carcinogenesis 13:2009–2015.

    PubMed  Google Scholar 

  32. L. L. Dumenco, E. Allay, K. Norton, and S. L. Gerson (1993). The prevention of thymic lymphomas in transgenic mice byhuman O6-alkylguanine-DNA alkyltransferase. Science 259:219–222.

    PubMed  Google Scholar 

  33. T. A. Dutta-Choudhury, B. H. Bak, and R. C. Guzman (1991). Cellular levels of O 6-methylguanine-DNA methyltransferase n mammary epithelial cells and liver from virgin, pregnant and pituitary grafted mice. Carcinogenesis 12:1795–1800.

    PubMed  Google Scholar 

  34. S. Sukumar, V. Notario, D. Martin-Zanca, and M. Barbacid (1983). Induction of mammary carcinomas in rats by nitroso-methylureainvolves malignant activation of H-ras-1 locus by single point mutations. Nature 306:658–661.

    PubMed  Google Scholar 

  35. R. Kumar, S. Sukumar, and M. Barbacid (1990). Activation of ras oncogenes preceding the onset of neoplasia. Science 248:1101–1104.

    PubMed  Google Scholar 

  36. L. W. Wattenberg (1990). Inhibition of Carcinogenesisby Naturally-Occurring and Synthetic Compounds, Plenum, New York.

    Google Scholar 

  37. C. W. Welsch (1987). Dietary Retinoids and the Chemopreven-tion of Mammary Gland Morphogenesis, Plenum, New York.

    Google Scholar 

  38. C. Ip and D. Medina (1987). Current Concepts of Selenium and Mammary Tumorigenesis, Plenum, New York.

    Google Scholar 

  39. P. L. Crowell, W. S. Kennan, J. D. Haag, S. Ahmad, E. Vedejs,and M. N. Gould (1992). Chemoprevention of mammary carcinogenesis by hydroxylated derivatives of d-limonene. Carcinogenesis 13:1261–1264.

    PubMed  Google Scholar 

  40. C. J. Grubbs, D. R. Farnell, D. L. Hill, and K. C. McDonough (1985). Chemoprevention of N-nitroso-N-methylurea-induced mammary cancers by pretreatment with 17 beta-estradiol and progesterone. J.Natl.Cancer Inst. 74:927–931.

    PubMed  Google Scholar 

  41. L. Lipworth, L. R. Bailey, and D. Trichopoulos (2000). Historyof breast-feeding in relation to breast cancer risk: A review ofthe epidemiologic literature. J.Natl.Cancer Inst. 92:302–312.

    PubMed  Google Scholar 

  42. J. Russo and I. H. Russo (1980). Susceptibility of the mammary gland to carcinogenesis: II. Pregnancy interruption as a riskfactor in tumor incidence. Am.J.Pathol. 100:497–512.

    PubMed  Google Scholar 

  43. I. H. Russo, J. Medada, and J. Russo (1989). Endocrine Influ-enceson the Mammary Gland, Springer-Verlag, Berlin.

    Google Scholar 

  44. J. Russo, R. Rivera, and I. H. Russo (1992). Influence of age and parity on the development of the human breast. Breast CancerRes.Treat. 23:211–218.

    Google Scholar 

  45. D. Medina, L. E. Peterson, R. Moraes, and J. Gay (2001). Short-term exposure to estrogen and progesterone induces partial protection against NMU-induced mammary tumorigenesis in Wistar–Furth rats. Cancer Let t. 169:1–6.

    Google Scholar 

  46. C. J. Grubbs, M. M. Juliana, and L. M. Whitaker (1988). Short-term hormone treatment as a chemopreventive method against mammary cancer initiation in rats. Anticancer Res. 8:113–117.

    PubMed  Google Scholar 

  47. P. Srivastava, J. Russo, and I. H. Russo (1997). Chorionic go-nadotropininhibits rat mammary carcinogenesis through activation of programmed cell death. Carcinogenesis 18:1799–1808.

    PubMed  Google Scholar 

  48. I. H. Russo, M. Koszalka, and J. Russo (1990). Human chorionic gonadotropin and rat mammary cancer prevention. J.Natl.Cancer Inst. 82:1286–1289.

    PubMed  Google Scholar 

  49. I. H. Russo, J. Frederick, and J. Russo (1989). Hormone prevention of mammary carcinogenesis by norethynodrel–mestranol. Breast Cancer Res.Treat. 14:43–56.

    PubMed  Google Scholar 

  50. I. H. Russo, P. Gimotty, M. Dupuis, and J. Russo (1989). Effect of medroxy progesterone acetate on the response of therat mammary gland to carcinogenesis. Br.J.Cancer 59:210–216.

    PubMed  Google Scholar 

  51. M. M. Gottardis and V. C. Jordan (1987). Antitumor actions ofkeoxifene and tamoxifen in the N-nitrosomethylurea-induced rat mammary carcinoma model. Cancer Res. 47:4020–4024.

    PubMed  Google Scholar 

  52. V. C. Jordan, M. K. Lababidi, and S. Langan-Fahey (1991). Suppression of mouse mammary tumorigenesis by long-term tamoxifen therapy. J.Natl.Cancer Inst. 83:492–496.

    PubMed  Google Scholar 

  53. V. C. Jordan (1992). Overview from the International Conference on Long-Term Tamoxifen Therapy for Breast Cancer. J.Natl.Cancer Inst. 84:231–234.

    PubMed  Google Scholar 

  54. C. J. Grubbs, M. M. Juliana, D. L. Hill, and L. M. Whitaker (1986). Suppression by pregnancy of chemically induced pre-neoplastic cells of the rat mammary gland. Anticancer Res. 6:1395–1400.

    PubMed  Google Scholar 

  55. D. Medina and G. H. Smith (1999). Chemical carcinogen induced tumorigenesis in parous, involuted mouse mammary glands. J.Natl.Cancer Inst. 91:967–969.

    PubMed  Google Scholar 

  56. J. Russo, Y. F. Hu, I. D. Silva, and I. H. Russo (2001). Cancer risk related to mammary gland structure and development. Microsc.Res.Tech. 52:204–223.

    PubMed  Google Scholar 

  57. J. Russo and I. H. Russo (1987). Biological and molecular bases of mammary carcinogenesis. Lab.Invest. 57:112–137.

    PubMed  Google Scholar 

  58. G. Thordarson, E. Jin, R. C. Guzman, S. M. Swanson, S. Nandi, and F. Talamantes (1995). Refractoriness to mammary tumorigenesis in parous rats: Is it caused by persistent changes in thehormonal environment or permanent biochemical alterations in the mammary epithelia? Carcinogenesis 16:2847–2853.

    PubMed  Google Scholar 

  59. T. A. Abrams, R. C. Guzman, Y. Hirokawa, S. M. Swanson, and S. Nandi (1997). Refractoriness of parous rats to mammary carcinigenesis is overcome by treatment with ovarian hormones. Proc.Am.Assoc.Cancer.Res. 38: 1992.

    Google Scholar 

  60. C. W. Welsch and H. Nagasawa (1977). Prolactin and murine mammary tumorigenesis: A review. Cancer Res. 37:951–963.

    PubMed  Google Scholar 

  61. V. C. Musey, D. C. Collins, P. I. Musey, D. Martino-Saltzman,and J. R. Preedy (1987). Long-term effect of a first pregnancyon the secretion of prolactin. N.Engl.J.Med. 316:229–234.

    PubMed  Google Scholar 

  62. S. M. Swanson, R. C. Guzman, G. Collins, P. Tafoya, G. Thordarson, F. Talamantes, and S. Nandi (1995). Refrac-torinessto mammary carcinogenesis in the parous mouse is re-versibleby hormonal stimulation induced by pituitary isografts. Cancer Lett. 90:171–181.

    PubMed  Google Scholar 

  63. R. Strange, F. Li, S. Saurer, A. Burkhardt, and R. R. Friis (1992). Apoptotic cell death and tissue remodelling duringmouse mammary gland involution. Development 115:49–58.

    PubMed  Google Scholar 

  64. D. J. Allan, A. Howell, S. A. Roberts, G. T. Williams, R. J. Watson, J. D. Coyne, R. B. Clarke, I. J. Laidlaw, and C. S. Potten (1992). Reduction in apoptosis relative to mito-sisin histologically normal epithelium accompanies fibrocysticchange and carcinoma of the premenopausal human breast. J.Pathol. 167:25–32.

    PubMed  Google Scholar 

  65. G. H. Smith and D. Medina (1988). A morphologically distinctcandidate for an epithelial stem cell in mouse mammary gland. J.Cell Sci. 90:173–183.

    PubMed  Google Scholar 

  66. H. Jernstrom, C. Lerman, P. Ghadirian, H. T. Lynch, B. Weber, J. Garber, M. Daly, O. I. Olopade, W. D. Foulkes, E. Warner, J. S. Brunet, and S. A. Narod (1999). Pregnancy and risk ofearly breast cancer in carriers of BRCA1 and BRCA2. Lancet 354:1846–1850.

    PubMed  Google Scholar 

  67. H. C. Jernstrom, O. T. Johannsson, N. Loman, A. Borg, and H. Olsson (1999). Reproductive factors in hereditary breastcancer. Breast Cancer Res.Treat. 58:295–301.

    PubMed  Google Scholar 

  68. J. V. Rajan, S. T. Marquis, H. P. Gardner, and L. A. Chodosh (1997). Developmental expression of Brca2 colocalizes withBrca1 and is associated with proliferation and differentiation in multiple tissues. Dev.Biol. 184:385–401.

    PubMed  Google Scholar 

  69. D. J. Bernard-Gallon, M. P. De Latour, V. V. Sylvain, C. Vissac, B. Aunoble, J. Chassagne, and Y. J. Bignon (2001). Brca1 andBrca2 protein expression patterns in different tissues of murineorigin. Int.J.Oncol. 18:271–280.

    PubMed  Google Scholar 

  70. M. Mixon, F. Kittrell, and D. Medina (2000). Expression ofBrca1 and splice variant Brca1 delta11 RNA levels in mouse mammary gland during normal development and tumorigenesis. Oncogene 19:5237–5243.

    PubMed  Google Scholar 

  71. C. Kuperwasser, J. Pinkas, G. D. Hurlbut, S. P. Naber, and D. J. Jerry (2000). Cytoplasmic sequestration and functional repressionof p53 in the mammary epithelium is reversed by hormonal treatment. Cancer Res. 60:2723–2729.

    PubMed  Google Scholar 

  72. T. Miyashita, S. Krajewski, M. Krajewska, H. G. Wang, H. K. Lin, D. A. Liebermann, B. Hoffman, and J. C. Reed (1994). Tumor suppressor p53 is a regulator of bcl-2 and bax gene ex-pressionin vitro and in vivo. Oncogene 9:1799–1805.

    PubMed  Google Scholar 

  73. M. L. Smith, I. T. Chen, Q. Zhan, I. Bae, C. Y. Chen, T. M. Gilmer, M. B. Kastan, P. M. O'Connor, and A. J. Fornace Jr. (1994). Interaction of the p53-regulated protein Gadd45 with proliferating cell nuclear antigen. Science 266:1376–1380.

    PubMed  Google Scholar 

  74. M. B. Kastan, Q. Zhan, W. S. el-Deiry, F. Carrier, T. Jacks, W. V. Walsh, B. S. Plunkett, B. Vogelstein, and A. J. Fornace Jr. (1992). A mammalian cell cycle checkpoint pathway utilizing p53 andGADD45is defective in ataxiatelangiectasia. Cell 71:587–597.

    PubMed  Google Scholar 

  75. W. S. el-Deiry, T. Tokino, V. E. Velculescu, D. B. Levy, R. Parsons, J. M. Trent, D. Lin, W. E. Mercer, K. W. Kinzler,and B. Vogelstein (1993). WAF1, a potential mediator of p53tumor suppression. Cell 75:817–825.

    PubMed  Google Scholar 

  76. D. R. Lloyd and P. C. Hanawalt (2000). p53-dependentglobal genomic repair of benzo[a]pyrene-7,8-diol-9,10-epoxideadducts in human cells. Cancer Res. 60:517–521.

    PubMed  Google Scholar 

  77. D. Medina, L. Sivaraman, S. G. Hilsenbeck, O. M. Conneely,M. Ginger, J. Rosen, and B. W. O'Malley (2000). Mechanisms of Hormonal Prevention of Breast Cancer, in Strang InternationalCancer Prevention Conference, New York.

  78. Y. W. Qian and E. Y. Lee (1995). Dual retinoblastoma-binding proteins with properties related to a negative regulator of rasin yeast. J.Biol.Chem. 270:25507–25513.

    PubMed  Google Scholar 

  79. L. S. Guan, M. Rauchman, and Z. Y. Wang (1998). Induction of Rb-associated protein (RbAp46) by Wilms' tumor suppres-sorWT1 mediates growth inhibition. J.Biol.Chem. 273:27047–27050.

    PubMed  Google Scholar 

  80. R. I. Yarden and L. C. Brody (1999). BRCA1 interacts with components of the histone deacetylase complex. Proc.Natl.Acad.Sci.U.S.A. 96:4983–4988.

    PubMed  Google Scholar 

  81. Y. Zhang, H. H. Ng, H. Erdjument-Bromage, P. Tempst, A. Bird,and D. Reinberg (1999). Analysis of the NuRD subunits revealsa histone deacetylase core complex and a connection with DNAmethylation. Genes Dev. 13:1924–1935.

    PubMed  Google Scholar 

  82. L. A. Chodosh, C. M. D'Cruz, H. P. Gardner, S. I. Ha, S. T. Marquis, J. V. Rajan, D. B. Stairs, J. Y. Wang, and M. Wang (1999). Mammary gland development, reproductive history, and breast cancer risk. Cancer Res. 59: 1765s–1771s, discussion1771s–1772s.

    Google Scholar 

  83. I. H. Russo, M. Koszalka, and J. Russo (1991). Comparativestudy of the influence of pregnancy and hormonal treatment on mammary carcinogenesis. Br.J.Cancer 64:481–484.

    PubMed  Google Scholar 

  84. R. C. Moon (1969). Relationship between previous reproductive history and chemically induced mammary cancer in rats. Int.J.Cancer 4:312–317.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s10911-009-9108-x.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sivaraman, L., Medina, D. Hormone-Induced Protection Against Breast Cancer. J Mammary Gland Biol Neoplasia 7, 77–92 (2002). https://doi.org/10.1023/A:1015774524076

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015774524076

Navigation