Skip to main content

Advertisement

Log in

Epigenetics Lessons from Twins: Prospects for Autoimmune Disease

Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

The existence of phenotypic differences between monozygotic (MZ) twins is a prime case where the relationship between genetic determinants and environmental factors is illustrated. Although virtually identical from a genetic point of view, MZ twins show a variable degree of discordance with respect to different features including susceptibility to disease. Discordance has frequently been interpreted in terms of the impact of the environment with genetics. In this sense, accumulated evidence supports the notion that environmental factors can have a long-term effect on epigenetic profiles and influence the susceptibility to disease. In relation with autoimmune diseases, the identification of DNA methylation changes in individuals who develop the disease, and the influence of inhibitors of DNA methyltransferases and histone modification enzymes in the development of autoimmunity are attracting the attention of researchers in the epigenetics field. In this context, the study of discordant MZ twins constitutes an attractive model to further investigate the epigenetic mechanisms involved in their development as well as to dissect the contribution of environmental traits. The implications of novel strategies to map epigenetic profiles and how the use of MZ twins can contribute to dissect the epigenetic component of autoimmune disease are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

  1. MacGillivray I, Campbell DM, Thompson B (eds) (1988) Twinning and twins. Wiley, NY

    Google Scholar 

  2. Reed TE, Chandler JH (1958) Huntington’s chorea in Michigan. I. Demography and genetics. Am J Hum Genet 10:201–225

    PubMed  CAS  Google Scholar 

  3. Gibbons RJ, Higgs DR (1996) The alpha-thalassemia/mental retardation syndromes. Medicine (Baltimore) 75:45–52

    Article  CAS  Google Scholar 

  4. Greaves MF, Maia AT, Wiemels JL, Ford AM (2003) Leukemia in twins: lessons in natural history. Blood 102:2321–2333

    Article  PubMed  CAS  Google Scholar 

  5. Hrubec Z, Robinette CD (1984) The study of human twins in medical research. N Engl J Med 310:435–441

    Article  PubMed  CAS  Google Scholar 

  6. Singh SM, McDonald P, Murphy B, O’Reilly R (2004) Incidental neurodevelopmental episodes in the etiology of schizophrenia: an expanded model involving epigenetics and development. Clin Genet 65:435–440

    Article  PubMed  CAS  Google Scholar 

  7. Salvetti M, Ristori G, Bomprezzi R, Pozzilli P, Leslie RD (2000) Twins: mirrors of the immune system. Immunol Today 21:342–347

    Article  PubMed  CAS  Google Scholar 

  8. Yamagishi H, Ishii C, Maeda J, Kojima Y et al (1998) Phenotypic discordance in monozygotic twins with 22q11.2 deletion. Am J Med Genet 78:319–321

    Article  PubMed  CAS  Google Scholar 

  9. Hillebrand G, Siebert R, Simeoni E, Santer R (2000) DiGeorge syndrome with discordant phenotype in monozygotic twins. J Med Genet 37:E23

    Article  PubMed  CAS  Google Scholar 

  10. Ballestar E, Esteller M (2008) Epigenetic gene regulation in cancer. Adv Genet 61:247–267

    Article  PubMed  CAS  Google Scholar 

  11. Weksberg R, Shuman C, Caluseriu O et al (2002) Discordant KCNQ1OT1 imprinting in sets of monozygotic twins discordant for Beckwith-Wiedemann syndrome. Hum Mol Genet 11:1317–1325

    Article  PubMed  CAS  Google Scholar 

  12. Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY (1999) Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet 23:185–188

    Article  PubMed  CAS  Google Scholar 

  13. Hansen RS, Wijmenga C, Luo P et al (1999) The DNMT3B DNA methyltransferase gene is mutated in the ICF immunodeficiency syndrome. Proc Natl Acad Sci U S A 96:14412–14417

    Article  PubMed  CAS  Google Scholar 

  14. Egger G, Liang G, Aparicio A, Jones PA (2004) Epigenetics in human disease and prospects for epigenetic therapy. Nature 429:457–463

    Article  PubMed  CAS  Google Scholar 

  15. Fisher AG (2002) Cellular identity and lineage choice. Nat Rev Immunol 2:977–982

    Article  PubMed  CAS  Google Scholar 

  16. Miller OJ, Schnedl W, Allen J, Erlanger BF (1974) 5-Methylcytosine localised in mammalian constitutive heterochromatin. Nature 251:636–637

    Article  PubMed  CAS  Google Scholar 

  17. Gardiner-Garden M, Frommer M (1987) CpG islands in vertebrate genomes. J Mol Biol 196:261–282

    Article  PubMed  CAS  Google Scholar 

  18. Aissani B, Bernardi G (1991) CpG islands: features and distribution in the genomes of vertebrates. Gene 106:173–183

    Article  PubMed  CAS  Google Scholar 

  19. Keshet I, Lieman-Hurwitz J, Cedar H (1986) DNA methylation affects the formation of active chromatin. Cell 44:535–543

    Article  PubMed  CAS  Google Scholar 

  20. Reik W, Collick A, Norris ML, Barton SC, Surani MA (1987) Genomic imprinting determines methylation of parental alleles in transgenic mice. Nature 328:248–251

    Article  PubMed  CAS  Google Scholar 

  21. Wolf SF, Migeon BR (1982) Studies of X chromosome DNA methylation in normal human cells. Nature 295:667–671

    Article  PubMed  CAS  Google Scholar 

  22. Ezhkova E, Pasolli HA, Parker JS et al (2009) Ezh2 orchestrates gene expression for the stepwise differentiation of tissue-specific stem cells. Cell 136:1122–1135

    Article  PubMed  CAS  Google Scholar 

  23. Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403:41–45

    Article  PubMed  CAS  Google Scholar 

  24. Wang Y, Fischle W, Cheung W, Jacobs S, Khorasanizadeh S, Allis CD (2004) Beyond the double helix: writing and reading the histone code. Novartis Found Symp 259:3–17

    Article  PubMed  CAS  Google Scholar 

  25. Chahal SS, Matthews HR, Bradbury EM (1980) Acetylation of histone H4 and its role in chromatin structure and function. Nature 287:76–79

    Article  PubMed  CAS  Google Scholar 

  26. Rundlett SE, Carmen AA, Suka N, Turner BM, Grunstein M (1998) Transcriptional repression by UME6 involves deacetylation of lysine 5 of histone H4 by RPD3. Nature 392:831–835

    Article  PubMed  CAS  Google Scholar 

  27. Santos-Rosa H, Schneider R, Bannister AJ et al (2002) Active genes are tri-methylated at K4 of histone H3. Nature 419:407–411

    Article  PubMed  CAS  Google Scholar 

  28. Lachner M, O’Carroll D, Rea S, Mechtler K, Jenuwein T (2001) Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410:116–120

    Article  PubMed  CAS  Google Scholar 

  29. Schotta G, Lachner M, Sarma K et al (2004) A silencing pathway to induce H3–K9 and H4–K20 trimethylation at constitutive heterochromatin. Genes Dev 18:1251–1262

    Article  PubMed  CAS  Google Scholar 

  30. Bauer UM, Daujat S, Nielsen SJ, Nightingale K, Kouzarides T (2002) Methylation at arginine 17 of histone H3 is linked to gene activation. EMBO Rep 3:39–44

    Article  PubMed  CAS  Google Scholar 

  31. de la Cruz X, Lois S, Sanchez-Molina S, Martinez-Balbas MA (2005) Do protein motifs read the histone code? BioEssays 27:164–175

    Article  PubMed  CAS  Google Scholar 

  32. Schlesinger Y, Straussman R, Keshet I et al (2007) Polycomb-mediated methylation on Lys27 of histone H3 pre-marks genes for de novo methylation in cancer. Nat Genet 39:232–236

    Article  PubMed  CAS  Google Scholar 

  33. Widschwendter M, Fiegl H, Egle D et al (2007) Epigenetic stem cell signature in cancer. Nat Genet 39:157–158

    Article  PubMed  CAS  Google Scholar 

  34. Ballestar E, Wolffe AP (2001) Methyl-CpG-binding proteins: targeting specific gene repression. Eur J Biochem 268:1–6

    Article  PubMed  CAS  Google Scholar 

  35. Yoon HG, Chan DW, Reynolds AB, Qin J, Wong J (2003) N-CoR mediates DNA methylation-dependent repression through a methyl CpG binding protein Kaiso. Mol Cell 12:723–734

    Article  PubMed  CAS  Google Scholar 

  36. Nakayama J, Rice JC, Strahl BD, Allis CD, Grewal SI (2001) Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science 292:110–113

    Article  PubMed  CAS  Google Scholar 

  37. Espada J, Ballestar E, Fraga MF et al (2004) Human DNMT1 is essential to maintain the histone H3 modification pattern. J Biol Chem 279:37175–37184

    Article  PubMed  CAS  Google Scholar 

  38. Thorne JL, Campbell MJ, Turner BM (2008) Transcription factors, chromatin and cancer. Int J Biochem Cell Biol 41:164–175

    Article  PubMed  CAS  Google Scholar 

  39. McEwan IJ (2009) Nuclear receptors: one big family. Methods Mol Biol 505:3–18

    Article  PubMed  CAS  Google Scholar 

  40. Wilson VL, Jones PA (1983) DNA methylation decreases in aging but not in immortal cells. Science 220:1055–1057

    Article  PubMed  CAS  Google Scholar 

  41. Mays-Hoopes L, Chao W, Butcher HC, Huang RC (1986) Decreased methylation of the major mouse long interspersed repeated DNA during aging and in myeloma cells. Dev Genet 7:65–73

    Article  PubMed  CAS  Google Scholar 

  42. Friso S, Choi SW, Girelli D et al (2002) A common mutation in the 5,10-methylenetetrahydrofolate reductase gene affects genomic DNA methylation through an interaction with folate status. Proc Natl Acad Sci U S A 99:5606–5611

    Article  PubMed  CAS  Google Scholar 

  43. Millar SE, Miller MW, Stevens ME, Barsh GS (1995) Expression and transgenic studies of the mouse agouti gene provide insight into the mechanisms by which mammalian coat color patterns are generated. Development 121:3223–3232

    PubMed  CAS  Google Scholar 

  44. Michaud EJ, van Vugt MJ, Bultman SJ, Sweet HO, Davisson MT, Woychik RP (1994) Differential expression of a new dominant agouti allele (Aiapy) is correlated with methylation state and is influenced by parental lineage. Genes Dev 8:1463–1472

    Article  PubMed  CAS  Google Scholar 

  45. Wolff GL, Kodell RL, Moore SR, Cooney CA (1998) Maternal epigenetics and methyl supplements affect agouti gene expression in Avy/a mice. FASEB J 12:949–957

    PubMed  CAS  Google Scholar 

  46. Cooney CA, Dave AA, Wolff GL (2002) Maternal methyl supplements in mice affect epigenetic variation and DNA methylation of offspring. J Nutr 132:2393S–2400S

    PubMed  CAS  Google Scholar 

  47. Doherty AS, Mann MR, Tremblay KD, Bartolomei MS, Schultz RM (2000) Differential effects of culture on imprinted H19 expression in the preimplantation mouse embryo. Biol Reprod 62:1526–1535

    Article  PubMed  CAS  Google Scholar 

  48. Mann MR, Lee SS, Doherty AS et al (2004) Selective loss of imprinting in the placenta following preimplantation development in culture. Development 131:3727–3735

    Article  PubMed  CAS  Google Scholar 

  49. Lumey LH, Stein AD, Kahn HS et al (2007) Cohort profile: the Dutch Hunger Winter families study. Int J Epidemiol 36:1196–1204

    Article  PubMed  CAS  Google Scholar 

  50. Smith FM, Garfield AS, Ward A (2006) Regulation of growth and metabolism by imprinted genes. Cytogenet Genome Res 113:279–291

    Article  PubMed  CAS  Google Scholar 

  51. Cui H, Cruz-Correa M, Giardiello FM et al (2003) Loss of IGF2 imprinting: a potential marker of colorectal cancer risk. Science 299:1753–1755

    Article  PubMed  CAS  Google Scholar 

  52. Heijmans BT, Kremer D, Tobi EW, Boomsma DI, Slagboom PE (2007) Heritable rather than age-related environmental and stochastic factors dominate variation in DNA methylation of the human IGF2/H19 locus. Hum Mol Genet 16:547–554

    Article  PubMed  CAS  Google Scholar 

  53. Heijmans BT, Tobi EW, Stein AD et al (2008) Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci U S A 105:17046–17049

    Article  PubMed  Google Scholar 

  54. Petronis A (2001) Human morbid genetics revisited: relevance of epigenetics. Trends Genet 17:142–146

    Article  PubMed  CAS  Google Scholar 

  55. Tremolizzo L, Carboni G, Ruzicka WB et al (2002) An epigenetic mouse model for molecular and behavioral neuropathologies related to schizophrenia vulnerability. Proc Natl Acad Sci U S A 99:17095–17100

    Article  PubMed  CAS  Google Scholar 

  56. Petronis A, Gottesman II, Kan P et al (2003) Monozygotic twins exhibit numerous epigenetic differences: clues to twin discordance? Schizophr Bull 29:169–178

    PubMed  Google Scholar 

  57. Mill J, Dempster E, Caspi A, Williams B, Moffitt T, Craig I (2006) Evidence for monozygotic twin (MZ) discordance in methylation level at two CpG sites in the promoter region of the catechol-O-methyltransferase (COMT) gene. Am J Med Genet B Neuropsychiatr Genet 141B:421–425

    Article  PubMed  CAS  Google Scholar 

  58. Oates NA, van Vliet J, Duffy DL et al (2006) Increased DNA methylation at the AXIN1 gene in a monozygotic twin from a pair discordant for a caudal duplication anomaly. Am J Hum Genet 79:155–162

    Article  PubMed  CAS  Google Scholar 

  59. Yamazawa K, Kagami M, Fukami M, Matsubara K, Ogata T (2008) Monozygotic female twins discordant for Silver-Russell syndrome and hypomethylation of the H19-DMR. J Hum Genet 53:950–955

    Article  PubMed  Google Scholar 

  60. Ramagopalan SV, Dyment DA, Morrison KM et al (2008) Methylation of class II transactivator gene promoter IV is not associated with susceptibility to multiple sclerosis. BMC Med Genet 9:63

    Article  PubMed  CAS  Google Scholar 

  61. Zhang AP, Yu J, Liu JX et al (2007) The DNA methylation profile within the 5′-regulatory region of DRD2 in discordant sib pairs with schizophrenia. Schizophr Res 90:97–103

    Article  PubMed  Google Scholar 

  62. Fraga MF, Ballestar E, Paz MF et al (2005) Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci U S A 102:10604–10609

    Article  PubMed  CAS  Google Scholar 

  63. Bergem AL, Engedal K, Kringlen E (1997) The role of heredity in late-onset Alzheimer disease and vascular dementia. A twin study. Arch Gen Psychiatry 54:264–270

    PubMed  CAS  Google Scholar 

  64. Kaprio J, Tuomilehto J, Koskenvuo M et al (1992) Concordance for type 1 (insulin-dependent) and type 2 (non-insulin-dependent) diabetes mellitus in a population-based cohort of twins in Finland. Diabetologia 35:1060–1067

    Article  PubMed  CAS  Google Scholar 

  65. Kaminsky ZA, Tang T, Wang SC et al (2009) DNA methylation profiles in monozygotic and dizygotic twins. Nat Genet 41:240–245

    Article  PubMed  CAS  Google Scholar 

  66. International Consortium for Systemic Lupus Erythematosus Genetics (SLEGEN) et al (2008) Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM, PXK, KIAA1542 and other loci. Nat Genet 40:204–210

    Article  CAS  Google Scholar 

  67. Ueda H, Howson JM, Esposito L et al (2003) Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature 423:506–511

    Article  PubMed  CAS  Google Scholar 

  68. Leslie RDG, Elliot RB (1994) Early environmental events as a cause of IDDM. Evidence and implications. Diabetes 43:843–850

    Article  PubMed  CAS  Google Scholar 

  69. Javierre BM, Esteller M, Ballestar E (2008) Epigenetic connections between autoimmune disorders and haematological malignancies. Trends Immunol 29:616–623

    Article  PubMed  CAS  Google Scholar 

  70. Richardson B, Scheinbart L, Strahler J, Gross L, Hanash S, Johnson M (1990) Evidence for impaired T cell DNA methylation in systemic lupus erythematosus and rheumatoid arthritis. Arthritis Rheum 33:1665–1673

    Article  PubMed  CAS  Google Scholar 

  71. Kaplan MJ, Lu Q, Wu A, Attwood J, Richardson B (2004) Demethylation of promoter regulatory elements contributes to perforin overexpression in CD4+ lupus T cells. J Immunol 172:3652–3661

    PubMed  CAS  Google Scholar 

  72. Lu Q, Wu A, Richardson BC (2005) Demethylation of the same promoter sequence increases CD70 expression in lupus T cells and T cells treated with lupus-inducing drugs. J Immunol 174:6212–6219

    PubMed  CAS  Google Scholar 

  73. Lu Q, Kaplan M, Tay D et al (2002) Demethylation of ITGAL (CD11a) regulatory sequences in systemic lupus erythematosus. Arthritis Rheum 46:1282–1291

    Article  PubMed  CAS  Google Scholar 

  74. Esteller M (2007) Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet 8:286–298

    Article  PubMed  CAS  Google Scholar 

  75. Weber M, Davies JJ, Wittig D et al (2005) Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet 37:853–862

    Article  PubMed  CAS  Google Scholar 

  76. Bibikova M, Lin Z, Zhou L et al (2006) High-throughput DNA methylation profiling using universal bead arrays. Genome Res 16:383–393

    Article  PubMed  CAS  Google Scholar 

  77. Taylor KH, Kramer RS, Davis JW et al (2007) Ultradeep bisulfite sequencing analysis of DNA methylation patterns in multiple gene promoters by 454 sequencing. Cancer Res 67:8511–8518

    Article  PubMed  CAS  Google Scholar 

  78. Orlando V (2000) Mapping chromosomal proteins in vivo by formaldehyde-crosslinked-chromatin immunoprecipitation. Trends Biochem Sci 25:99–104

    Article  PubMed  CAS  Google Scholar 

  79. Weber M, Hellmann I, Stadler MB et al (2007) Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat Genet 39:457–466

    Article  PubMed  CAS  Google Scholar 

  80. Barski A, Cuddapah S, Cui K et al (2007) High-resolution profiling of histone methylations in the human genome. Cell 129:823–837

    Article  PubMed  CAS  Google Scholar 

  81. Ebers GC, Sadovnick AD (1994) The role of genetic factors in multiple sclerosis susceptibility. J Neuroimmunol 54:1–17

    Article  PubMed  CAS  Google Scholar 

  82. Aho K, Koskenvuo M, Tuominen J, Kaprio J (1986) Occurrence of rheumatoid arthritis in a nationwide series of twins. J Rheumatol 13:899–902

    PubMed  CAS  Google Scholar 

  83. Järvinen P, Kaprio J, Mäkitalo R, Koskenvuo M, Aho K (1992) Systemic lupus erythematosus and related systemic diseases in a nationwide twin cohort: an increased prevalence of disease in MZ twins and concordance of disease features. J Int Med 231:67–72

    Article  Google Scholar 

  84. Greco L, Romino R, Coto I et al (2002) The first large population based twin study of coeliac disease. Gut 50:624–628

    Article  PubMed  CAS  Google Scholar 

  85. Thompson NP, Driscoll R, Pounder RE et al (1996) Genetic versus environment in IBD: results of a British twin study. BMJ 312:95

    PubMed  CAS  Google Scholar 

  86. Krueger GG, Duvic M (1994) Epidemiology of psoriasis: clinical issues. J Invest Dermatol 102:14S–18S

    Article  PubMed  CAS  Google Scholar 

  87. Arnheim N, Calabrese P (2009) Understanding what determines the frequency and pattern of human germline mutations. Nat Rev Genet 10:478–488

    Article  PubMed  CAS  Google Scholar 

  88. Barros SP, Offenbacher S (2009) Epigenetics: connecting environment and genotype to phenotype and disease. J Dent Res 88:400–408

    Article  PubMed  CAS  Google Scholar 

  89. Figueiredo LM, Cross GA, Janzen CJ (2009) Epigenetic regulation in African trypanosomes: a new kid on the block. Nat Rev Microbiol 7:504–513

    Article  PubMed  CAS  Google Scholar 

  90. Hewagama A, Richardson B (2009) The genetics and epigenetics of autoimmune diseases. J Autoimmun 33:3–11

    Article  PubMed  CAS  Google Scholar 

  91. Invernizzi P (2009) Future directions in genetic for autoimmune diseases. J Autoimmun 33:1–2

    Article  PubMed  CAS  Google Scholar 

  92. Invernizzi P, Pasini S, Selmi C, Gershwin ME, Podda M (2009) Female predominance and X chromosome defects in autoimmune diseases. J Autoimmun 33:12–16

    Article  PubMed  CAS  Google Scholar 

  93. Larizza D, Calcaterra V, Martinetti M (2009) Autoimmune stigmata in Turner syndrome: when lacks an X chromosome. J Autoimmun 33:25–30

    Article  PubMed  CAS  Google Scholar 

  94. Persani L, Rossetti R, Cacciatore C, Bonomi M (2009) Primary ovarian insufficiency: X chromosome defects and autoimmunity. J Autoimmun 33:35–41

    Article  PubMed  CAS  Google Scholar 

  95. Sawalha AH, Harley JB, Scofield RH (2009) Autoimmunity and Klinefelter's syndrome: when men have two X chromosomes. J Autoimmun 33:31–34

    Article  PubMed  CAS  Google Scholar 

  96. Wells AD (2009) New insights into the molecular basis of T cell anergy: anergy factors, avoidance sensors, and epigenetic imprinting. J Immunol 182:7331–7341

    Article  PubMed  CAS  Google Scholar 

  97. Zernicka-Goetz M, Morris SA, Bruce AW (2009) Making a firm decision: multifaceted regulation of cell fate in the early mouse embryo. Nat Rev Genet 10:467–477

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

EB is supported by PI081346 (FIS) grant from the Spanish Ministry of Science and Innovation (MICINN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esteban Ballestar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ballestar, E. Epigenetics Lessons from Twins: Prospects for Autoimmune Disease. Clinic Rev Allerg Immunol 39, 30–41 (2010). https://doi.org/10.1007/s12016-009-8168-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-009-8168-4

Keywords

Navigation