
Appendix 

As the methods used in our analysis are rarely applied in medical research, we provide a short 

overview of the essentials in this Appendix, a comprehensive account can be found in Helfenstein 

[1]. We performed a so called intervention analysis, which is a special case of a transfer function 

analysis. The basic idea beyond a transfer function is to display a time series yt (number of deaths 

per day in our case) as the sum of a noise series nt and a transfer series ut .  

         

 

The noise series nt is the part of the observed time series that cannot be explained by the effect of 

the input series and captures all of the typical features of a time series such as trends, seasonality, 

or autocorrelation. In an intervention analysis the transfer series ut consists of a binary input 

series It, which is set to one when a certain event (a soccer match in our case) takes place on day t 

and zero on every other day, and a so called pulse w0. 

         

 

When there is no match on day t, the time series is,               while the series can be 

written as                  on match days. Thus, the pulse w0 is simply the excess 

number of deaths on a match day.  

The noise series nt can in most cases (and also in our work) be adequately modelled by a 

SARIMA-model (seasonal ARIMA model), which is expressed by ARIMA(p,d,q)(P,D,Q)s. To 

better understand this expression, let us first consider an ARIMA(p,d,q) model and leave the 

(P,D,Q)s part for later discussion. Basically, an ARIMA model consists of three terms which 

model the order of the AR (autoregressive, p), the I (integrated, d), and the MA (moving average, 

q) part of nt.  

(1) The AR part: 



For convenience, we start with an AR(1) model, that is, an AR model with p=1. This can be 

interpreted like an ordinary linear regression equation with yt as the response,  as the regression 

parameter for the single covariate yt-1, and a normally distributed random error et. 

 

            

The current value of the model, yt is the sum of the previous value yt-1 (multiplied by ) and the 

random error. The association between yt and yt-1 is controlled by the AR(1) parameter : the 

larger , the higher is the correlation between yt and yt-1. The idea of regressing the current value 

on its own predecessor explains the term autoregressive for this model. Autoregressive models of 

higher orders (AR(p) models) are straightforward extensions of the AR(1) process, including the 

p previous values of the process in the model equation. 

                          
     

 

(2) The MA part: 

The idea of an MA model is similar to that of an AR model; however, now the current value of 

the time series, yt, is assumed to depend only on random fluctuations. If random fluctuations on 

the same day (εt), and on the day before (εt-1) are taken into account, a MA(1) model is defined.  

            

 

Higher orders q of an MA model are straightforwardly defined as   

                       

 

(3) The I part  

A time series is said to be stationary, if the mean of the time series does not depend upon time, 

but is constant throughout the complete time course. For a valid intervention analysis, the noise 

series nt has to be stationary. The easiest way to achieve stationarity is by differentiating the time 



series by the preceding value s time points ago, where s is the length of the period. Further 

differentiations with different lags are possible (with d measuring the number of differentiations), 

but were not necessary in our case.  

In the SARIMA model, the seasonal aspect of the noise series nt is additionally (to the former 

ARIMA(p,d,q) part) expressed by an ARIMA(P,D,Q)s term. This seasonal term is assumed to be 

another ARIMA model with own orders P, D, Q, a seasonal lag parameter s, and own model 

parameters Φ and Ω (now written as capital letters).  

Actual model fitting thus involves finding the optimal orders of the SARIMA model, the 

respective parameters, and the parameter of actual interest, the pulse w0. Box/Jenkins [2] 

proposed an algorithm for this model identification which is frequently used in applied research. 

This algorithm consists of four steps: 

(1) Make the original time series (yt) stationary 

Stationarity can be checked via the Dickey-Fuller test. An underlying trend or seasonality is 

assessable via the empirical autocorrelation and partial autocorrelation functions of yt at various 

lags. The autocorrelation at lag k is the correlation of the value yt and its predecessors yt-k. The 

partial autocorrelation at lag k adjusts for the influence of time points lying between the value yt 

and its predecessor yt-k, leaving only the adjusted correlation between the two values.  

In our case, we found a seasonality of seven days in all 15 models, thus SARIMA models that 

were differentiated with a lag of seven were fitted (ARIMA(p,0,q)(P,1,Q)7). 

(2) Find a preliminary order of the model 

In the second step, a preliminary order of the ARIMA(p,0,q)(P,1,Q)7 model (that is, p,q, P, and 

Q) is identified by again referring to the autocorrelation functions. 

(3) Estimate the coefficients of the model 

The coefficients θ, φ, Φ and Ω are estimated by maximum likelihood. 

(4) Check the model by assessing the autocorrelations of the residuals 



As a final step, the adequacy of the model from step (3) has to be evaluated, which is done by 

demanding no relevant autocorrelations of the residuals. If there are no autocorrelations, the 

model can be regarded as properly modeling the noise series nt. Finally, all coefficients (θ, φ, Φ 

and Ω) from the noise series are estimated again by maximum likelihood, but now 

simultaneously with the pulse w0.  

 

 

The problem of annual seasonality and model identification 

Referring to the data plot (Figure 1 in the main text), an annual cycle seems to be apparent. 

Nevertheless, we did not differentiate the observed time series by this period or include an 

additional seasonal ARIMA term in the model. This was because of the following reasons: 

- The Akaike information criterion indicated a worsening of the model, when the time series was 

differentiated by a period of 365 days and/or when a seasonal term reflecting this periodicity was 

included in the model. 

- Rinne/Specht [3] suggest a maximum lag of    √  (in our case the lag length is about 140) 

when the residuals are checked for autocorrelations as implemented in the method described by 

Box/Jenkins. Therefore, a lag of 365 days is out of the range to be considered. 

- The autocorrelations of the residuals did not noticeably improve after consideration of a 

seasonal term of 365 days. Thus, we assumed that a SARIMA model without seasonality of 365 

days modeled the time series adequately.  
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