Supporting Information

Combined lifestyle factors, all-cause mortality, and cardiovascular disease: a systematic review and meta-analysis of prospective cohort

 studiesYan-Bo Zhang, Xiong-Fei Pan, Junxiang Chen, Anlan Cao, Lu Xia, Yuge Zhang, Jing Wang, Huiqi Li, Gang Liu, An Pan

Table A1. Examples of the definitions of the major lifestyle scores

Factors	Simple Score ${ }^{*, 1}$	Life's Simple seven Score ${ }^{2}$	World Cancer Research Fund Score ${ }^{3}$
Smoking	1 point for never smokers; 0 point for ever smokers.	2 points for never smokers or quitting >12 months; 1 point for quitting ≤ 12 months; 0 point for current smokers.	Not included.
Alcohol drinking	For men and women respectively: 1 point for $5-30 / 16 \mathrm{~g} / \mathrm{d}$; 0 point for $<5 \mathrm{~g} / \mathrm{d}$ or $>30 / 15 \mathrm{~g} / \mathrm{d}$.	Not included.	For men and women respectively: 1 point for $\leq 20 / 10$ grams per day; 0.5 points for 20.1-30/10.1-20 grams per day; 0 point for $>30 / 20$ grams per day.
Physical activity	1 point for $>30 \mathrm{~min}$ moderate to vigorous physical activity per day; 0 point for ≤ 30 min moderate to vigorous physical activity per day.	2 points for moderate or moderate to vigorous physical activity ≥ 150 minutes per week or vigorous physical activity ≥ 75 minutes per week; 1 point for moderate or moderate to vigorous physical activity for 1-149 minutes per week or vigorous physical activity for 1-74 minutes per week; 0 point for no physical activity.	1 point for manual/heavy manual job, or $>2 \mathrm{~h} / \mathrm{w}$ of vigorous physical activity, or $>30 \mathrm{~min} / \mathrm{d}$ of cycling/sports; 0.5 points for cycling/sports $15-30 \mathrm{~min} / \mathrm{d}$; 0 point for moderate physical activity <30 minutes per day or $<$ five days per week or <seven years of the previous 10 years.
Body mass index	1 point for $18.5-24.9 \mathrm{~kg} / \mathrm{m}^{2}$; 0 point for $<18.5 \mathrm{~kg} / \mathrm{m}^{2}$ or $\geq 25 \mathrm{~kg} / \mathrm{m}^{2}$.	$\begin{aligned} & 2 \text { points for }<25 \mathrm{~kg} / \mathrm{m}^{2} \text {; } \\ & 1 \text { point for } 25-29.99 \mathrm{~kg} / \mathrm{m}^{2} \text {; } \\ & 0 \text { point for } \geq 30 \mathrm{~kg} / \mathrm{m}^{2} \text {. } \end{aligned}$	$\begin{aligned} & 1 \text { point for } 18.5-24.9 \mathrm{~kg} / \mathrm{m}^{2} \text {; } \\ & 0.5 \text { points for } 25.0-29.9 \mathrm{~kg} / \mathrm{m}^{2} ; \\ & 0 \text { point for }<18.5 \mathrm{~kg} / \mathrm{m}^{2} \text { or } \geq 30.0 \mathrm{~kg} / \mathrm{m}^{2} \text {. } \end{aligned}$
Diet	Evaluated by a dietary score, such as the	Evaluated by American Heart Association food	Not included.

Factors	Simple Score ${ }^{*, 1}$	Life's Simple seven Score ${ }^{\mathbf{2}}$	World Cancer Research Fund Score ${ }^{3}$
			and processed meat consumption $3-49 \mathrm{~g} / \mathrm{d}$; 0 point for red meat consumption $\geq 500 \mathrm{~g} / \mathrm{w}$ or processed meat consumption $\geq 50 \mathrm{~g} / \mathrm{d}$.
Blood pressure	Not included.	For systolic blood pressure and diastolic blood pressure: 2 points for $\mathrm{SBP}<120$ and $\mathrm{DBP}<80 \mathrm{mmHg}$ without medication; 1 point for SBP 120-139 or DBP $80-89 \mathrm{mmHg}$, or $\mathrm{SBP}<120$ and DBP $<80 \mathrm{mmHg}$ with medication; 0 point for $\mathrm{SBP} \geq 140$ or $\mathrm{DBP} \geq 90 \mathrm{mmHg}$.	Not included.
Blood glucose	Not included.	For fasting serum glucose: 2 points for $<100 \mathrm{mg} / \mathrm{dL}$ without medication; 1 point for $100-125 \mathrm{mg} / \mathrm{dl}$ or $<100 \mathrm{mg} / \mathrm{dl}$ with medication; 0 point for $\geq 126 \mathrm{mg} / \mathrm{dl}$.	Not included.
Blood lipid	Not included.	For blood total cholesterol: 2 points for $<200 \mathrm{mg} / \mathrm{dl}$ without medication; 1 point for $200-239 \mathrm{mg} / \mathrm{dl}$ or $<200 \mathrm{mg} / \mathrm{dl}$ with medication; 0 point for $\geq 240 \mathrm{mg} / \mathrm{dl}$.	Not included.

*The simple scores only included behavioral factors, and the weights of included behavioral factors are identical. Those are just examples, and different studies may have varied definitions of healthy lifestyle factors for smoking, alcohol drinking, physical activity, body mass index, healthy diet; some studies may give more weight to certain variables, such as two for never smoking, one for past smoking, zero for current smoking, or two for normal weight, one for overweight and zero for obesity; some studies also included some other variables, such as sleep duration or quality, waist circumference, sedentary lifestyle.
DBP, diastolic blood pressure; SBP, systolic blood pressure.

Table A2. List of studies excluded from the main analyses after manual inspections

Study	Reasons for Exclusion from the Main Analyses
Thirty-six articles not reporting HR or RR or OR comparing the highest score group with the lowest score group	
Abdullah Said-2018 ${ }^{4}$	In the study, each behavior was categorized into three groups, the ideal group, the intermediate group, and the poor group. And an ideal lifestyle was defined as no less than three ideal factors, whereas a poor lifestyle was defined as no less than three poor factors. We cannot differentiate different lifestyle groups by assigning different points to each behavior.
Avanzini-2016 ${ }^{5}$	The study only reported the HR for one additional healthy lifestyle factor, without reporting the HR comparing the healthiest lifestyle versus the least healthy one.
Bai-2017 ${ }^{6}$	The study investigated the HRs comparing the healthiest lifestyle versus the others, instead of the least healthy lifestyle.
Berstad-2017 ${ }^{7}$	The investigators divided the participants into two groups, which restricted the estimation of HR comparing the healthiest lifestyle versus the least healthy lifestyle.
Byun-2010 ${ }^{\text {8 }}$	The study did not report the confidence interval of the HR comparing the healthiest lifestyle versus the least healthy lifestyle.
Chyou-1997 ${ }^{9}$	The study divided each behavior into three categories, for example, participants were divided into $<21.21,21.21-26.30 \mathrm{and} \geq 26.31 \mathrm{~kg} / \mathrm{m}^{2}$ according to body mass index. It's hard to decide which group was more hazardous, so the data cannot be transformed into the score form.
Dagenais-2018 ${ }^{10}$	The investigators divided the participants into two groups, which restricted the estimation of HR comparing the healthiest lifestyle versus the least healthy lifestyle.
Djousse-2009 ${ }^{11}$	The study did not report the HR comparing the healthiest lifestyles versus the least healthy lifestyles.
Dobson-2012 ${ }^{12}$	The study used absolute risk as a statistic.
Foraker-2016 ${ }^{13}$	The study only reported the HR for one additional healthy lifestyle factor, without reporting the HR comparing the healthiest lifestyle versus the least healthy one.
Hardoon-2008 ${ }^{14}$	The study used population attributable risk as a statistic.
Haveman-Nies-2002 ${ }^{15}$	The study did not report the confidence interval of the HR comparing the healthiest lifestyle versus the least healthy lifestyle.
Heidemann-2009 ${ }^{16}$	The score included height and age which were unmodifiable.
Iestra-2006 ${ }^{17}$	The investigators divided the participants into two groups, which restricted the estimation of HR comparing the healthiest lifestyle versus the least healthy lifestyle.
Khawaja-2012 ${ }^{18}$	The investigators divided the participants into two groups, which restricted the estimation of HR comparing the healthiest lifestyle versus the least healthy lifestyle.
Kim-2013 ${ }^{19}$	The study used population attributable risk as a statistic.

Study	Reasons for Exclusion from the Main Analyses
Li-2014 ${ }^{20}$	The study used population attributable risk as a statistic.
Li-2015 ${ }^{21}$	The study only reported the HR for one additional healthy lifestyle factor, without reporting the HR comparing the healthiest lifestyle versus the least healthy one.
Manuel-2015 ${ }^{22}$	The study only reported the HR for one additional healthy lifestyle factor, without reporting the HR comparing the healthiest lifestyle versus the least healthy one.
Manuel-2016 ${ }^{23}$	The study used year lose as a statistic.
Menotti-2014 ${ }^{24}$	The study used life expectancy at 20 and 40 years old as a statistic.
Menotti-2016 ${ }^{25}$	The study used life expectancy at 50 years old as a statistic.
Metzner-1983 ${ }^{26}$	The study did not report the HRs comparing the healthiest lifestyle versus the least healthy lifestyle.
Nakano-2006 ${ }^{27}$	The investigators divided the participants into two groups, which restricted the estimation of HR comparing the healthiest lifestyle versus the least healthy lifestyle.
O'Doherty-2016 ${ }^{28}$	The study compared the participants who were overweight, light or moderate drinker, non-smokers, and partaking in vigorous physical activity with participants who were overweight, light or moderate drinker, smokers, and not partaking in vigorous physical activity, which restricted the estimation of HR comparing the healthiest lifestyle versus the least healthy lifestyle.
Pronk-2010 ${ }^{29}$	The investigators divided the participants into two groups, which restricted the estimation of HR comparing the healthiest lifestyle versus the least healthy lifestyle.
Rhee-2012 ${ }^{30}$	The score included age which was unmodifiable.
Rotevatn-1989 ${ }^{31}$	The study used observed/expected mortality ratio as a statistic.
Shaw-2012 ${ }^{32}$	The study defined non-drinkers and heavy drinkers as high-risk population, but respectively estimated the HRs comparing participants who were smoking, physically inactive and non-drinkers versus participants who were not smoking, physically active and moderate drinkers, and the HRs comparing participants who were smoking, physically inactive and heavy drinkers versus participants who were not smoking, physically active and moderate drinkers. And this restricted the estimation of HR comparing the healthiest lifestyle versus the least healthy lifestyle.
Spencer-2005 (1) ${ }^{33}$	The investigators divided the participants into two groups, which restricted the estimation of HR comparing the healthiest lifestyle versus the least healthy lifestyle.
Spencer-2005 (2) ${ }^{34}$	The investigators divided the participants into two groups, which restricted the estimation of HR comparing the healthiest lifestyle versus the least healthy lifestyle.

Study	Reasons for Exclusion from the Main Analyses
Stampfer-2000 ${ }^{35}$	The investigators only estimated the HR comparing participants with all healthy lifestyle factors versus the others, which restricted the
estimation of HR comparing the healthiest lifestyle versus the least healthy lifestyle.	
Takeshita-1995	

Study	Reasons for Exclusion from the Main Analyses
	another analysis in Kailuan study ${ }^{54}$ was conducted in general population.
Kabat-2015 ${ }^{55}$	There is another study ${ }^{56}$ from the American Association of Retired Persons study investigating the relation of combined lifestyle factors with all-cause mortality with longer follow-up duration.
Kurth-2006	
There is another study ${ }^{58}$ from Women's Health Study investigating the relation of combined lifestyle factors with incident stroke with	
longer follow-up duration.	

HR, hazard ratio.

Table A3. Characteristics of studies related to all-cause mortality

Author-year	Cohort	Country	Follow-up duration (mean or median)	Men (\%)	Age (mean)	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	NOS score
$\begin{aligned} & \text { Ahmed- } \\ & 2013^{75} \end{aligned}$	Multi- Ethnic Study of Atherosc lerosis	US	$\begin{aligned} & 2000-2011 \\ & (7.60) \end{aligned}$	47.00	$\begin{aligned} & 44-84 \\ & (62.00) \end{aligned}$	White 62.00 Black 26.00 Asian 13.00	82.30	general population	6229	All-cause mortality was retrieved from death certificates.	Smoking: 1. not current smokers; 0 . current smokers. PA: $1 . \mathrm{MPA}>150 \mathrm{~min} / \mathrm{w}$ or $\mathrm{VPA}>75$ $\min / \mathrm{w} ; 0 . \mathrm{MPA} \leq 150 \mathrm{~min} / \mathrm{w}$ and VPA $\leq 75 \mathrm{~min} / \mathrm{w}$. BMI: 1. 18.5-24.9; $0 . \geq 25$ or <18.5. Diet (MDS, FFQ): 1. above the median; 0 . below the median.	9
$\begin{aligned} & \text { Artero-2012 } \\ & \dagger, 76 \end{aligned}$	Aerobics Center Longitud inal Study	US	$\begin{aligned} & 1987-2003 \\ & (11.60) \end{aligned}$	75.67	$\begin{aligned} & 20-88 \\ & (46.00) \end{aligned}$	White >99.00	>70.00	general population	11993	All-cause mortality was identified through the National Death Index and death certificates.	Smoking: 1. never smokers; 0 . ever smokers; PA: 1. ≥ 500 MET-min/w; $0 .<500$ MET-min/w. BMI: $1.18 .5-24.9 \mathrm{~kg} / \mathrm{m}^{2} ; 0 . \geq 25$ $\mathrm{kg} / \mathrm{m}^{2}$. Diet (AHA, 3-d dietary record): 1. 34 components; 0. 0-2 components. SBP/DBP: $1 .<120$ and 80 mmHg (not treated); $0 .<120$ and 80 mmHg (treated) or ≥ 120 or 80 mmHg . FPG: $1 .<100 \mathrm{mg} / \mathrm{dl}$ (not treated); 0 . $<100 \mathrm{mg} / \mathrm{dl}$ (treated) $\geq 100 \mathrm{mg} / \mathrm{d}$. TC: $1 .<200 \mathrm{mg} / \mathrm{dl}$ (not treated); 0. $\geq 200 \mathrm{mg} / \mathrm{dl}$ (treated).	9
$\begin{aligned} & \text { Atkins- } \\ & 2018^{77} \end{aligned}$	Clinical Practice Research Datalink	UK	$\begin{aligned} & 2000-2016 \\ & (6.25) \end{aligned}$	48.83	$\begin{aligned} & 60-69 \\ & (63.55) \end{aligned}$	White predominant	NA	general population	421411	The methods of identifying allcause mortality, CVD events (CHD,	Clinical Practice Research Datalink: Smoking: 2. never smokers; 1. former smokers; 0 . current smokers. PA: 2. vigorous activity; 1. moderate	7

Author-year	Cohort	Country	Follow-up duration (mean or median)	$\begin{aligned} & \text { Men } \\ & (\%) \end{aligned}$	Age (mean)	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	NOS score
	\& UK									stroke, and HF),	activity; 0 . none or mild activity.	
	Biobank									and cancer cases	BMI: $2 .<25 \mathrm{~kg} / \mathrm{m}^{2} ; 1.25-29.99$	
										were not reported.	$\mathrm{kg} / \mathrm{m}^{2} ; 0 . \geq 30 \mathrm{~kg} / \mathrm{m}^{2}$.	
											SBP/DBP: 2. <120 and 80 mmHg (untreated); 1. 120-139 or 80-89	
											mmHg or <120 and 80 mmHg	
											(treated); $0 . \geq 140$ or 90 mmHg .	
											FSG: $2 .<5.6 \mathrm{mmol} / 1$ (not treated) or	
											no data on FSG or diabetes; 1. 5.6-7	
											$\mathrm{mmol} / \mathrm{l}$ (not treated) or $<5.6 \mathrm{mmol} / 1$	
											(treated), or diabetes diagnosis and	
											not treated or with no treatment	
											information; $0 .>7 \mathrm{mmol} / 1$ or diabetes	
											diagnosis and treated.	
											TC: $2 .<5.172 \mathrm{mmol} / \mathrm{l}$ (not treated) or	
											no data on TC; 1. $5.172-6.21 \mathrm{mmol} / \mathrm{l}$	
											(not treated), or $<5.172 \mathrm{mmol} / \mathrm{l}$	
											(treated), or hypercholesterolemia	
											diagnosis and not treated or with no	
											treatment information; $0 .>6.21$	
											$\mathrm{mmol} / \mathrm{l}$, or hypercholesterolemia	
											diagnosis and treated.	
											UK Biobank:	
											Smoking: 2 . never or quitting $>12 \mathrm{~m}$;	
											1. quitting $\leq 12 \mathrm{~m} ; 0$. current.	
											PA: 2. MPA $\geq 150 \mathrm{~min} / \mathrm{w}$, or VPA ≥ 75	
											$\mathrm{min} / \mathrm{w}$, or MVPA $\geq 150 \mathrm{~min} / \mathrm{w}$; 1 .	
											MPA 1-149 min/w, or VPA 1-74	

Author-year	Cohort	Country	Follow-up duration (mean or median)	Men (\%)	Age (mean)	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	$\begin{aligned} & \hline \begin{array}{l} \text { Sample } \\ \text { size } \end{array} \end{aligned}$	Outcome attainment	Definition of healthy lifestyle	NOS score
											\min / w, or MVPA 1-149 min/w; 0 . none. BMI: $2 .<25 \mathrm{~kg} / \mathrm{m}^{2} ; 1.25-29.99 \mathrm{~kg} /$ $\mathrm{m}^{2} ; 0 . \geq 30 \mathrm{~kg} / \mathrm{m}^{2}$. SBP/DBP: 2. <120 and 80 mmHg (untreated); 1. 120-139 or 80-89 mmHg or <120 and 80 mmHg (treated); $0 . \geq 140$ or 90 mmHg . FSG: 2. no self-reported prevalent diabetes and no insulin medication; 1. self-reported prevalent diabetes but no insulin medication; 0 . selfreported prevalent diabetes and insulin medication. TC: 2 . no self-reported prevalent high cholesterol and no cholesterol medication; 1. self-reported prevalent high cholesterol but no cholesterol medication; 0 . self-reported prevalent high cholesterol and cholesterol medication.	
$\begin{aligned} & \text { Behrens- } \\ & 2013^{56} \end{aligned}$	America n Associati on of Retired Persons	US	$\begin{aligned} & 1995-2009 \\ & (12.50) \end{aligned}$	59.21	$\begin{aligned} & 50-71 \\ & (62.50) \end{aligned}$	White 77.90	>77.37	general population	170672	Deaths were identified through the Social Security Administration Death Master File and the National Death Index Plus.	Smoking: 1. never smoking or quitting smoking ≥ 10 years; 0 . quitting smoking <10 years or current smoking. PA: 1 . MPA $\geq 30 \mathrm{~min} /$ episode and ≥ 5 episodes/w or VPA $\geq 20 \mathrm{~min} /$ episode and ≥ 3 episodes/w; 0 . MPA <30	8

\qquad
 Fol

 Follow-up Men Age Ethnicity (\%)* (mean or median)$\mathrm{min} / \mathrm{w}$, or MVPA 1-149 min/w; 0 .
none.
BMI: $2 .<25 \mathrm{~kg} / \mathrm{m}^{2} ; 1.25-29.99 \mathrm{~kg} /$ $\mathrm{m}^{2} ; 0 . \geq 30 \mathrm{~kg} / \mathrm{m}^{2}$.
SBP/DBP: 2. <120 and 80 mmHg
(untreated); 1. 120-139 or 80-89
or <120 and 80 mmHg

FSG: 2. no self-reported prevalent diabetes and no insulin medication;

1. self-reported prevalent diabetes insulin medication.
TC: 2. no self-reported prevalent high cholesterol and no cholesterol medication; 0 . self-reported prevalent high cholesterol and cholesterol medication.

Smoking: 1. never smoking or

Author-year	Cohort	Country	Follow-up duration (mean or median)	Men (\%)	$\begin{aligned} & \text { Age } \\ & \text { (mean) } \end{aligned}$	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	$\begin{aligned} & \text { NOS } \\ & \text { score } \end{aligned}$
											min/episode or <5 episodes/w and VPA $<20 \mathrm{~min} /$ episode or <3 episodes/w. $\begin{aligned} & \text { WC (M/F): } 1 .<102 / 88 \mathrm{~cm} ; 0 . \\ & \geq 102 / 88 \mathrm{~cm} . \end{aligned}$ Diet (aMDS, FFQ): $1 . \geq 5$ points; 0 . <5 points.	
Berard- 2017^{78}	MONItor ing trends and determin ants of CArdiov ascular diseaseFrance	France	$\begin{aligned} & 1994-2013 \\ & (18.00) \end{aligned}$	73.00	$\begin{aligned} & 35-64 \\ & (51.47) \end{aligned}$	White predominant	32.30	general population	1311	Death was identified through National Identification Register of Private Individuals, and main and associated causes of death were provided by the French National Institute of Health Research.	Smoking: 6. never smokers; 5 . former smokers; 3 . current smokers smoking 1-8 cigarettes/d; 2 . current smokers smoking 9-15 cigarettes/d; 1. current smokers smoking 17-20 cigarettes/d; 0 . current smokers smoking 23-60 cigarettes/d. Alcohol drinking (M/F): 2. 1-2/1 drink/d; 1. teetotalers; $-1 . \geq 3 / 2$ drinks/d. PA: 2. intense $\mathrm{PA} \geq 20 \mathrm{~min} /$ episode and ≥ 3 episodes $/ \mathrm{w}$; 1.5. intense PA $\geq 20 \mathrm{~min} /$ episode and $1-2$ episodes $/ \mathrm{w}$; 1. light PA almost every week; 0 . no regular PA. BMI: $2 .<25.0 \mathrm{~kg} / \mathrm{m}^{2} ; 1.5 .25 .0-29.9$ $\mathrm{kg} / \mathrm{m}^{2} ; 1.30 .0-39.9 \mathrm{~kg} / \mathrm{m}^{2} ; 0 . \geq 40.0$ $\mathrm{kg} / \mathrm{m}^{2}$. Diet (score consisting of sugar, FA, DF, fruits, vegetables, fish and sodium consumption, 3-day food	9

Author-year	Cohort	Country	Follow-up duration (mean or median)	$\begin{aligned} & \text { Men } \\ & (\%) \end{aligned}$	Age (mean)	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	NOS score
											record): 4. most adherent quartile; 3 . second adherent quartile; 2. third adherent quartile; 1. least adherent quartile. SBP/DBP: 3. <120 and 80 mmHg ; 2.5. $120-129$ or $80-84 \mathrm{mmHg}$; 2. $130-139$ or $85-89 \mathrm{mmHg}$; 1.5. $140-$ 159 or $90-99 \mathrm{mmHg} ; 1.160-179$ or $100-109 \mathrm{mmHg} ; 0 . \geq 180$ or ≥ 110 mmHg . FBG: 3. 2.75-4.92 mmol/l; 2. 4.93- $5.38 \mathrm{mmol} / 1 ; 1.5 .39-5.88 \mathrm{mmol} / \mathrm{l} ; 0$. 5.89-18.82 mmol/l. HDL-c: 2. 1.86-3.50 mmol/l; 0. 1.58- $1.85 \mathrm{mmol} / \mathrm{l}$; $-1.1 .33-1.57 \mathrm{mmol} / \mathrm{l}$; 2. $0.35-1.32 \mathrm{mmol} / \mathrm{l}$.	
$\begin{aligned} & \text { Bonaccio- } \\ & 2019^{79} \end{aligned}$	Moli- sani Study	Italy	$\begin{aligned} & 2005-2015 \\ & (8.20) \end{aligned}$	47.7	$\begin{aligned} & 35-\mathrm{NA} \\ & (55.00) \end{aligned}$	White predominant	>12.90	General population	22839	All-cause mortality was assessed by the Italian mortality registry and validated by Italian death certificates.	Smoking: 1. abstention from smoking; 0. current smoking. PA: 1 . LTPA $\geq 30 \mathrm{~min} / \mathrm{d} ; 0$. LTPA <30 $\mathrm{min} / \mathrm{d}$. WHR (M/F): $1 .<0.90 / 0.85 ; 0$. $\geq 0.90 / 0.85$. Diet (MDS, FFQ): 1. above the sexspecific medians; 0 . not above the sex-specific medians.	9
Booth- 2014^{80}	Reasons for Geograp	US	$\begin{aligned} & 2003-2009 \\ & (4.30) \end{aligned}$	64.08	$\begin{aligned} & 45-79 \\ & (68.79) \end{aligned}$	White 58.23 Black 41.77	82.73	CHD patients	4174	All-cause mortality was identified through telephone	Smoking: 1. not current smokers; 0 . current smokers. PA: $1 . \geq 4$ times/w; $0 .<4$ times/w.	8

Author-year	Cohort	Country	Follow-up duration (mean or median)	$\begin{aligned} & \text { Men } \\ & (\%) \end{aligned}$	Age (mean)	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	$\begin{aligned} & \text { NOS } \\ & \text { score } \end{aligned}$
	hic and Racial Differen ces in Stroke									contact with participants or proxies, adjudicated by medical records, death certificates, autopsy reports, online sources, and the National Death Index.	$\text { WC (M/F): } 1 . \leq 102 / 88 \mathrm{~cm} ;$ $0 .>102 / 88 \mathrm{~cm} .$ Diet (MDS, FFQ): 1. top 20\%; 0 . lower 80%.	
$\begin{aligned} & \text { Booth- } \\ & 2016^{81} \end{aligned}$	Reasons for Geograp hic and Racial Differen ces in Stroke	US	$\begin{aligned} & 2003-2012 \\ & (5.80) \end{aligned}$	57.56	$\begin{aligned} & 45-79 \\ & (66.60) \end{aligned}$	White 58.23 Black 41.77	89.14	population with a $10-$ year predicted risk $\geq 7.5 \%$	5709	All-cause mortality was identified through telephone contact with participants or proxies, adjudicated by medical records, death certificates, autopsy reports, online sources, and the National Death Index.	Smoking: 1. not current smokers; 0 . current smokers. PA: $1 . \geq 5$ times $/ \mathrm{w} ; 0 .<5$ times/w. WC (M/F): $1 . \leq 102 / 88 \mathrm{~cm}$; 0. $>102 / 88 \mathrm{~cm}$. Diet (MDS, FFQ): 1. top 20\%; 0 . lower 80\%. Diet (SFA intake): 1. top 20\%; 0 . lower 80%.	8
Breslow1980^{47}	"Alamed a cohort"	US	$\begin{aligned} & 1965-1974 \\ & (8.61) \end{aligned}$	44.22	$\begin{aligned} & \text { NA } \\ & (<53.28 \\ &) \end{aligned}$	White 84.00	NA	general population	4864	All-cause mortality was identified through active follow-up.	Smoking: 1. never smokers; 0 . ever smokers. Alcohol drinking: $1 . \leq 4$ drinks/episode; $0 .>4$ drinks/episode. PA: 1. often or sometimes engage in active sports, swim or take long walks, or often garden or do physical	5

Author-year	Cohort	Country	Follow-up duration (mean or median)	Men (\%)	$\begin{aligned} & \hline \begin{array}{l} \text { Age } \\ \text { (mean) } \end{array} \end{aligned}$	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	$\begin{aligned} & \text { NOS } \\ & \text { score } \end{aligned}$
											exercises; 0 . not often or sometimes engage in active sports, swim or take long walks, or often garden or do physical exercises. BMI (M/F): 1. between 20\%$95 \% / 10 \%-90 \%$ desirable weight for height; $0 .<20 \% / 10 \%$ or $>95 \% / 90 \%$ desirable weight for height. Diet (eating breakfast almost every day): 1. yes; 0 . no. Diet (eating between meals once in a while, rarely or never): 1 . yes; 0 . no. Sleep: $1.7-8 \mathrm{~h} / \mathrm{d} ; 0 .<7$ or $>8 \mathrm{~h} / \mathrm{d}$.	
$\begin{aligned} & \text { Carlsson- } \\ & 2010^{82} \end{aligned}$	"Stockho lm County 1969"	Sweden	$\begin{aligned} & \text { 1969-1996 } \\ & \text { (NA) } \end{aligned}$	50.85	$\begin{aligned} & 18-64 \\ & (\mathrm{NA}) \end{aligned}$	White predominant	NA	general population	1174	All-cause mortality was identified through the National Cause of Death Register	Smoking: 1. non-smokers; 0 . smokers. Physically fitness (median maximal oxygen consumption): 1. >30 $\mathrm{ml} / \mathrm{kg} / \mathrm{min} ; 0 . \leq 30 \mathrm{ml} / \mathrm{kg} / \mathrm{min}$. BMI: $1 .<30 \mathrm{~kg} / \mathrm{m}^{2} ; 0 . \geq 30 \mathrm{~kg} / \mathrm{m}^{2}$.	8
$\begin{aligned} & \text { Carlsson- } \\ & 2013^{83} \end{aligned}$	"Stockho lm County 1997"	Sweden	$\begin{aligned} & \text { 1997-NA } \\ & (10.85) \end{aligned}$	48.18	$\begin{aligned} & 60-60 \\ & (60.00) \end{aligned}$	White predominant	37.89	general population	4232	All-cause mortality was identified through the In Hospital Care Register and the Cause of Death Register.	Smoking: 1 . not current smokers; 0 . current smokers. Alcohol drinking: 1. 0.6-30 g/d; 0 . $<0.6 \mathrm{~g} / \mathrm{d}$ or $>30 \mathrm{~g} / \mathrm{d}$. PA: 1. LTPA (MVPA) \geq once $/ \mathrm{w} ; 0$. LTPA <once /w. Diet (fish intake): 1.weekly; $0 .<$ once /w. Diet (processed meats as a main	9

Author-year	Cohort	Country	Follow-up duration (mean or median)	$\begin{aligned} & \text { Men } \\ & (\%) \end{aligned}$	Age (mean)	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	NOS score
											meal): $1 .<$ once /w; 0 . weekly; Diet (fruit intake): 1. daily; $0 .<$ once /d. Diet (vegetable intake): 1. daily; 0 . <once /d.	
$\begin{aligned} & \text { Cerhan-2004 } \\ & \dagger, 84 \end{aligned}$	Iowa Women's Health Study	US	$\begin{aligned} & 1986-1998 \\ & (11.39) \end{aligned}$	0	$\begin{aligned} & 55-69 \\ & (61.70) \end{aligned}$	White predominant	86.10	general population	29838	All-cause mortality was identified through mailed follow-up surveys and linkage to the National Death Index.	Alcohol drinking: $1 .<1$ drink/d (14 $\mathrm{g} / \mathrm{d}) ; 0 . \geq 1$ drinks/d. PA: 1. exercise moderately daily and vigorously $\geq 1 \mathrm{~h} / \mathrm{w}$; 0 . exercise moderately <once /d or vigorously $<1 \mathrm{~h} / \mathrm{w}$. BMI: $1 . \leq 25.0 \mathrm{~kg} / \mathrm{m}^{2} ; 0 .>25.0 \mathrm{~kg} / \mathrm{m}^{2}$. Weight gain since age 18: $1 .<11$ pounds; $0 . \geq 11$ pounds. Diet (vegetable and fruit intake excluding pulses and starchy, FFQ): 1. ≥ 5 servings/d; $0 .<5$ servings/d. Diet (complex carbohydrates intake, FFQ): $1 . \geq 400 \mathrm{~g} / \mathrm{d} ; 0 .<400 \mathrm{~g} / \mathrm{d}$. Diet (red meat intake, FFQ): $1 .<80$ $\mathrm{g} / \mathrm{d} ; 0 . \geq 80 \mathrm{~g} / \mathrm{d}$. Diet (consumption of fat as percentage total calories, FFQ): 1 . $\leq 30 \% ; 0 .>30 \%$ Diet (sodium, FFQ): $1 .<2400 \mathrm{mg} / \mathrm{d}$; $0 . \geq 2400 \mathrm{mg} / \mathrm{d}$.	7
Chakravarty- 2012^{85}	"a cohort of	US	$\begin{aligned} & 1986-2005 \\ & (15.60) \end{aligned}$	77.20	$\begin{aligned} & \text { NA } \\ & (68.00) \end{aligned}$	White predominant	100	general population	2327	All-cause mortality was ascertained	Smoking: 1. not current smokers; 0 . current smokers.	8

Author-year	Cohort	Country	Follow-up duration (mean or median)	$\begin{aligned} & \hline \text { Men } \\ & (\%) \end{aligned}$	Age (mean)	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	NOS score
	Universit y of Pennsylv ania alumni"									using the National Death Index.	PA: 1. any VPA that works up a sweat; 0 . absence of VPA that works up a sweat. BMI: $1.18 .5-25.0 \mathrm{~kg} / \mathrm{m}^{2} ; 0 .<18.5$ $\mathrm{kg} / \mathrm{m}^{2}$ or $>25.0 \mathrm{~kg} / \mathrm{m}^{2}$.	
$\begin{aligned} & \text { Cheng- } \\ & 2018^{86} \end{aligned}$	Iowa Women's Health Study	US	$\begin{aligned} & 1986-2012 \\ & (\geq 16.63) \end{aligned}$	0	$\begin{aligned} & 55-69 \\ & (61.70) \end{aligned}$	White predominant	86.10	General population	35221	Deaths were identified through the State Health Registry of Iowa and the National Death Index. The underlying cause of death was assigned and coded by state vital registries according to the ICD.	Smoking: 5. never smokers; 2.24. former smokers; 0.56 . current smokers. PA: 7.25. VPA \geq twice/w or MPA >4 times/w; 3.95.VPA once/w plus MPA once/w, or MPA 2-4 times/w; 1. no VPA or MPA <twice/w. BMI: $5 .<25.0 \mathrm{~kg} / \mathrm{m}^{2} ; 3.09 .25 .0-$ $29.9 \mathrm{~kg} / \mathrm{m}^{2} ; 0.78 . \geq 30.0 \mathrm{~kg} / \mathrm{m} 2$.	8
$\begin{aligned} & \text { Cloud- } \\ & 2015^{87} \end{aligned}$	Breast Cancer Family Registry	US	$\begin{aligned} & 1995-2012 \\ & (9.17) \end{aligned}$	0	NA (48.87)	White 100	90-92.6	women with breast cancer or a family history of breast cancer	2905	All-cause mortality was identified through self or relative report and matching of participants to the National Death Index.	Alcohol drinking: $1 . \leq 1$ drink/d; 0. >1 drink/d; PA: 1 . MPA $\geq 150 \mathrm{~min} / \mathrm{w} ; 0$. MPA $<150 \mathrm{~min} / \mathrm{w}$. BMI: $1 .<25 \mathrm{~kg} / \mathrm{m}^{2} ; 0 . \geq 25 \mathrm{~kg} / \mathrm{m}^{2}$.	7
Diaz-2014 ${ }^{88}$	Reasons for Geograp	US	$\begin{aligned} & \text { 2003-NA } \\ & (4.50) \end{aligned}$	49.20	$\begin{aligned} & 45-\mathrm{NA} \\ & (67.60) \end{aligned}$	White 39.50 Black 60.50	80.80	apparent treatment- resistant	2043	All-cause mortality was identified through interviews	Smoking: 1. not current smokers; 0 . current smokers. Alcohol drinking (M/F): 1. 1-14/7	7

Author-year	Cohort	Country	Follow-up duration (mean or median)	$\begin{aligned} & \hline \text { Men } \\ & (\%) \end{aligned}$	Age (mean)	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	$\begin{aligned} & \text { NOS } \\ & \text { score } \end{aligned}$
Dong-2012 ${ }^{90}$	Northern Manhatta n Study	US	$\begin{aligned} & 1993-2011 \\ & (11.00) \end{aligned}$	36.30	$\begin{aligned} & 40-107 \\ & (69.00) \end{aligned}$	White 75.00 Black 24.99	43.20	general population	2981	All-cause mortality was identified through death certificates, medical records of hospitalizations, family interviews, and primary care physicians.	Smoking: 1. never smokers or quitting >1 year; 0 . quitting ≤ 1 year or current smokers; PA: 1 . MPA $\geq 150 \mathrm{~min} / \mathrm{w}$ or VPA ≥ 75 $\mathrm{min} / \mathrm{w}$ or $\mathrm{MVPA} \geq 150 \mathrm{~min} / \mathrm{w} ; 0$. MPA $<150 \mathrm{~min} / \mathrm{w}$ and VPA <75 $\mathrm{min} / \mathrm{w}$ and MVPA $<150 \mathrm{~min} / \mathrm{w}$. BMI: $1 .<25 \mathrm{~kg} / \mathrm{m}^{2} ; 0 . \geq 25 \mathrm{~kg} / \mathrm{m}^{2}$. Diet (AHA, FFQ): 1.4-5 components; 0. 0-3 components. SBP/DBP: $1 .<120$ and 80 mmHg (not treated); $0 .<120$ and 80 mmHg (treated) or ≥ 120 or 80 mmHg . FPG: $1 .<100 \mathrm{mg} / \mathrm{dl}$ (not treated); 0 . $<100 \mathrm{mg} / \mathrm{dl}$ (treated) $\geq 100 \mathrm{mg} / \mathrm{d}$. TC: $1 .<200 \mathrm{mg} / \mathrm{dl}$ (not treated); 0 . or $<200 \mathrm{mg} / \mathrm{dl}$ (treated) $\geq 200 \mathrm{mg} / \mathrm{dl}$.	8
Dunkler- 2016^{91}	Ongoing Telmisart an Alone and in Combina tion with Ramipril Global Endpoint Trial	Internati onal	NA (NA)	68.10	$\begin{aligned} & 55-\mathrm{NA} \\ & (66.00) \end{aligned}$	White 67.30 Asian 17.00	NA	type 2 diabetes mellitus patients	6854	How to identify allcause mortality was not reported in the article.	Smoking: 1. never smokers; 0.5 . former smokers; 0 . current smokers. PA: 1. \geq once /d; 0.5. 2-6 times/w; 0 . Sonce /w BMI: $1.23-30 \mathrm{~kg} / \mathrm{m}^{2} ; 0 .<23$ or >30 $\mathrm{kg} / \mathrm{m}^{2}$. Diet (AHEI, FFQ): $1 . \geq 28$ points; 0.5. 21-28 points; $0 .<21$ points. Social network score: $1 . \geq 25$ points; 0.5. 13-24 points; $0 .<13$ points.	7
Eguchi-	Japan	Japan	1988-2009	43.24	40-79	Asian	63.88	general	42647	All-cause mortality	Smoking: 1. not current smokers; 0 .	8

Author-year	Cohort	Country	Follow-up duration (mean or median)	Men (\%)	Age (mean)	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	NOS score
$2017{ }^{51}$	Collabor ative Cohort Study		(19.30)		(55.52)	predominant		population		was determined by reviewing death certificates.	current smokers. Alcohol drinking: $1 .<2$ gou/d (46 g ethanol/d); $0 . \geq 2$ gou/d. PA: $1 . \geq 0.5 \mathrm{~h} / \mathrm{d}$ or $\geq 5 \mathrm{~h} / \mathrm{w} ; 0 .<0.5 \mathrm{~h} / \mathrm{d}$ and $<5 \mathrm{~h} / \mathrm{w}$. BMI: $1.21-25 \mathrm{~kg} / \mathrm{m}^{2} ; 0 .<21 \mathrm{~kg} / \mathrm{m}^{2}$ or $>25 \mathrm{~kg} / \mathrm{m}^{2}$. Diet (fruit): $1 . \geq 1$ servings/d; $0 .<1$ serving/d. Diet (fish): $1 . \geq 1$ servings/d; $0 .<1$ serving/d. Diet (milk): 1. almost daily; 0. <once /d. Sleeping: 1. $5.5-7.4 \mathrm{~h} / \mathrm{d} ; 0 .<5.5 \mathrm{~h} / \mathrm{d}$ or $>7.4 \mathrm{~h} / \mathrm{d}$. ${ }^{\text {. }}$	
Emberson- 2005^{92}	British Regional Heart Study	UK	$\begin{aligned} & 1978-2000 \\ & \text { (NA) } \end{aligned}$	100	$\begin{aligned} & 40-59 \\ & (49.20) \end{aligned}$	White predominant	NA	general population	6452	All-cause mortality was identified through the National Health Service registers.	Smoking: 1. never smokers; 0 . ever smokers. PA: 1. moderately vigorous or vigorous; 0 . moderate, light, occasional or none PA. BMI: $1 . \leq 25 \mathrm{~kg} / \mathrm{m}^{2} ; 0 .>25 \mathrm{~kg} / \mathrm{m}^{2}$.	7
Fazel-Tabar Malekshah2016^{93}	Golestan Cohort	Iran	$\begin{aligned} & 2004-2015 \\ & (8.08) \end{aligned}$	42.75	$\begin{aligned} & 40-75 \\ & (51.54) \end{aligned}$	White >75.59	<31.10	general population	40708	All-cause mortality was identified through active follow up and confirmed by verbal autopsy and extensive medical	Smoking: 1 . never smokers; 0 . ever smokers. PA: 1 . MVPA $\geq 30 \mathrm{~min} / \mathrm{d} ; 0$. MVPA $<30 \mathrm{~min} / \mathrm{d}$. Diet (AHEI, FFQ): 1. highest 40\%; 0 . lower 60%.	8

Author-year	Cohort	Country	Follow-up duration (mean or median)	$\begin{aligned} & \text { Men } \\ & (\%) \end{aligned}$	$\begin{aligned} & \hline \begin{array}{l} \text { Age } \\ \text { (mean) } \end{array} \end{aligned}$	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	$\begin{aligned} & \text { NOS } \\ & \text { score } \end{aligned}$
$\underset{\substack{\text { Foster-2018 }}}{\text { For }}$	Nutrition	UK	$\begin{aligned} & 2006-2016 \\ & (4.90) \end{aligned}$	45.41		White 94.79	46.10	General population	328594	National Death	$<150 \mathrm{~min} / \mathrm{w}$.	8
	Examina tion									Index.	Diet (HEI, a single 24-h recall): 1 . top 40%; 0 . lower 60%.	
	Surveys											
	1999											
	UK Biobank				$\begin{aligned} & 40-69 \\ & (55.71) \end{aligned}$					Deaths were obtained from death certificates held by the NHS Information Centre and the NHS Central Register.	Smoking: 1. not current smokers; 0 . current smokers. Alcohol drinking: 1. not consume (almost) daily; 0. consume (almost) daily. PA: 1 . MPA $\geq 150 \mathrm{~min} / \mathrm{w}$ or VPA $\geq 75 \mathrm{~min} / \mathrm{w} ; 0 . \mathrm{MPA}<150 \mathrm{~min} / \mathrm{w}$ and VPA $<75 \mathrm{~min} / \mathrm{w}$. Diet (fruits and vegetables, 24-h dietary recall): $1 . \geq 400 \mathrm{~g} / \mathrm{d} ; 0 .<400$ g/d. Diet (oily fish, 24-h dietary recall): 1 . $\geq o n e ~ p o r t i o n / w ; ~ 0$. <one portion/w. Diet (red meat, 24-h dietary recall): 1. ≤ 3 portions/w; $0 .>3$ portions/w. Diet (processed meat, 24-h dietary recall): $1 . \leq 1$ portions/w; $0 .>1$ portions/w. Television viewing: $1 .<4 \mathrm{~h} / \mathrm{d} ; 0 . \geq 4$ h/d. Sleeping: $1.7-9 \mathrm{~h} / \mathrm{d} ; 0 .<7 \mathrm{~h} / \mathrm{d}$ or >9 h/d.	
Gopinath-	Blue	Australia	1992-2007	NA	49-NA	NA	NA	general	2283	All-cause mortality	Smoking: 1. not current smokers; 0 .	8
$2010{ }^{97}$	Mountai		(NA)		(>62.51			population		was identified	current smokers.	
	ns Eye									through the	Alcohol drinking (M/F): $1 . \leq 21 / 14$	
	Study									Australian National	units/w; $0 .>21 / 14$ units/w.	
										Death Index data.	PA: 1. ≥ 3 episodes/w; $0 .<3$ episodes/w.	
											Diet (fruits and vegetables	

Author-year	Cohort	Country	Follow-up duration (mean or median)	Men (\%)	$\begin{aligned} & \hline \begin{array}{l} \text { Age } \\ \text { (mean) } \end{array} \end{aligned}$	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	$\begin{aligned} & \text { NOS } \\ & \text { score } \end{aligned}$
Greenlee-2017^{98}	Cardiova scular Health Study	US	$\begin{aligned} & 1989-2011 \\ & (15.00) \end{aligned}$	38.56	$\begin{aligned} & 65-98 \\ & (72.00) \end{aligned}$	White 86.71 Black 11.72		general population	3491	All-cause mortality was identified from National Death Index and interviews with proxy respondents.	consumption): $1 . \geq 3$ episodes/d; 0 . <3 episodes/d.	8
											ACS:	
											Smoking: 2. never smokers or	
											quitting >1 year; 1 . quitting ≤ 1 year;	
											0 . current smokers.	
											Alcohol drinking (M/F): 2. nondrinker; $1 .<2 / 1$ unit/d; $0 .>2 / 1$ unit/d. PA: 2. LTPA ≥ 8.75 MET-h/w; 1 .	
											LTPA 0.10-8.74 MET-h/w; 0. zero	
											MET-h/w.	
											BMI: $2 .<25 \mathrm{~kg} / \mathrm{m}^{2}$ at baseline and age $50 ; 1.25-29.9 \mathrm{~kg} / \mathrm{m}^{2}$ at baseline and $<30 \mathrm{~kg} / \mathrm{m}^{2}$ at age 50 , or 25-29.9	
											$\mathrm{kg} / \mathrm{m}^{2}$ at age 50 and $<30 \mathrm{~kg} / \mathrm{m}^{2}$ at baseline; $0 . \geq 30 \mathrm{~kg} / \mathrm{m}^{2}$ either	
											baseline, age 50, or both.	
											Diet (ACS, including vegetables and fruits, red and processed meats, and whole grains consumption, FFQ): 2.	
											≥ 6 points; 1.3-5 points; $0 .<3$ points.	
											AHA:	
											Smoking: 2. never smokers or quitting >1 year; 1 . quitting ≤ 1 year; 0 . current smokers.	
											PA: 2. LTPA ≥ 8.75 MET-h/w; 1.	
											LTPA 0.10-8.74 MET-h/w; 0. zero	
											MET-h/w.	

Author-year	Cohort	Country	Follow-up duration (mean or median)	$\begin{aligned} & \hline \text { Men } \\ & (\%) \end{aligned}$	Age (mean)	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	NOS score
											BMI: $2 .<25 \mathrm{~kg} / \mathrm{m}^{2} ; 1.25-29.9$ $\mathrm{kg} / \mathrm{m}^{2} ; 0 . \geq 30 \mathrm{~kg} / \mathrm{m}^{2}$. Diet (AHA, FFQ): 2. 4-5 components; 1. 2-3 components; 0 . 0-1 components. SBP/DBP: 2. <120 and 80 mmHg (untreated); 1. 120-139 or 80-89 mmHg (untreated) or <120 and 80 mmHg (treated); $0 . \geq 140$ or 90 mmHg . FPG: 2. $<100 \mathrm{mg} / \mathrm{dl}$ (untreated); 1. $100-125 \mathrm{mg} / \mathrm{dl}$ (untreated) or <100 $\mathrm{mg} / \mathrm{dl}$ (treated); $0 . \geq 126 \mathrm{mg} / \mathrm{dl}$. TC: $2 .<200 \mathrm{mg} / \mathrm{dl}$ (untreated); 1. $200-239 \mathrm{mg} / \mathrm{dl}$ (untreated) or <200 $\mathrm{mg} / \mathrm{dl}$ (treated); $0 . \geq 240 \mathrm{mg} / \mathrm{dl}$.	
Hamer2011^{99}	National Diet and Nutrition Survey	UK	$\begin{aligned} & \text { NA-2008 } \\ & (9.20) \end{aligned}$	50.75	$\begin{aligned} & 65-99 \\ & (76.50) \end{aligned}$	White predominant	NA	general population	1062	All-cause mortality was identified through National Health Service administrative mortality data.	Smoking: 1. never smokers; 0 . ever smokers. Alcohol drinking (M/F): 1. 1-21/14 units/w; 0 . zero or $>21 / 14$ units/w. PA: 1. regular moderate to vigorous PA; 0. irregular or no moderate to vigorous PA. Diet (daily Vitamin C intake): $1 . \geq 50$ mU ; $0 .<50 \mathrm{mU}$.	8
Heitz2017^{100}	4- Corners Women	US	$\begin{aligned} & 1999-2009 \\ & \text { (NA) } \end{aligned}$	0	$\begin{aligned} & 25-79 \\ & (55.21) \end{aligned}$	White 100	88.17	invasive breast cancer	837	All-cause mortality was identified through the	Smoking: 2. never smokers; 1 . former smokers; 0 . current smokers. Alcohol drinking: $2 . \leq 0.5$ drinks/d; 1 .	7

Author-year	Cohort	Country	Follow-up duration (mean or median)	Men (\%)	Age (mean)	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	$\begin{aligned} & \text { NOS } \\ & \text { score } \end{aligned}$
											FFQ): $1 .<500 \mathrm{~g} / \mathrm{d}$ and $<3 \mathrm{~g} / \mathrm{d} ; 0.5$. $<500 \mathrm{~g} / \mathrm{d}$ and $3-49 \mathrm{~g} / \mathrm{d} ; 0 . \geq 500 \mathrm{~g} / \mathrm{d}$ or $\geq 50 \mathrm{~g} / \mathrm{d}$. Diet (sodium, FFQ): $1 . \leq 1500 \mathrm{mg} / \mathrm{d}$; $0.5 .1501-2400 \mathrm{mg} / \mathrm{d} ; 0 .>2400 \mathrm{mg} / \mathrm{d}$.	
Iversen- 2010^{102}	Royal College of General Practitio ners' Oral Contrace ption Study	UK	$\begin{aligned} & 1994-2006 \\ & (11.81) \end{aligned}$	0	$\begin{aligned} & 42-81 \\ & (56.10) \end{aligned}$	White 96.00	NA	general population	7603	All-cause mortality was identified through the Oral Contraception Study database	Smoking 1. never smoking; 0 . ever smoking. Alcohol drinking: 1. 0.1-6.9 units/w; 0 . none or ≥ 7.0 units/w. PA: $1 .>28 \mathrm{~h} / \mathrm{w} ; 0 . \leq 28 \mathrm{~h} / \mathrm{w}$. BMI: $1.18 .50-24.99 \mathrm{~kg} / \mathrm{m}^{2} ; 0$. $<18.50 \mathrm{~kg} / \mathrm{m}^{2}$ or $\geq 25.00 \mathrm{~kg} / \mathrm{m}^{2}$.	8
Jin-2017 ${ }^{103}$	InCHIA NTI study	Italy	$\begin{aligned} & 1998-2010 \\ & (9.10) \end{aligned}$	45.00	$\begin{aligned} & 65-95 \\ & (74.00) \end{aligned}$	White predominant	<45.92	general population	928	All-cause mortality was identified through Tuscany Region Mortality General Registry and death certificates at the registry office of the municipality of residence.	Smoking: 2. never smokers; 1. former smokers; 0 . current smokers. PA: 2 . light exercise $\geq 4 \mathrm{~h} / \mathrm{w}$, moderate exercise $\geq 1-2 h / w$, or intense exercise many times/w; 1 . light exercise $2-4 \mathrm{~h} / \mathrm{w} ; 0$. inactive or with some walking. BMI: $2 .<25 \mathrm{~kg} / \mathrm{m}^{2} ; 1.25-29.9$ $\mathrm{kg} / \mathrm{m}^{2} ; 0 . \geq 30 \mathrm{~kg} / \mathrm{m}^{2}$. Diet (MDS, FFQ): 2. 6-9 points; 1. 45 points; 0. 0-3 points. SBP/DBP: 2. <120 and 80 mmHg (untreated); 1. 120-139 or 80-89	9

Author-year	Cohort	Country	Follow-up duration (mean or median)	Men (\%)	Age (mean)	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	$\begin{aligned} & \text { NOS } \\ & \text { score } \end{aligned}$
											mmHg (untreated) or <120 and 80 mmHg (treated); $0 . \geq 140$ or 90 mmHg . FPG: 2. $<100 \mathrm{mg} / \mathrm{dl}$ (untreated); 1. $100-125 \mathrm{mg} / \mathrm{dl}$ (untreated) or <100 $\mathrm{mg} / \mathrm{dl}$ (treated); $0 . \geq 126 \mathrm{mg} / \mathrm{dl}$. TC: $2 .<200 \mathrm{mg} / \mathrm{dl}$ (untreated); 1. $200-239 \mathrm{mg} / \mathrm{dl}$ (untreated) or <200 $\mathrm{mg} / \mathrm{dl}$ (treated); $0 . \geq 240 \mathrm{mg} / \mathrm{dl}$.	
$\text { Khaw-2008 } \dagger \text {, }$ 63	Europea Prospecti ve Investiga tion into Cancer and Nutrition -Norfolk	UK	$\begin{aligned} & 1993-2006 \\ & (11.00) \end{aligned}$	45.35	$\begin{aligned} & 45-79 \\ & (58.13) \end{aligned}$	White 99.50	53.38	general population	20244	All-cause mortality was identified through death certification at the Office of National Statistics.	Smoking: 1. not current smokers; 0 . current smokers. Alcohol drinking: 1. 1-14 units/w (1 unit $\approx 8 \mathrm{~g}$ alcohol); 0 . none or >14 units/w. PA: 1 . LTPA $\geq 0.5 \mathrm{~h} / \mathrm{d} ; 0$. LTPA <0.5 h/d. Diet (plant food intake, blood Vitamin C level): $1 . \geq 50 \mathrm{mmol} / \mathrm{l} ; 0$. $<50 \mathrm{mmol} / \mathrm{l}$.	9
Kim-2013 ${ }^{104}$	Seoul Male Cohort Study	South Korea	$\begin{aligned} & 1993-2011 \\ & (18.40) \end{aligned}$	100	$\begin{aligned} & 40-59 \\ & (47.53) \end{aligned}$	Asian predominant	>53.73	general population	12538	All-cause mortality was identified through the National Statistics Office.	Smoking: 1. never smokers; 0 . ever smokers. PA: 1. MPA $\geq 150 \mathrm{~min} / \mathrm{w}, \mathrm{VPA} \geq 75$ $\mathrm{min} / \mathrm{w}$, or MVPA $\geq 150 \mathrm{~min} / \mathrm{w} ; 0$. MPA $<150 \mathrm{~min} / \mathrm{w}$, MVPA <150 $\mathrm{min} / \mathrm{w}$, and VPA $<75 \mathrm{~min} / \mathrm{w}$. BMI: 1. $23.1-24.9 \mathrm{~kg} / \mathrm{m}^{2} ; 0 . \geq 25$ $\mathrm{kg} / \mathrm{m}^{2}$. Diet (Korean dietary pattern, FFQ):	9

Author-year	Cohort	Country	Follow-up duration (mean or median)	Men (\%)	Age (mean)	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	$\begin{aligned} & \text { NOS } \\ & \text { score } \end{aligned}$
											1. ≥ 2 points; $0 .<2$ points. SBP/DBP: $1 .<120$ and 80 mmHg (without medication); $0 . \geq 120$ or 80 mmHg , or <120 and 80 mmHg (with medication). FBG: $1 .<100 \mathrm{mg} / \mathrm{dl}$ (without medication); $0 . \geq 100 \mathrm{mg} / \mathrm{d}$, or <100 $\mathrm{mg} / \mathrm{dl}$ (with medication). TC: $1 .<200 \mathrm{mg} / \mathrm{dl}$ (without medication); $0 . \geq 200 \mathrm{mg} / \mathrm{dl}$, or <200 $\mathrm{mg} / \mathrm{dl}$ (with medication).	
$\begin{aligned} & \text { King-2013 t, } \\ & { }_{105}^{\dagger} \end{aligned}$	National Health and Nutrition Examina tion Surveys III	US	$\begin{aligned} & 1988-2006 \\ & \text { (NA) } \end{aligned}$	18.50	$\begin{aligned} & \text { 21-NA } \\ & \text { (NA) } \end{aligned}$	White 81.10 Black 11.10	61.88	population with normal blood pressure, low- density lipoprotein cholesterol or C- reactive protein level	11481	All-cause mortality was determined by the National Death Index.	Smoking: 1. not current smokers; 0 . current smokers. Alcohol drinking (M/F): 1. 0.1-2/1 drinks/d; 0 . none or $>2 / 1$ drinks/d. PA: $1 .>12$ times $/ \mathrm{m} ; 0 . \leq 12$ times $/ \mathrm{m}$. BMI: 1. $18.5-29.9 \mathrm{~kg} / \mathrm{m}^{2} ; 0 .<18.5$ $\mathrm{kg} / \mathrm{m}^{2}$ or $\geq 30 \mathrm{~kg} / \mathrm{m}^{2}$. Diet (fruit and vegetables): $1 . \geq 5$ servings/d; $0 .<5$ servings/d.	7
Knoops$2004{ }^{106}$	Healthy Ageing: a Longitud	Europe	$\begin{aligned} & 1988-2000 \\ & (10.00) \end{aligned}$	64.43	$\begin{aligned} & 70-90 \\ & (74.24) \end{aligned}$	White predominant	<66.86	general population	2339	The identification of all-cause mortality was not reported.	Smoking: 1. never smokers or quitting >15 years; 0 . quitting ≤ 15 years or current smokers. Alcohol drinking: $1 .>0 \mathrm{~g} / \mathrm{d}$; 0 . none.	8

Author-year	Cohort	Country	Follow-up duration (mean or median)	Men (\%)	Age (mean)	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	$\begin{aligned} & \text { NOS } \\ & \text { score } \end{aligned}$
	inal study in Europe										PA (Voorrips or Morris questionnaire): 1. the intermediate and the highest tertile; 0 . the lowest tertile. Diet (mMDS, dietary history method): $1 . \geq 4$ points; $0 .<4$ points.	
Krokstad$2017{ }^{107}$	Nord- Trødelag Health Study	Norway	$\begin{aligned} & 1995-2010 \\ & (14.10) \end{aligned}$	47.00	$\begin{aligned} & 20-69 \\ & (43.60) \end{aligned}$	White predominant	73.41	general population	37785	All-cause mortality was identified through Norwegian Causes of Death Registry. Cardio-metabolic diseases (including diseases of the circulatory system, and endocrine, nutritional and metabolic disease; ICD-9, 240-279, and 390-459; ICD10, E10-E16, E65E68, and I00-I99) mortality was identified through Norwegian Causes of Death Registry.	Smoking: 1. not current smokers; 0 . current smokers. Drinking (Cut-Annoyed-Guilty- Eyeopener questionnaire): $1 .<2$ points; 0 . ≥ 2 points. PA: 1. LPA $\geq 3 \mathrm{~h} / \mathrm{w}$, or $\mathrm{LPA} \geq 1 \mathrm{~h} / \mathrm{w}$ and VPA $\geq 1 \mathrm{~h} / \mathrm{w} ; 0$. LPA $<1 \mathrm{~h} / \mathrm{w}$ or VPA $<1 \mathrm{~h} / \mathrm{w}$, or LPA $<3 \mathrm{~h} / \mathrm{w}$. Sedentary behavior: $1 .>7 \mathrm{~h} / \mathrm{d} ; 0 . \leq 7$ h/d. Sleeping: 1. 6.1-9.9 h/d; $0 . \leq 6.0 \mathrm{~h} / \mathrm{d}$ or $\geq 10.0 \mathrm{~h} / \mathrm{d}$. Social participation: 1. often; 0 . never or only a few times a year.	8
Kvaavik- 2010^{108}	Health and	UK	$\begin{aligned} & 1985-2005 \\ & (20.00) \end{aligned}$	51.35	$\begin{aligned} & \text { 18-NA } \\ & (43.70) \end{aligned}$	White 98.00	NA	general population	4886	All-cause mortality was ascertained	Smoking: 1. not current smokers; 0 . current smokers.	8

Author-year	Cohort	Country	Follow-up duration (mean or median)	$\begin{aligned} & \hline \text { Men } \\ & (\%) \end{aligned}$	Age (mean)	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	$\begin{aligned} & \text { NOS } \\ & \text { score } \end{aligned}$
	Lifestyle Survey									from death certificates.	Alcohol drinking (M/F): $1 . \leq 21 / 14$ units/w; 0. $>21 / 14$ units/w. PA: $1 . \geq 120 \mathrm{~min} / \mathrm{w} ; 0 .<120 \mathrm{~min} / \mathrm{w}$. Diet (fruits and vegetables consumption, FFQ): $1 . \geq 3$ times/d; 0 . <3 times/d.	
Larsson- 2017^{109}	Cohort of Swedish Men \& Swedish Mammo graphy Cohort	Sweden	$\begin{aligned} & 1998-2014 \\ & (15.49) \end{aligned}$	52.20	$\begin{aligned} & 45-83 \\ & (59.92) \end{aligned}$	White predominant	>18.49	general population	64093	All-cause mortality was identified through the Swedish Cause of Death Register	Smoking: 1. not current smokers; 0 . current smokers. Alcohol drinking: 1. 0-14 drinks/w; $0 .>14$ drinks/w. PA: $1 . \geq 150 \mathrm{~min} / \mathrm{w} ; 0 .<150 \mathrm{~min} / \mathrm{w}$. Diet (DASH score, FFQ): 1. above the median (22); 0 . below the median.	9
Lee-2009 ${ }^{110}$	Aerobics Center Longitud inal Study	US	$\begin{aligned} & 1971-2003 \\ & (14.70) \end{aligned}$	100	$\begin{aligned} & 30-79 \\ & (44.13) \end{aligned}$	White >95.00	>70.00	general population	23657	All-cause mortality was identified through the National Death Index and official death certificates.	Smoking: 1. never smoking; 0 . ever smoking. Fitness (CRF): 1. higher 80\%; 0 . lower 20\%. WC: $1 .<94 \mathrm{~cm} ; 0 . \geq 94 \mathrm{~cm}$.	7
Leger- 2018^{11}	"Fred Hutchins on Cancer Research Center Study"	US	$\begin{aligned} & 2010-2016 \\ & \text { (NA) } \end{aligned}$	46.74	$\begin{aligned} & 20.20- \\ & 83.30 \\ & (55.90) \end{aligned}$	White 89.15	NA	hematopoi etic cell transplanta tion survivors	2198	All-cause mortality was identified through annual contact with patients and families, referring providers, and periodic searches of	Smoking: 1. not a non-current smokers; 0 . current smokers. PA: 1 . VPA $\geq 75 \mathrm{~min} / \mathrm{w}$ or MPA ≥ 150 $\mathrm{min} / \mathrm{w} ; 0 . \mathrm{VPA}<75 \mathrm{~min} / \mathrm{w}$ and MPA $<150 \mathrm{~min} / \mathrm{w}$. Diet (fruit/vegetable intake): $1 . \geq 5$ servings/d; $0 .<5$ servings/d.	6

Author-year	Cohort	Country	Follow-up duration (mean or median)	$\begin{aligned} & \text { Men } \\ & (\%) \end{aligned}$	$\begin{aligned} & \text { Age } \\ & \text { (mean) } \end{aligned}$	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	$\begin{aligned} & \hline \text { NOS } \\ & \text { score } \end{aligned}$
										public sources for patients without recent contact.		
Li-2018 ${ }^{1}$	Nurses' Health Health Professio nals Follow- Up Study	US	$\begin{aligned} & 1980-2014 \\ & (27.20- \\ & 33.90) \end{aligned}$	36.00	$\begin{aligned} & 34-75 \\ & (48.96) \end{aligned}$	White 96.34	Predomina nt	general population	123219	All-cause mortality was identified from state vital statistics records, the National Death Index, reports by the families, and the postal system.	Smoking: 1. never smokers; 0 . ever smokers. Alcohol drinking (M/F): 1. 5-30/15 $\mathrm{g} / \mathrm{d} ; 0 .<5 \mathrm{~g} / \mathrm{d}$ or $>30 / 15 \mathrm{~g} / \mathrm{d}$. MVPA: $1 .>30 \mathrm{~min} / \mathrm{d} ; 0 . \leq 30 \mathrm{~min} / \mathrm{d}$. BMI: 1. $18.5-24.9 \mathrm{~kg} / \mathrm{m}^{2} ; 0 .<18.5$ $\mathrm{kg} / \mathrm{m}^{2}$ or $\geq 25 \mathrm{~kg} / \mathrm{m}^{2}$. Diet (AHEI, FFQ): 1. top 40% of each cohort distribution; 0 . lower 60% of each cohort distribution.	8
Lin-2012 ${ }^{112}$	Taichung Diabetes Study	China	$\begin{aligned} & 2002-2008 \\ & (4.02) \end{aligned}$	51.93	$\begin{aligned} & 30-\mathrm{NA} \\ & (58.51) \end{aligned}$	Asian predominant	NA	type 2 diabetes mellitus patients	5686	All-cause mortality was identified through the Taiwan National Death Index.	Smoking: 1. never smokers; 0 . ever smokers. Alcohol drinking: 1. abstainer; 0 . drinker. PA: $1 . \geq$ once /w for $>1 \mathrm{~m}$ continuously; $0 .<$ once /w or $<1 \mathrm{~m}$ continuously. Diet (carbohydrate intake, 24-h food diary): $1 .<65 \% \mathrm{E} ; 0 . \geq 65 \% \mathrm{E}$.	7
$\begin{aligned} & \operatorname{Lin}-2015 t, \\ & 113 \end{aligned}$	National Health and Nutrition Examina tion	US	$\begin{aligned} & 1988-2006 \\ & (8.17) \end{aligned}$	48.60	$\begin{aligned} & \text { 18-NA } \\ & \text { (NA) } \end{aligned}$	White 81.10 Black 11.10	61.88	stroke patients	420	All-cause mortality was identified through the National Death Index.	Smoking: 1. never smokers; 1. ever smokers. PA: 1. MVPA $\geq 150 \mathrm{~min} / \mathrm{w} ; 1$. MVPA $<150 \mathrm{~min} / \mathrm{w}$. BMI: $1 .<25 \mathrm{~kg} / \mathrm{m}^{2} ; 0 . \geq 25 \mathrm{~kg} / \mathrm{m}^{2}$. Diet (HEI, FFQ): $1 .>80$ points; 0 .	8

Author-year	Cohort	Country	Follow-up duration (mean or median)	$\begin{aligned} & \hline \text { Men } \\ & (\%) \end{aligned}$	Age (mean)	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	NOS score
	Surveys										≤ 80 points.	
	III										SBP/DBP: 1. <120 and 80 mmHg (untreated); $0 . \geq 120$ or 80 mmHg or <120 and 80 mmHg (treated).	
											$\begin{aligned} & \text { HbA1c: } 1 .<5.7 \% \text { (untreated); } 0 \text {. } \\ & \geq 5.7 \% \text { or }<5.7 \% \text { (treated). } \end{aligned}$	
											TC: $1 .<200 \mathrm{mg} / \mathrm{dl}$ (untreated); 0 . $\geq 200 \mathrm{mg} / \mathrm{dl}$ or $<200 \mathrm{mg} / \mathrm{dl}$ (treated).	
$\begin{aligned} & \text { Lingfors- } \\ & 2019^{114} \end{aligned}$	"Habo study"	Sweden	$\begin{aligned} & 1985-2013 \\ & (>22.23) \end{aligned}$	100	$\begin{aligned} & 33-42 \\ & (<42) \end{aligned}$	White predominant	20.00	General population	635	All-cause mortality data from the register of patients treated in hospitals and causes of mortality were also available.	Smoking: 4. not current smokers; 0 . current smokers. Alcohol drinking: $2 . \leq 109 \mathrm{~g}$ spirits/w; 0.>109 g spirits/w. PA: 2. high level; 0. low-tomoderate level. Diet (a weighted score consisting of consumption of vegetables, fine white bread, coarse fiber-rich bread, and visible fat, 4-item questionnaire): 3. 5-7 points; 0. 0-4 points.	8
Liu-2014 ${ }^{115}$	Kailuan Study	China	$\begin{aligned} & 2006-2010 \\ & (4.02) \end{aligned}$	79.75	$\begin{aligned} & 18-98 \\ & (51.46) \end{aligned}$	Asian predominant	>6.91	general population	95429	All-cause mortality was ascertained by discharge lists from local hospitals and death certificates from state vital statistics offices and active follow-up.	Smoking: 1. never smokers; 0 . ever smokers; PA: 1 . MVPA $\geq 80 \mathrm{~min} / \mathrm{w} ; 0$. MVPA $<80 \mathrm{~min} / \mathrm{w}$. BMI: $1 .<25 \mathrm{~kg} / \mathrm{m}^{2} ; 0 . \geq 25 \mathrm{~kg} / \mathrm{m}^{2}$. Diet (salt intake): 1. low salt intake; 0 . intermediate and high salt intake. SBP/DBP: 1. <120 and 80 mmHg	8

Author-year	Cohort	Country	Follow-up duration (mean or median)	$\begin{aligned} & \hline \text { Men } \\ & (\%) \end{aligned}$	$\begin{aligned} & \hline \begin{array}{l} \text { Age } \\ \text { (mean) } \end{array} \end{aligned}$	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	$\begin{aligned} & \text { NOS } \\ & \text { score } \end{aligned}$
											yesterday consume no fruits and vegetables. Diet (grains): 1. consume yesterday; 0 . no yesterday. Diet (processed meat): 1. didn't consume yesterday; 0.5 . consume meat yesterday; 0 . consume sausage products yesterday. Diet (salt): 1 . never adding salt; 0.5 . sometimes adding salt; 0 . always adding salt.	
Maron- 2018^{60}	Clinical Outcome s Utilizing Revascul arization and Aggressi ve Drug Evaluati on trial	Canada \& US	NA (6.80)	85.54	$\begin{aligned} & \text { NA } \\ & (62.11) \end{aligned}$	White 86.58	NA	Patients with stable ischemic heart disease	2102	All-cause mortality was determined using the National Death Index and the Department of Veterans Affairs Corporate Data Warehouse.	Smoking: 1 . not smoking; 0 . smoking. PA: 1 . MPA $\geq 150 \mathrm{~min} / \mathrm{w} ; 0$. MPA $<150 \mathrm{~min} / \mathrm{w}$. BMI: $1 .<25 \mathrm{~kg} / \mathrm{m}^{2}$ or $\geq 10 \%$ weight loss if baseline BMI $>27.5 \mathrm{~kg} / \mathrm{m}^{2} ; 0$. $\geq 25 \mathrm{~kg} / \mathrm{m}^{2}$ or $<10 \%$ weight loss if baseline BMI $>27.5 \mathrm{~kg} / \mathrm{m}^{2}$. Diet (American Heart Association Step 2 diet, questionnaire): $1 .<30 \%$ of calories from fat, $<7 \%$ of calories from saturated fat, and $<200 \mathrm{mg} /$ day of dietary cholesterol; $0 . \geq 30 \%$ of calories from fat, $\geq 7 \%$ of calories from saturated fat, or $\geq 200 \mathrm{mg} /$ day of dietary cholesterol. SBP: $1 .<130 \mathrm{mmHg} ; 0 . \geq 130$	9

Author-year	Cohort	Country	Follow-up duration (mean or median)	$\begin{aligned} & \text { Men } \\ & (\%) \end{aligned}$	$\begin{aligned} & \hline \begin{array}{l} \text { Age } \\ \text { (mean) } \end{array} \end{aligned}$	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	$\begin{aligned} & \hline \text { NOS } \\ & \text { score } \end{aligned}$
Martin- Diener- 2014^{117}	MONItor ing trends and determin ants of CArdiov ascular diseaseSwitzerla nd \& National Research Program me1A	Switzerla nd	$\begin{aligned} & 1977-2008 \\ & (21.35) \end{aligned}$	48.60	$\begin{aligned} & 16-90 \\ & (45.10) \end{aligned}$	White predominant	<65.77	general population	16721	All-cause mortality was identified through the Swiss National Cohort.	mmHg; LDLC: $1 .<85 \mathrm{mg} / \mathrm{dl} ; 0 . \geq 85 \mathrm{mg} / \mathrm{dl}$. Smoking: 1. not current smokers; 0 . current smokers. Alcohol drinking (M/F): 1. <40/20 $\mathrm{g} / \mathrm{d} ; 0 .>40 / 20 \mathrm{~g} / \mathrm{d}$. PA: 1. frequent walking or cycling, other frequent activities such as gardening, or regular VPA; 0. light PA, mostly sedentary. Diet (fruit intake on the previous day): 1. yes; 0 . no.	8
Martínez- González- 2013^{118}	"Spanish national prospecti ve cohort study"	Spain	$\begin{aligned} & 2000-2011 \\ & (9.00) \end{aligned}$	43.98	$\begin{aligned} & \text { 60-NA } \\ & (71.77) \end{aligned}$	White 100	<13.16	general population	3465	All-cause mortality was identified through the National Death Index.	6-point score: Smoking: 1. never smokers or quitting >15 years; 0 . current smokers or quitting ≤ 15 years. PA: 1. very or moderately physically active compared with their age-peers; 0 . less active or inactive compared with their age-peers. Sedentary behavior: $1 .<8 \mathrm{~h} / \mathrm{d} ; 0 . \geq 8$ h / d. Diet (score consisting of fruits,	8

Author-year	Cohort	Country	Follow-up duration (mean or median)	$\begin{aligned} & \text { Men } \\ & (\%) \end{aligned}$	Age (mean)	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	$\begin{aligned} & \text { NOS } \\ & \text { score } \end{aligned}$
											vegetables, whole grain, vegetable fats, fish, red or processed meat, and animal fats consumption, FFQ); 1. \geq median (4 points); $0 .<$ median. Sleeping: 1. 7-8 h/d; $0 .<7 \mathrm{~h} / \mathrm{d}$ or >8 h/d. Social interaction with friends: 1. daily; 0 . less than daily. 3-point score: smoking, PA and diet.	
McCullough- 2011^{119}	Cancer Preventi on Study-II Nutrition Cohort	US	$\begin{aligned} & 1992-2006 \\ & (13.07) \end{aligned}$	45.31	$\begin{aligned} & 50-74 \\ & (62.67) \end{aligned}$	White 97.99	92.66	current non- smokers	111966	All-cause mortality was identified through National Death Index.	Alcohol drinking (M/F): 2. 0.1-2/1 drinks/d; 1. none; $0 .>2 / 1$ drinks/d. PA: $2 . \geq 17.5$ MET-h/w; 1. 8.75-17.4 MET-h/w; 0. <8.75 MET-h/w. BMI: 2. $18.5-24.9 \mathrm{~kg} / \mathrm{m}^{2}$ at both time points; $1.25-30 \mathrm{~kg} / \mathrm{m}^{2}$ at both time points, or $18.5-24.9 \mathrm{~kg} / \mathrm{m}^{2}$ at one time point and $\geq 25 \mathrm{~kg} / \mathrm{m}^{2}$ at another time point; $0 .>30 \mathrm{~kg} / \mathrm{m}^{2}$ at both time points, or $>30 \mathrm{~kg} / \mathrm{m}^{2}$ at one time point and $25-30 \mathrm{~kg} / \mathrm{m}^{2}$ at another time point. Diet (ACS, FFQ): 2. 7-9 points; 1.36 points; 0. 0-2 points.	7
Meng1999^{120}	"Hawaii Departm ent of Health survey"	US	$\begin{aligned} & 1975-1994 \\ & (15.61) \end{aligned}$	49.50	$\begin{aligned} & \text { 18-NA } \\ & (44.81) \end{aligned}$	White 31.06 Asian 62.61	NA	general population	31700	All-cause mortality was identified through the mortality files from the Department of	Smoking: 4. never smokers; 3 . former smokers; 2. current smokers $\leq 1 \mathrm{ppd}$; 1. current smokers 1.1-1.5 ppd; 0 . current smokers $>1.5 \mathrm{ppd}$. Alcohol drinking (M/F): 1. 1-7/3	8

Author-year	Cohort	Country	Follow-up duration (mean or median)	$\begin{aligned} & \text { Men } \\ & (\%) \end{aligned}$	$\begin{aligned} & \text { Age } \\ & \text { (mean) } \end{aligned}$	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	$\begin{aligned} & \text { NOS } \\ & \text { score } \end{aligned}$
										Health.	drinks/w; 0 . none or $>7 / 3$ drinks/w. BMI: 3. 19.6-24.8 kg/m²; $2 .<19.6$ $\mathrm{kg} / \mathrm{m}^{2}$ or $24.9-29.2 \mathrm{~kg} / \mathrm{m}^{2} ; 1.29 .3-$ $32.5 \mathrm{~kg} / \mathrm{m}^{2} ; 0 . \geq 32.6 \mathrm{~kg} / \mathrm{m}^{2}$. Diet (fat intake from animal products): $1 .>385 \mathrm{~g} / \mathrm{w} ; 0 . \leq 385 \mathrm{~g} / \mathrm{w}$. Diet (fruit and vegetable consumption): $1 .>1350 \mathrm{~g} / \mathrm{w} ; 0$. $\leq 1350 \mathrm{~g} / \mathrm{w}$.	
Minlikeeva2019^{121}	Ovarian Cancer Associati on Consorti um	Internati onal	$\begin{aligned} & 1992-2015 \\ & (2.99-7.97) \end{aligned}$	0	NA (NA)	Mixed	NA	Patients with invasive epithelial ovarian cancer	7022	All-cause mortality was actively followed up.	Smoking: 1 . never smokers; 0.5 . former smokers; 0 . current smokers. PA: 1. physically active; 0 . physically inactive; BMI: $1.18 .5-24.9 \mathrm{~kg} / \mathrm{m}^{2} ; 0 . \geq 25$ $\mathrm{kg} / \mathrm{m}^{2}$.	6
Mok-2018 ${ }^{122}$	Atherosc lerosis Risk in Commun ities Study	US	$\begin{aligned} & 1987-2013 \\ & (3.30) \end{aligned}$	43.80	$\begin{aligned} & 45-64 \\ & (54.50) \end{aligned}$	White 75.60 Black 24.40	70.50	myocardial infarction patients	1277	All-cause mortality was identified through active surveillance.	Smoking: 2. never smokers and former smokers quitting >1 year; 1 . former smokers quitting ≤ 1 year; 0 . current smokers. MVPA: 2. $\geq 150 \mathrm{~min} / \mathrm{w}$; 1. 1-150 $\mathrm{min} / \mathrm{w}$; 0 . none. BMI: $2 .<25 \mathrm{~kg} / \mathrm{m}^{2} ; 1.25-29.9$ $\mathrm{kg} / \mathrm{m}^{2} ; 0 . \geq 30 \mathrm{~kg} / \mathrm{m}^{2}$. Diet (AHA, FFQ): 2. 4-5 components; 1. 2-3 components; 0 . $0-1$ component. SBP/DBP: 2. $<120 / 80 \mathrm{mmHg}$ (untreated); $1 .<120 / 80 \mathrm{mmHg}$	6

Author-year	Cohort	Country	Follow-up duration (mean or median)	$\begin{aligned} & \hline \text { Men } \\ & (\%) \end{aligned}$	$\begin{aligned} & \text { Age } \\ & \text { (mean) } \end{aligned}$	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	$\begin{aligned} & \text { NOS } \\ & \text { score } \end{aligned}$
											(treated) and 120-139/80-89 mmHg; $0 . \geq 140 / 90 \mathrm{mmHg}$. FBG: $2 .<5.6 \mathrm{mmol} / 1$ (untreated); 1. $<5.6 \mathrm{mmol} / 1$ (treated) or 5.6-6.9 $\mathrm{mmol} / 1 ; 0 . \geq 7.0 \mathrm{mmol} / \mathrm{l}$. TC: $2 .<5.2 \mathrm{mmol} / \mathrm{l}$ (untreated); 1. $<5.2 \mathrm{mmol} / 1$ (treated) or 5.2-6.1 $\mathrm{mmol} / 1 ; 0 . \geq 6.2 \mathrm{mmol} / \mathrm{l}$.	
Muntner- 2013^{123}	Reasons for Geograp hic and Racial Differen ces in Stroke	US	$\begin{aligned} & 2003-2009 \\ & (4.00) \end{aligned}$	45.10	$\begin{aligned} & \text { 45-NA } \\ & (72.20) \end{aligned}$	White 57.70 Black 42.30	80.80	chronic kidney disease patients	3093	All-cause mortality was identified through contact with proxies.	Smoking: 1. never smokers or quitting $>12 \mathrm{~m} ; 0$. quitting $\leq 12 \mathrm{~m}$ or current smokers; PA: $1 . \geq 4$ times/w; $0 .<4$ times/w. BMI: $1 .<25 \mathrm{~kg} / \mathrm{m}^{2} ; 0 . \geq 25 \mathrm{~kg} / \mathrm{m}^{2}$. Diet (AHA, FFQ): 1. 4-5 components; 0. 0-3 components. SBP/DBP: 1. <120 and 80 mmHg (not treated); $0 .<120$ and 80 mmHg (treated) or ≥ 120 or 80 mmHg . FPG: $1 .<100 \mathrm{mg} / \mathrm{dl}$ (not treated); 0 . $<100 \mathrm{mg} / \mathrm{dl}$ (treated) $\geq 100 \mathrm{mg} / \mathrm{d}$. TC: $1 .<200 \mathrm{mg} / \mathrm{dl}$ (not treated); 0 . $\geq 200 \mathrm{mg} / \mathrm{dl}$ (treated).	6
$\begin{aligned} & \text { Nechuta- } \\ & 2010^{124} \end{aligned}$	Shanghai Women's Health Study	China	$\begin{aligned} & 1996-2007 \\ & (9.10) \end{aligned}$	0	$\begin{aligned} & 40-70 \\ & (<56.95 \\ &) \end{aligned}$	Asian 100	42.10	non- smokers and non- drinker	63791	All-cause mortality was identified through Shanghai cancer and vital statistics registries.	9-point score: Exposed to spouse smoke: 1. never; 0 . ever. PA: 2. ≥ 2.0 MET h/d; 1. 0.1-1.99 MET h/d; 0. none. BMI: 2. $18.5-24.99 \mathrm{~kg} / \mathrm{m}^{2} ; 1.25 .0-$	8

Author-year	Cohort	Country	Follow-up duration (mean or median)	$\begin{aligned} & \text { Men } \\ & (\%) \end{aligned}$	$\begin{aligned} & \hline \begin{array}{l} \text { Age } \\ \text { (mean) } \end{array} \end{aligned}$	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	$\begin{aligned} & \text { NOS } \\ & \text { score } \end{aligned}$
											$29.99 \mathrm{~kg} / \mathrm{m}^{2} ; 0 . \geq 30.0 \mathrm{~kg} / \mathrm{m}^{2}$ or <18.5 $\mathrm{kg} / \mathrm{m}^{2}$. WHR: 2. tertile one (<0.786); 1 . tertile $2 ; 0$. tertile three (≥ 0.830). Diet (fruit and vegetable intake, FFQ): 2. tertile three ($\geq 626.5 \mathrm{~g} / \mathrm{d}$); 1 . tertile 2; 0 . tertile one ($<404.3 \mathrm{~g} / \mathrm{d}$). 5-point score: Exposed to spouse smoke: 1. never; 0 . ever. PA: $1 . \geq 2.0 \mathrm{MET} \mathrm{h} / \mathrm{d} ; 0 .<2.0 \mathrm{MET}$ h/d. BMI: 1. $18.5-24.99 \mathrm{~kg} / \mathrm{m}^{2} ; 0 . \geq 25.0$ $\mathrm{kg} / \mathrm{m}^{2}$ or $<18.5 \mathrm{~kg} / \mathrm{m}^{2}$. WHR: 1. tertile one (<0.786); 0 . tertile two and three (≥ 0.786). Diet (fruit and vegetable intake, FFQ): 1. tertile three ($\geq 626.5 \mathrm{~g} / \mathrm{d}$); 0 . tertile two and one ($<626.5 \mathrm{~g} / \mathrm{d}$).	
Nöthlings- 2010^{125}	Europea n Prospecti ve Investiga tion into Cancer and Nutrition	Germany	$\begin{aligned} & \text { 1994-NA } \\ & (7.70) \end{aligned}$	56.05	$\begin{aligned} & 35-65 \\ & (57.00) \end{aligned}$	White predominant	53.35	diabetic patients	1263	All-cause mortality was ascertained by inquiries to municipality registries, regional health departments, physicians, or hospitals.	Smoking: 1 . never smokers; 0 . ever smokers. Alcohol drinking (M/F): 1. 5-25/15 $\mathrm{g} / \mathrm{d} ; 0 .<5$ or $>25 / 15 \mathrm{~g} / \mathrm{d}$. PA: $1 . \geq 3.5 \mathrm{~h} / \mathrm{w} ; 0 .<3.5 \mathrm{~h} / \mathrm{w}$. BMI: $1 .<30 \mathrm{~kg} / \mathrm{m}^{2} ; 0 . \geq 30 \mathrm{~kg} / \mathrm{m}^{2}$. Diet (z-scores of consumption of fruits and vegetables, whole-grain bread, and red meat, FFQ):	8

Author-year	Cohort	Country	Follow-up duration (mean or median)	$\begin{aligned} & \text { Men } \\ & (\%) \end{aligned}$	Age (mean)	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	NOS score
Pelser- 2014^{128}	America n Associati on of Retired Persons	US	$\begin{aligned} & 1996-2008 \\ & (5.00) \end{aligned}$	67.58	$\begin{aligned} & 50-71 \\ & (69.32) \end{aligned}$	White 97.95 Black 1.10	92.65	colon cancer patients	5727	All-cause mortality was identified through the National Death Index and Social Security Administration Death Master File.	quintiles; 0 . low three quintiles. Smoking: 1. never smokers or quitting ≥ 1 year; 0 . quitting <1 year or current smokers. Alcohol drinking (M/F): $1 . \leq 2 / 1$ drinks/d; $0 .>2 / 1$ drinks/d. PA: $1 . \geq 3$ episodes/w; $0 .<3$ episodes/w. BMI: 1. $18.5-24.9 \mathrm{~kg} / \mathrm{m}^{2} ; 0 . \geq 25.0$ $\mathrm{kg} / \mathrm{m}^{2}$. Diet (HEI, FFQ): 1. top two quintiles; 0 . lower three quintiles.	7
Petersen- 2015^{129}	Diet, Cancer and Health cohort study	Denmark	$\begin{aligned} & 1993-2010 \\ & (14.00) \end{aligned}$	47.10	$\begin{aligned} & 50-64 \\ & (55.53) \end{aligned}$	White predominant	11.00	general population	51521	All-cause mortality was identified through the Central Population Registry and Register of Causes of Death.	5-point score: Smoking: 1. never smokers or quitting ≥ 15 years; 0 . current smokers or quitting <15 years. Alcohol drinking (M/F): $1 . \leq 14 / 7$ units/w; $0 .>14 / 7$ units/w. PA: $1 . \geq 30 \mathrm{~min} / \mathrm{d} ; 0 .<30 \mathrm{~min} / \mathrm{d}$. WC: $1 . \leq 102 \mathrm{~cm} ; 0 .>102 \mathrm{~cm}$. Diet (score consisting of fat, red and processed meat, fish, whole grain, and fruit and vegetable consumption, FFQ): 1. 2-5 components; 0. 0-1 component. 4-point score: smoking, drinking, PA, and diet.	8
Prinelli-	"two	Italy	1991-2012	49.59	40-74	White	<46.51	general	974	All-cause mortality	Smoking: 1. never smokers; 0 . ever	9

Author-year	Cohort	Country	Follow-up duration (mean or median)	$\begin{aligned} & \hline \text { Men } \\ & (\%) \end{aligned}$	Age (mean)	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	$\begin{aligned} & \text { NOS } \\ & \text { score } \end{aligned}$
$2015{ }^{130}$	towns in Northern Italy cohort"		(17.40)		(55.75)	predominant		population		was identified through Regional Registries of the Informative System of the Local Health Authority of Milan 1.	smokers. PA: 1 . engage ≥ 1 sport/d; 0 . engage no sport. Diet (MDS, FFQ): 1. lowest tertile; 0 . highest tertile.	
Ricardo- 2013^{131}	National Health and Nutrition Examina tion Surveys III	US	$\begin{aligned} & 1988-2006 \\ & (13.00) \end{aligned}$	40.00	$\begin{aligned} & 18->80 \\ & (59.00) \end{aligned}$	White 81.00 Black 12.00	61.88	chronic kidney disease patients	2145	All-cause mortality was identified through National Health and Nutrition Examination Surveys III Linked Mortality Publicuse File.	Smoking: 9. never smoking; 7. Past smoking; 0 . current smoking. PA: 3. moderate LTPA ≥ 5 times/w or vigorous $\mathrm{PA} \geq 3$ times/w or the combination; 2. moderate LTPA <5 times/w or vigorous PA <3 times/w or the combination; 0 . no LTPA. BMI: $2 . \geq 30 \mathrm{~kg} / \mathrm{m}^{2} ; 0.22-29.9$ $\mathrm{kg} / \mathrm{m}^{2}$; $-4.18 .5-21.9 \mathrm{~kg} / \mathrm{m}^{2}$. Diet (HEI, 24h recall): 1. 73.1-100 points; 0. <73.1 points.	8
Ricardo- 2015^{132}	Chronic Renal Insuffici ency Cohort	US	$\begin{aligned} & 2003-2011 \\ & (4.00) \end{aligned}$	52.00	$\begin{aligned} & 21-74 \\ & (58.00) \end{aligned}$	White 47.17 Black 43.95	84.50	population with eGFR 20-70 $\mathrm{ml} / \mathrm{min} / 1.7$ $3 \mathrm{~m}^{2}$	3006	All-cause mortality was identified through reports by next of kin, death certificates, hospital records, and linkage with the Social Security Death Master File.	Smoking: 1. not current smokers; 0 . current smokers. PA: 1. MPA $\geq 150 \mathrm{~min} / \mathrm{w}$, or VPA ≥ 75 $\mathrm{min} / \mathrm{w}$, or MVPA $\geq 150 \mathrm{~min} / \mathrm{w}$; 0 . MPA $<150 \mathrm{~min} / \mathrm{w}$, or VPA <75 $\mathrm{min} / \mathrm{w}$, or MVPA $<150 \mathrm{~min} / \mathrm{w}$. BMI: 1. $20.0-24.9 \mathrm{~kg} / \mathrm{m}^{2} ; 0 .<20.0$ $\mathrm{kg} / \mathrm{m}^{2}$ or $\geq 25 \mathrm{~kg} / \mathrm{m}^{2}$. Diet (AHA, FFQ): 1. 4-5 points; 0. 03 points.	6

Author-year	Cohort	Country	Follow-up duration (mean or median)	$\begin{aligned} & \hline \text { Men } \\ & (\%) \end{aligned}$	Age (mean)	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	$\begin{aligned} & \text { NOS } \\ & \text { score } \end{aligned}$
Rizzuto- 2016^{133}	Kungsho Imen cohort	Sweden	$\begin{aligned} & 1987-2013 \\ & \text { (NA) } \end{aligned}$	25.31	$\begin{aligned} & 75-\mathrm{NA} \\ & (81.27) \end{aligned}$	White predominant	47.19	general population	1229	All-cause mortality was identified through death certificates.	Smoking: 1. not current smokers; 0 . current smokers. PA: 1. any leisure activities; 0 . no leisure activities. Social network: 1. rich or moderate; 0 . poor.	9
Romaguera- 2015^{3}	Europea n Prospecti ve Investiga tion into Cancer and Nutrition	Europe	$\begin{aligned} & 1992-2009 \\ & (4.20) \end{aligned}$	45.47	$\begin{aligned} & \text { NA } \\ & (64.60) \end{aligned}$	White predominant	<57.90	colorectal cancer patients	3292	All-cause mortality was identified through health insurance records, cancer and pathology registries, and active follow-up through study subjects and their next-of-kin	Alcohol drinking (M/F): $1 . \leq 20 / 10$ $\mathrm{g} / \mathrm{d} ; 0.5 .20 .1-30 / 10.1-20 \mathrm{~g} / \mathrm{d} ;$ $0 .>30 / 20 \mathrm{~g} / \mathrm{d}$. PA: 1. Manual/heavy manual job, or $>2 \mathrm{~h} / \mathrm{w}$ of VPA, or $>30 \mathrm{~min} / \mathrm{d}$ of cycling/sports; 0.5 . cycling/sports $15-30 \mathrm{~min} /$ d; 0 . cycling/sports <15 min/d. BMI: 1. $18.5-24.9 \mathrm{~kg} / \mathrm{m}^{2} ; 0.5$. $25-$ $29.9 \mathrm{~kg} / \mathrm{m}^{2} ; 0 .<18.5 \mathrm{~kg} / \mathrm{m}^{2}$ or ≥ 30 $\mathrm{kg} / \mathrm{m}^{2}$. Diet (energy-dense, dietary questionnaires): $1 . \leq 125 \mathrm{kcal} / 100 \mathrm{~g} / \mathrm{d}$; $0.5 .126-175 \mathrm{kcal} / 100 \mathrm{~g} / \mathrm{d} ; 0 .>175$ $\mathrm{kcal} / 100 \mathrm{~g} / \mathrm{d}$. Diet (SSB, dietary questionnaires): 1 . zero $\mathrm{g} / \mathrm{d} ; 0.5 . \leq 250 \mathrm{~g} / \mathrm{d} ; 0 .>250 \mathrm{~g} / \mathrm{d}$. Diet (fruit and vegetables, dietary questionnaires): $1 . \geq 400 \mathrm{~g} / \mathrm{d}$; 0.5 . $200-399 \mathrm{~g} / \mathrm{d} ; 0 .<200 \mathrm{~g} / \mathrm{d}$. Diet (DF, dietary questionnaires): 1 . $\geq 25 \mathrm{~g} / \mathrm{d} ; 0.5 .12 .5-24.9 \mathrm{~g} / \mathrm{d} ; 0 .<12.5$	6

Author-year	Cohort	Country	Follow-up duration (mean or median)	$\begin{aligned} & \text { Men } \\ & (\%) \end{aligned}$	Age (mean)	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	$\begin{aligned} & \text { NOS } \\ & \text { score } \end{aligned}$
											g/d. Diet (red and processed meat, dietary questionnaires): $1 .<500 \mathrm{~g} / \mathrm{w}$ and <3 $\mathrm{g} / \mathrm{d} ; 0.5 .<500 \mathrm{~g} / \mathrm{w}$ and $3-49 \mathrm{~g} / \mathrm{d} ; 0$. $\geq 500 \mathrm{~g} / \mathrm{w}$ or $\geq 50 \mathrm{~g} / \mathrm{d}$. Cumulative breastfeeding: $1 . \geq 6 \mathrm{~m}$; 0.5 . 0.1-5.9 m; 0. zero m.	
Sovic- 2012^{134}	Croatian Health Survey	Croatia	$\begin{aligned} & \text { 2003-NA } \\ & (4.79) \end{aligned}$	32.24	$\begin{aligned} & \text { 18-NA } \\ & (54.78) \end{aligned}$	White predominant	NA	general population	7490	The methods for all-cause mortality identification were not reported.	Smoking: 1. never smokers or smoking <5 years in the previous 10 years; 0 . current smokers or smoking ≥ 5 years in the previous 10 years. Alcohol drinking: $1 .<6$ shooters, glasses or bottles at one occasion or <once /m, or not drinking spirits, vine or beer every day combined with received advice to drink less from health care professional or member of the family; $0 . \geq 6$ shooters, glasses or bottles at one occasion at least once a month, or drinking spirits, vine or beer every day combined with received advice to drink less from health care professional or member of the family. PA (not working, working at home, travelling to work by public transport or working within a $15-\mathrm{min}$ walking	7

Author-year	Cohort	Country	Follow-up duration (mean or median)	$\begin{aligned} & \text { Men } \\ & (\%) \end{aligned}$	$\begin{aligned} & \hline \begin{array}{l} \text { Age } \\ \text { (mean) } \end{array} \end{aligned}$	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	$\begin{aligned} & \text { NOS } \\ & \text { score } \end{aligned}$
											or cycling distance, easy or very easy job (sedentary or walking), physical activity for at least 30 min less than twice a week during leisure time, advice received from a health care professional within the past year to increase physical activity): 1 . met <3 items; 0 . met ≥ 3 items. Diet (consuming animal fat, consuming milk and milk products with more than 3.2% fat, not eating fruits every day, consuming cured meat every day or almost every day, adding salt prior to meal tasting): 1 . met $0-1$ items; 0 . met ≥ 2 items.	
$\begin{aligned} & \text { Tamakoshi- } \\ & 2009^{\dagger,} 135 \end{aligned}$	Japan Collabor ative Cohort Study	Japan	$\begin{aligned} & 1988-2003 \\ & (12.5) \end{aligned}$	44.41	$\begin{aligned} & 40-79 \\ & \text { (NA) } \end{aligned}$	Asian predominant	63.88	general population	62106	All-cause mortality was identified though death certificates.	Smoking: 1. not current smokers; 0 . current smokers. Alcohol drinking: $1 . \leq 22.8 \mathrm{~g}$ alcohol/occasion; $0 .>22.8 \mathrm{~g}$ alcohol/occasion. PA (walking): $1 . \geq 1 \mathrm{~h} / \mathrm{d} ; 0 .<1 \mathrm{~h} / \mathrm{d}$. BMI: 1. $18.5-24.9 \mathrm{~kg} / \mathrm{m}^{2} ; 0 .<18.5$ $\mathrm{kg} / \mathrm{m}^{2}$ or $\geq 25.0 \mathrm{~kg} / \mathrm{m}^{2}$. Diet (green leafy vegetables): 1 . \geq once /d; 0 . <once /d. Sleeping: 1. 6.5-7.4 h/d; $0 .<6.5 \mathrm{~h} / \mathrm{d}$ or $>7.4 \mathrm{~h} / \mathrm{d}$.	8
Tamakoshi-	Japan	Japan	1988-2006	44.41	40-79	Asian	63.88	general	62106	All-cause mortality	Smoking: 1. not current smokers; 0 .	6

Author-year	Cohort	Country	Follow-up duration (mean or median)	$\begin{aligned} & \text { Men } \\ & (\%) \end{aligned}$	Age (mean)	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	NOS score
$2010^{\dagger, 136}$	Collabor ative Cohort Study		(14.5)		(NA)	predominant		population		was identified though death certificates.	current smokers. Alcohol drinking: $1 . \leq 23 \mathrm{~g}$ alcohol/occasion; $0 .>23 \mathrm{~g}$ alcohol/occasion. PA (walking): $1 . \geq 1 \mathrm{~h} / \mathrm{d} ; 0 .<1 \mathrm{~h} / \mathrm{d}$. BMI: 1. $18.5-24.9 \mathrm{~kg} / \mathrm{m}^{2} ; 0 .<18.5$ $\mathrm{kg} / \mathrm{m}^{2}$ or $\geq 25.0 \mathrm{~kg} / \mathrm{m}^{2}$. Diet (green leafy vegetables): 1 . \geq once /d; 0 . <once /d. Sleeping: 1. 6.5-7.4 h/d; $0 .<6.5 \mathrm{~h} / \mathrm{d}$ or $>7.4 \mathrm{~h} / \mathrm{d}$.	
Tamosiunas- 2014^{137}	MONItor ing trends and determin ants of CArdiov ascular diseaseLithuani a \& Health, Alcohol and Psychoso cial Factors	Lithuania	$\begin{aligned} & 1983-2011 \\ & (13.30) \end{aligned}$	46.13	$\begin{aligned} & 45-64 \\ & (55.18) \end{aligned}$	White predominant	63.66	general population	5635	All-cause mortality was identified through the regional mortality register.	Smoking: 1 . never smokers; 0 . ever smokers. PA (LTPA): $1 . \geq 7 \mathrm{~h} / \mathrm{w} ; 0 .<7 \mathrm{~h} / \mathrm{w}$. BMI: $1 .<25.0 \mathrm{~kg} / \mathrm{m}^{2} ; 0 . \geq 25.0 \mathrm{~kg} / \mathrm{m}^{2}$. SBP/DBP: $1 .<120$ and 80 mmHg (untreated); $0 . \geq 120$ or 80 mmHg , or <120 and 80 mmHg (treated). FBG: $1 .<5.55 \mathrm{mmol} / \mathrm{L} ; 0 . \geq 5.55$ $\mathrm{mmol} / \mathrm{L}$. TC: $1 .<5.2 \mathrm{mmol} / \mathrm{L} ; 0 . \geq 5.2$ $\mathrm{mmol} / \mathrm{L}$.	8

Author-year	Cohort	Country	Follow-up duration (mean or median)	$\begin{aligned} & \text { Men } \\ & (\%) \end{aligned}$	$\begin{aligned} & \hline \text { Age } \\ & \text { (mean) } \end{aligned}$	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	$\begin{aligned} & \text { NOS } \\ & \text { score } \end{aligned}$
Thomson-2014^{138}	in	US	$\begin{aligned} & \text { 1993-NA } \\ & (12.60) \end{aligned}$	0	$\begin{aligned} & 50-79 \\ & (63.23) \end{aligned}$	White 88.57 Black 7.01 Asian 2.97	>79.57	postmenop ausal women	65838	All-cause mortality was identified through self- reported data and verified through Medical records and the National Death Index.	Alcohol drinking: 2. nondrinker; 1. 0.1-1 drink/d; $0 .>1$ drink/d PA: 2. >17.5 MET-h/w; 1. 8.75-17.5 MET-h/w; 0. <8.75 MET-h/w. BMI: $2 .<25 \mathrm{~kg} / \mathrm{m}^{2}$ at age 18 years and baseline; $1.25-29.9 \mathrm{~kg} / \mathrm{m}^{2}$ at age 18 years and baseline; $0 . \geq 30 \mathrm{~kg} / \mathrm{m}^{2}$ at age 18 years and baseline. Diet (score consisting of fruit and vegetable intake, total carotenoids level, whole grains\%, and red and processed meat, FFQ): 2. 7-9 components; 1. 3-6 components; 0 . 0-2 components.	8
	Eastern											
	Europe											
	Study											
	Women's Health Initiative Observat ional Study											
Towfighi-	National	US	1988-2000	50.00	NA	White 81.10	61.88		388	All-cause mortality	Smoking: 1. not current smokers; 0 .	8
$2012{ }^{\dagger}, 139$	Health		(NA)		(67.00)	Black 11.10		patients		was identified	current smokers.	
	and									through the	Alcohol drinking (M/F): 1. 0.1-2/1	
	Nutrition									National Death	drinks/d; 0 . none or $>2 / 1$ drinks/d.	
	Examina									Index death	PA: 1. >12 times/m; $0 . \leq 12$ times $/ \mathrm{m}$.	
	tion									certificate records.	BMI: 1. 18.5-29.9 kg/m²; $0 .<18.5$ or	
	Surveys										$\geq 30 \mathrm{~kg} / \mathrm{m}^{2}$.	
	III										Diet (fruit and vegetables): $1 . \geq 5$ servings/d; $0 .<5$ servings/d.	
Tsubono-	"Wakuya	Japan	1988-1992	39.76	40-NA	Asian	NA	general	3312	All-cause mortality	Smoking: 1. never smokers; 0 . ever	7

Author-year	Cohort	Country	Follow-up duration (mean or median)	$\begin{aligned} & \text { Men } \\ & (\%) \end{aligned}$	Age (mean)	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	$\begin{aligned} & \text { NOS } \\ & \text { score } \end{aligned}$
$1993{ }^{140}$	Town survey"		(NA)		(NA)	predominant		population		was identified through residents' registration of the town.	smokers. Alcohol drinking: 1. never drinker; 0 . ever drinker. PA: $1 . \geq 1 \mathrm{~h} / \mathrm{w} ; 0 .<1 \mathrm{~h} / \mathrm{w}$. BMI: $1 . \geq 21.2 \mathrm{~kg} / \mathrm{m}^{2} ; 0 .<21.2 \mathrm{~kg} / \mathrm{m}^{2}$. Sleeping: $1.7-8 \mathrm{~h} /$ night; $0 .<7$ $\mathrm{h} /$ night or $>8 \mathrm{~h} /$ night.	
$\begin{aligned} & \text { Tsubono- } \\ & 2004^{141} \end{aligned}$	"Miya Prefectur e cohort"	Japan	$\begin{aligned} & 1990-2001 \\ & (10.36) \end{aligned}$	49.37	$\begin{aligned} & 40-64 \\ & (50.76) \end{aligned}$	Asian predominant	62.61	general population who were not past smokers and past drinkers	28333	All-cause mortality was identified through residential Registration Record and death certificates.	Smoking: 1 . never smokers; 0 . current smokers. Alcohol drinking: $1 .<22.8 \mathrm{~g} / \mathrm{d}$; 0 . $\geq 22.8 \mathrm{~g} / \mathrm{d}$. PA: $1 . \geq 1 \mathrm{~h} / \mathrm{d} ; 0 .<1 \mathrm{~h} / \mathrm{d}$. BMI: $1.18 .5-29.9 \mathrm{~kg} / \mathrm{m}^{2} ; 0 .<18.5$ $\mathrm{kg} / \mathrm{m}^{2}$ or $\geq 30.0 \mathrm{~kg} / \mathrm{m}^{2}$.	8
Van Blarigan- 2018^{142}	The CALGB 89803/Al liance Trial	US	$\begin{aligned} & 1999-2009 \\ & (7.00) \end{aligned}$	56.65	$\begin{aligned} & 21-85 \\ & (59.60) \end{aligned}$	White 89.01	NA	stage III colon cancer patients	992	The methods of identifying allcause mortality were not reported.	8-point score: Alcohol drinking (M/F): 2. 0.1-2/1 drinks/d; 1. non-drinker; $0 .>2 / 1$ drinks/d. PA: 2. ≥ 17.5 MET-h/w; 1. 8.75-17.49 MET-h/w; 0. <8.75 MET-h/w. BMI: 2. $18.5-24.9 \mathrm{~kg} / \mathrm{m}^{2} ; 1.25-29.9$ $\mathrm{kg} / \mathrm{m}^{2} ; 0 . \geq 30 \mathrm{~kg} / \mathrm{m}^{2}$. Diet (score including fruits and vegetables, whole grains, red and processed meat, fish and SSB, FFQ): 2. 11-15 points; 1. 6-10 points; 0. 0-5 points. 6-point score: PA, BMI, and diet.	8

Author-year	Cohort	Country	Follow-up duration (mean or median)	$\begin{aligned} & \hline \text { Men } \\ & (\%) \end{aligned}$	Age (mean)	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	NOS score
$\begin{aligned} & \text { Van Dam- } \\ & 2008^{\dagger, 67} \end{aligned}$	Nurses’ Health Study	US	$\begin{aligned} & 1980-2004 \\ & (22.62) \end{aligned}$	0	$\begin{aligned} & 34-59 \\ & \text { (NA) } \end{aligned}$	White predominant	Predominant	general population	77782	All-cause mortality was identified through reports by next of kin, the postal authorities, death certificates, medical records, and National Death Index.	Smoking: 1. never smokers; 0 . ever smokers. Alcohol drinking: 1. 1-14.9 g/d; 0 . $<1 \mathrm{~g} / \mathrm{d}$ or $\geq 15.0 \mathrm{~g} / \mathrm{d}$. PA (MVPA): $1 . \geq 30 \mathrm{~min} / \mathrm{d} ; 0 .<30$ $\mathrm{min} / \mathrm{d}$. BMI: $1.18 .5-25.0 \mathrm{~kg} / \mathrm{m}^{2} ; 0 .>25.0$ $\mathrm{kg} / \mathrm{m}^{2}$. Diet (AHEI, FFQ): 1. upper two fifths; 0 . lower three fifths.	6
Van Den Brandt- 2011^{143}	Netherla nds Cohort Study	Netherla nds	$\begin{aligned} & \text { 1986-1996 } \\ & \text { (NA) } \end{aligned}$	48.22	$\begin{aligned} & 55-69 \\ & (>59.46 \\ &) \end{aligned}$	White predominant	45.16-55.62	general population	120852	All-cause mortality was identified through the Dutch Central Bureau of Genealogy.	Smoking: 1. never smokers or quitting ≥ 10 years; 0 . current smokers or quitting <10 years; PA: $1 . \geq 30 \mathrm{~min} / \mathrm{d} ; 0 .<30 \mathrm{~min} / \mathrm{d}$. BMI: $1.18 .5-24.9 \mathrm{~kg} / \mathrm{m}^{2} ; 0 .<18.5$ $\mathrm{kg} / \mathrm{m}^{2}$ or $\geq 25.0 \mathrm{~kg} / \mathrm{m}^{2}$. Diet (aMDS, FFQ): 1. 5-9 points; 0 . 0-4 points.	8
van Lee- 2016^{144}	Rotterda m Study	Netherla nds	$\begin{aligned} & 1990-2011 \\ & (20.00) \end{aligned}$	40.47	$\begin{aligned} & 55-\mathrm{NA} \\ & (65.43) \end{aligned}$	White predominant	69.73	general population	3593	All-cause mortality was identified through municipal population registries.	Alcohol drinking (M/F): $10 . \leq 20 / 10$ $\mathrm{g} / \mathrm{d} ; 0 .>20 / 10 \mathrm{~g} / \mathrm{d}$. PA: $10 . \geq 150 \mathrm{~min} / \mathrm{w} ; 0 .<150 \mathrm{~min} / \mathrm{w}$. Diet (vegetable consumption, FFQ): 10. $150-200 \mathrm{~g} / \mathrm{d} ; 0 .<150 \mathrm{~g} / \mathrm{d}$ or >200 g/d. Diet (fruit consumption, FFQ): 10. $\geq 200 \mathrm{~g} / \mathrm{d} ; 0 .<200 \mathrm{~g} / \mathrm{d}$. Diet (DF, FFQ): 10. 30-40 g/d; 0 . $<30 \mathrm{~g} / \mathrm{d}$ or $>40 \mathrm{~g} / \mathrm{d}$.	9

Author-year	Cohort	Country	Follow-up duration (mean or median)	$\begin{aligned} & \hline \text { Men } \\ & (\%) \end{aligned}$	$\begin{aligned} & \hline \begin{array}{l} \text { Age } \\ \text { (mean) } \end{array} \end{aligned}$	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	$\begin{aligned} & \text { NOS } \\ & \text { score } \end{aligned}$
											consumption, dietary questionnaires): $0.5 . \geq 400 \mathrm{~g} / \mathrm{d}$; $0.25 .200-399 \mathrm{~g} / \mathrm{d} 0 .<200 \mathrm{~g} / \mathrm{d}$. Diet (DF, dietary questionnaires): $0.5 . \geq 25 \mathrm{~g} / \mathrm{d} ; 0.25 .12 .5-24.9 \mathrm{~g} / \mathrm{d} ; 0$. $<12.5 \mathrm{~g} / \mathrm{d}$. Diet (red and processed meat consumption, dietary questionnaires): $1 .<500 \mathrm{~g} / \mathrm{w}$ and <3 $\mathrm{g} / \mathrm{d} ; 0.5 .<500 \mathrm{~g} / \mathrm{w}$ and $3-49 \mathrm{~g} / \mathrm{d} ; 0$. $\geq 500 \mathrm{~g} / \mathrm{w}$ or $\geq 50 \mathrm{~g} / \mathrm{d}$. Cumulative breastfeeding: $1 . \geq 6 \mathrm{~m}$; $0.5 .0 .1-5.9 \mathrm{~m} ; 0$. zero m .	
Warren Andersen- 2018^{146}	the Southern Commun ity Cohort Study	US	$\begin{aligned} & 2002-2013 \\ & (8.00) \end{aligned}$	40.51	$\begin{aligned} & 40-79 \\ & (50.65) \end{aligned}$	White 31.10 Black 68.90	70.90	general population	74732	All-cause mortality was identified through National Death Index.	Alcohol drinking (M/F): $1 . \leq 2 / 1$ drink/d; $0 .>2 / 1$ drink/d. PA: 1. MPA $\geq 150 \mathrm{~min} / \mathrm{w}$, or VPA ≥ 75 $\mathrm{min} / \mathrm{w}$, or MVPA $\geq 150 \mathrm{~min} / \mathrm{w} ; 0$. MPA $<150 \mathrm{~min} / \mathrm{w}$, and VPA <75 $\mathrm{min} / \mathrm{w}$, and MVPA $<150 \mathrm{~min} / \mathrm{w}$. Sedentary behavior: 1. limit; 0 . not limit. Diet (HEI, FFQ): 1. higher; 0 . lower.	8
Wingard- 1982^{147}	Human Populati on Laborato r	US	$\begin{aligned} & 1965-1974 \\ & \text { (NA) } \end{aligned}$	47.17	$\begin{aligned} & 30-69 \\ & (<53.28 \\ &) \end{aligned}$	NA	NA	general population	4725	All-cause mortality was identified through California Death Registry.	Smoking: 1 . never smokers; 0 . ever smokers. Alcohol drinking: $1 .<45$ drinks/m; $0 .>45$ drinks $/ \mathrm{m}$. PA: 1. active; 0 . inactive. Quetelet index (weight in	7

Author-year	Cohort	Country	Follow-up duration (mean or median)	$\begin{aligned} & \hline \text { Men } \\ & (\%) \end{aligned}$	Age (mean)	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	NOS score
											pounds/(height in inches) ${ }^{2}$) based on Metropolitan Life Insurance reports: 1. 9.9% underweight- 29.9% overweight; 0 . extreme underweight or overweight. Sleeping: 1. 7-8 h/night; $0 .<7$ $\mathrm{h} /$ night or $>8 \mathrm{~h} /$ night.	
$\begin{aligned} & \text { Yang-2012 †, } \\ & 148 \end{aligned}$	National Health and Nutrition Examina tion Surveys III	US	$\begin{aligned} & 1988-2006 \\ & (14.50) \end{aligned}$	48.20	$\begin{aligned} & 20-\mathrm{NA} \\ & (45.00) \end{aligned}$	White 81.10 Black 11.10	61.88	general population	13312	All-cause mortality was identified through the National Death Index.	Smoking: 1. not current smokers; 0 . current smokers. PA: 1. 3-5.9 METs for ≥ 5 times/w or ≥ 6 METs for ≥ 3 times/w; 0. 3-5.9 METs for <5 times/w and <6 METs for <3 times/w. BMI: $1 .<25 \mathrm{~kg} / \mathrm{m}^{2} ; 0 . \geq 25 \mathrm{~kg} / \mathrm{m}^{2}$. Diet (AHA, FFQ): $1 . \geq 2$ points; $0 .<2$ points. TC: $1 .<200 \mathrm{mg} / \mathrm{dl}$ (untreated); 0 . $<200 \mathrm{mg} / \mathrm{dl}$ (treated) or $\geq 200 \mathrm{mg} / \mathrm{dl}$. SBP/DBP: 1. <120 and 80 mmHg (untreated); $0 .<120 / 80 \mathrm{mmHg}$ (treated) or $\geq 120 / 80 \mathrm{mmHg}$. HbA1c: $1 .<5.7 \% ; 0 . \geq 5.7 \%$.	8
Yates2008^{149}	Physicia ns' Health Study	US	$\begin{aligned} & 1981-2006 \\ & (14.25) \end{aligned}$	100	$\begin{aligned} & 66-84 \\ & (72.00) \end{aligned}$	White predominant	Predominant	general population	2357	All-cause mortality was confirmed by medical records, autopsy reports and death certificates.	Smoking: 1 . not current smokers; 0 . current smokers. PA: 1. not lack of exercise; 0 . lack of exercise. BMI: 1. not obese; 0 . obesity. Hypertension: 1. no; 0. yes.	6

Author-year	Cohort	Country	Follow-up duration (mean or median)	$\begin{aligned} & \hline \text { Men } \\ & (\%) \end{aligned}$	Age (mean)	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	NOS score
Yun-2012 ${ }^{150}$	Korean Cancer Preventi on Study	South Korea	$\begin{aligned} & 1994-2009 \\ & (10.30) \end{aligned}$	53.14	$\begin{aligned} & 30-84 \\ & (47.17) \end{aligned}$	Asian predominant	NA	general population	59941	All-cause mortality was identified through National Statistical Office.	DM: 1. no; 0 . yes. 5-point score: Smoking: 1. never smokers or quitting ≥ 10 years; 0 . current smokers or quitting <10 years. Alcohol drinking (M/F): $1 . \leq 2 / 1$ drinks/d; $0 .>2 / 1$ drinks/d. PA: $1 . \geq 3$ times $/ \mathrm{w} ; 0 .<3$ times/w. BMI: $1 . \leq 25 \mathrm{~kg} / \mathrm{m}^{2} ; 0 .>25 \mathrm{~kg} / \mathrm{m}^{2}$. Diet (fruit and vegetable consumption): 1 . highest quartile; 0 . lower three quartiles. 4-point score: smoking, drinking, PA and BMI.	7
Zhang- 2017^{151}	Shanghai Men's Health Study	China	$\begin{aligned} & 2002-2013 \\ & (9.29) \end{aligned}$	100	$\begin{aligned} & 40-74 \\ & (55.34) \end{aligned}$	Asian predominant	59.90	general population	59747	All-cause mortality was identified through Shanghai Vital Statistics.	Smoking: 1. never smokers or quitting ≥ 10 years; 0 . current smokers or quitting <10 years. Alcohol drinking: $1 . \leq 14$ drinks/w; 0. >14 drinks/w. PA: 1 . MVPA $\geq 150 \mathrm{~min} / \mathrm{w}$ (2 METh / d); 0 . MVPA $<150 \mathrm{~min} / \mathrm{w}$. Diet (Chinese Food Pagoda score consisting of grains, vegetables, fruits, dairy, beans, meat and poultry, fish and shrimp, eggs, fats and oils, and salt, FFQ): 1. top three quintiles; 0 . lower two quintiles.	8
Zhou-	The	China	1983-2005	49.57	35-59	Asian 100	NA	general	938	All-cause mortality	Smoking: 1. never smokers; 0 . ever	8

Author-year	Cohort	Country	Follow-up duration (mean or median)	$\begin{aligned} & \text { Men } \\ & (\%) \end{aligned}$	Age (mean)	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	NOS score
$2018{ }^{152}$	People's		(20.30)		(45.80)			population		was identified	smokers.	
	Republic									through death	PA: 1. took part in physical exercises	
	of China-									certificates or	regularly; 0 . not took part in physical	
	USA									hospital records	exercises regularly.	
	Collabor									obtained from next-	BMI: $1 .<24 \mathrm{~kg} / \mathrm{m}^{2} ; 0 . \geq 24 \mathrm{~kg} / \mathrm{m}^{2}$.	
	ative									of-kin or local death	Diet (AHA, 24-h dietary recall): 1. 4-	
	Study of									registration	5 components; 0. 0-3 components.	
	Cardiova									department.	SBP/DBP: $1 .<120 / 80 \mathrm{mmHg}$	
	scular										(untreated); $0 .<120 / 80 \mathrm{mmHg}$	
	and										(treated) or $\geq 120 / 80 \mathrm{mmHg}$.	
	Cardiopu										FBG: $1 .<100 \mathrm{mg} / \mathrm{dl}$ (untreated); 0 .	
	lmonary										$<100 \mathrm{mg} / \mathrm{dl}$ (treated) or $\geq 100 \mathrm{mg} / \mathrm{dl}$.	
	Epidemi										TC: $1 .<200 \mathrm{mg} / \mathrm{dl}$ (untreated); 0 .	
	ology										$<200 \mathrm{mg} / \mathrm{dl}$ (treated) or $\geq 200 \mathrm{mg} / \mathrm{dl}$.	

*The percentage of ethnic groups may not sum to 100% since some participants belonged to the other ethnic groups or did not report the information.
${ }^{\dagger}$ These studies were only used in stratified analyses.
\$ This study also used a 5-point score, which integrated alcohol, fruit, fish, milk, vegetable, and bean intake as a diet item.
${ }^{8}$ The author provided updated analyses for all-cause mortality, cardiovascular disease mortality and cancer mortality, so the information and data were based on the updated analyses.
\%E, percentage of total energy intake; ACS, American Cancer Society; AHA, American Heart Association; AHEI, Alternative Healthy Eating Index; aMDS, alternative Mediterranean diet score; BMI, body mass index; CHD, coronary heart disease; CRF, cardiorespiratory fitness; CVD, cardiovascular disease; DASH, Dietary Approaches to Stop Hypertension; DBP, diastolic blood pressure; DF, dietary fiber; eGFR, estimated glomerular filtration rate; FA, fatty acid; FBG, fasting blood glucose; FFQ, food frequency questionnaire; FPG, fasting plasm glucose; FSG, fasting serum glucose; HbA1c, glycosylated hemoglobin; HDL-c, high-density lipoprotein cholesterol; HEI, Healthy Eating Index; HF, heart failure; ICD, International Classification of Diseases; LPA, light physical activity; LTPA, leisure-time physical activity; M/F, for male and female respectively; MDS, Mediterranean diet score; MET, metabolic equivalent of task; mMDS, modified Mediterranean diet score; MPA, moderate physical activity; MVPA, moderate to vigorous physical activity; NA, not available; NOS, Newcastle-Ottawa Scale; PA, physical activity; SBP, systolic blood pressure; SFA, saturated fatty acid; SSB, sugar-sweetened beverage; TC, total cholesterol; UK, the United Kingdom; US, the United States; VPA, vigorous physical activity; WC, waist circumference; WHR, waist-to-hip ratio.

Table A4. Characteristics of studies related to cardiovascular disease mortality

Author-year	Cohort	Country	Follow-up duration (mean or median)	$\begin{aligned} & \text { Men } \\ & (\%) \end{aligned}$	$\begin{aligned} & \hline \text { Age } \\ & \text { (mean) } \end{aligned}$	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	$\begin{aligned} & \text { NOS } \\ & \text { score } \end{aligned}$
$\begin{aligned} & \hline \text { Artero-2012 } \\ & \dagger, 76 \end{aligned}$	Aerobics Center Longitud inal Study	US	$\begin{aligned} & 1987-2003 \\ & (11.60) \end{aligned}$	75.67	$\begin{aligned} & \hline 20-88 \\ & (46.00) \end{aligned}$	White >99.00	>70.00	general population	11993	CVD mortality (ICD-9, 390-449.9; ICD-10, I00-I78) was identified through the National Death Index and death certificates.	Smoking: 1. never smokers; 0 . ever smokers; PA: 1. ≥ 500 MET-min/w; 0. <500 MET-min/w. BMI: 1. $18.5-24.9 \mathrm{~kg} / \mathrm{m}^{2} ; 0 . \geq 25$ $\mathrm{kg} / \mathrm{m}^{2}$. Diet (AHA, 3-d dietary record): 1. 34 components; 0. 0-2 components. SBP/DBP: 1. <120 and 80 mmHg (not treated); $0 .<120$ and 80 mmHg (treated) or ≥ 120 or 80 mmHg . FPG: $1 .<100 \mathrm{mg} / \mathrm{dl}$ (not treated); 0 . $<100 \mathrm{mg} / \mathrm{dl}$ (treated) $\geq 100 \mathrm{mg} / \mathrm{d}$. TC: $1 .<200 \mathrm{mg} / \mathrm{dl}$ (not treated); 0 . $\geq 200 \mathrm{mg} / \mathrm{dl}$ (treated).	9
$\begin{aligned} & \text { Berard- } \\ & 2017^{78} \end{aligned}$	MONItor ing trends and determin ants of CArdiov ascular diseaseFrance	France	$\begin{aligned} & 1994-2013 \\ & (18.00) \end{aligned}$	73.00	$\begin{aligned} & 35-64 \\ & (51.47) \end{aligned}$	White predominant	32.30	general population	1311	Death were identified through National Identification Register of Private Individuals, and main and associated causes of death were provided by the French National Institute of Health Research. Death from a CVD cause included hypertension, IHD, conduction disorders, cardiac	Smoking: 6. never smokers; 5 . former smokers; 3. current smokers smoking $1-8 \mathrm{cig} / \mathrm{d}$; 2 . current smokers smoking $9-15$ cig/d; 1 . current smokers smoking 17-20 cig/d; 0 . current smokers smoking $23-60 \mathrm{cig} / \mathrm{d}$. Alcohol drinking (M/F): 2. 1-2/1 drink/d; 1. teetotalers; $-1 . \geq 3 / 2$ drinks/d. PA: 2. intense PA $\geq 20 \mathrm{~min} /$ episode and ≥ 3 episodes/w; 1.5. intense PA $\geq 20 \mathrm{~min} /$ episode and $1-2$ episodes $/ \mathrm{w}$; 1. light PA almost every week; 0 . no regular PA. BMI: $2 .<25.0 \mathrm{~kg} / \mathrm{m}^{2} ; 1.5 .25 .0-29.9$ $\mathrm{kg} / \mathrm{m}^{2} ; 1.30 .0-39.9 \mathrm{~kg} / \mathrm{m}^{2} ; 0 . \geq 40.0$	9

Author-year	Cohort	Country	Follow-up duration (mean or median)	Men (\%)	Age (mean)	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	$\begin{aligned} & \text { NOS } \\ & \text { score } \end{aligned}$
										dysrhythmias, HF, atherosclerotic cerebrovascular disease, atherosclerosis, and sudden death.	$\mathrm{kg} / \mathrm{m}^{2}$. Diet (score consisting of sugar, FA, DF, fruits, vegetables, fish and sodium consumption, 3-day food record): 4. most adherent quartile; 3 . second adherent quartile; 2 . third adherent quartile; 1 . least adherent quartile. SBP/DBP: 3. <120 and 80 mmHg ; 2.5. 120-129 or $80-84 \mathrm{mmHg}$; 2. $130-139$ or $85-89 \mathrm{mmHg}$; 1.5. 140159 or $90-99 \mathrm{mmHg} ; 1.160-179$ or $100-109 \mathrm{mmHg} ; 0 . \geq 180$ or ≥ 110 mmHg . FBG: 3. 2.75-4.92 mmol/l; 2. 4.93$5.38 \mathrm{mmol} / \mathrm{l} ; 1.5 .39-5.88 \mathrm{mmol} / \mathrm{l} ; 0$. $5.89-18.82 \mathrm{mmol} / \mathrm{l}$. HDL-c: 2. 1.86-3.50 mmol/l; 0. 1.58$1.85 \mathrm{mmol} / \mathrm{l}$; $-1.1 .33-1.57 \mathrm{mmol} / \mathrm{l}$; 2. $0.35-1.32 \mathrm{mmol} / \mathrm{l}$.	
$\begin{aligned} & \text { Bonaccio- } \\ & 2019^{79} \end{aligned}$	Moli- sani Study	Italy	$\begin{aligned} & 2005-2015 \\ & (8.20) \end{aligned}$	47.7	$\begin{aligned} & 35-\mathrm{NA} \\ & (55.00) \end{aligned}$	White predominant	>12.90	General population	22839	CVD mortality (ICD-9, 390-459) was assessed by the Italian mortality registry, and validated by Italian death certificates.	Smoking: 1. abstention from smoking; 0 . current smoking. PA: 1. LTPA $\geq 30 \mathrm{~min} / \mathrm{d} ; 0$. LTPA <30 $\mathrm{min} / \mathrm{d}$. WHR (M/F): $1 .<0.90 / 0.85 ; 0$. $\geq 0.90 / 0.85$. Diet (MDS, FFQ): 1. above the sexspecific medians; 0 . not above the sex-specific medians.	9

Author-year	Cohort	Country	Follow-up duration (mean or median)	$\begin{aligned} & \text { Men } \\ & (\%) \end{aligned}$	Age (mean)	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	$\begin{aligned} & \text { NOS } \\ & \text { score } \end{aligned}$
$\begin{aligned} & \hline \text { Breslow- } \\ & 1980^{47} \end{aligned}$	"Alamed a cohort"	US	$\begin{aligned} & \text { 1965-1974 } \\ & (8.61) \end{aligned}$	44.22	NA (<53.28)	White 84.00	NA	general population	4864	CVD mortality (ICD-8, 140-209) was identified through active follow-up.	Smoking: 1. never smokers; 0. ever smokers. Alcohol drinking: $1 . \leq 4$ drinks/episode; $0 .>4$ drinks/episode. PA: 1. often or sometimes engage in active sports, swim or take long walks, or often garden or do physical exercises; 0 . not often or sometimes engage in active sports, swim or take long walks, or often garden or do physical exercises. BMI (M/F): 1. between 20% -95\%/10\%-90\% desirable weight for height; $0 .<20 \% / 10 \%$ or $>95 \% / 90 \%$ desirable weight for height. Diet (eating breakfast almost every day): 1. yes; 0. no. Diet (eating between meals once in a while, rarely or never): 1 . yes; 0 . no. Sleep: $1.7-8 \mathrm{~h} / \mathrm{d} ; 0 .<7$ or $>8 \mathrm{~h} / \mathrm{d}$.	5
$\underset{\substack{\text { C, } 84}}{\text { Cerhan-2004 }}$	Iowa Women' s Health Study	US	$\begin{aligned} & 1986-1998 \\ & (11.39) \end{aligned}$	0	$\begin{aligned} & 55-69 \\ & (61.70) \end{aligned}$	White predominant	86.10	postmenop ausal women	29838	CVD mortality were determined by linkage to Iowa death certificates.	Alcohol drinking: $1 .<1$ drink/d (14 $\mathrm{g} / \mathrm{d}) ; 0 . \geq 1$ drinks/d. PA: 1. exercise moderately daily and vigorously $\geq 1 \mathrm{~h} / \mathrm{w}$; 0 . exercise moderately <once /d or vigorously < $1 \mathrm{~h} / \mathrm{w}$. BMI: $1 . \leq 25.0 \mathrm{~kg} / \mathrm{m}^{2} ; 0 .>25.0 \mathrm{~kg} / \mathrm{m}^{2}$. Weight gain since age 18: $1 .<11$ pounds; $0 . \geq 11$ pounds. Diet (vegetable and fruit intake excluding pulses and starchy, FFQ): $1 . \geq 5$ servings/d; $0 .<5$ servings/d. Diet (complex carbohydrates intake, FFQ): $1 . \geq 400 \mathrm{~g} / \mathrm{d} ; 0 .<400 \mathrm{~g} / \mathrm{d}$.	7

Author-year	Cohort	Country	Follow-up duration (mean or median)	$\begin{aligned} & \text { Men } \\ & (\%) \end{aligned}$	$\begin{aligned} & \hline \text { Age } \\ & \text { (mean) } \end{aligned}$	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	$\begin{aligned} & \text { NOS } \\ & \text { score } \end{aligned}$
Diaz-2014 ${ }^{88}$	Reasons for Geograp hic and Racial Differen ces in Stroke	US	$\begin{aligned} & \text { 2003-NA } \\ & (4.50) \end{aligned}$	49.20	$\begin{aligned} & \hline \text { 45-NA } \\ & \text { (67.60) } \end{aligned}$	$\begin{aligned} & \text { White } 39.50 \\ & \text { Black } 60.50 \end{aligned}$	80.80	apparent treatmentresistant hypertensi on patients	2043	CVD events (fatal CVD events including death within 28 days of a definite or probable MI or sudden death or a confirmed stroke, and nonfatal CVD events including non-fatal definite or probable MI or stroke) were identified through interviews of participants, proxy, or next-of-kin.	Smoking: 1. not current smokers; 0 . current smokers. Alcohol drinking (M/F): 1. 1-14/7 drinks/w; $0 .<1$ drink/w or >14/7 drinks/w. PA: $1 . \geq 4 \mathrm{~d} / \mathrm{w} ; 0 .<4 \mathrm{~d} / \mathrm{w}$. WC (M/F): $1 . \leq 102 / 88 \mathrm{~cm}$; $0 .>102 / 88 \mathrm{~cm}$. Diet (DASH score, FFQ): 1. highest quartile (≥ 27 points); 0 . lower three quartiles (<27 points). Diet (sodium and potassium intake, FFQ): 1 . lowest quartile ($\leq 0.71 \mathrm{~g} / \mathrm{d}$); 0 . higher three quartiles ($>0.71 \mathrm{~g} / \mathrm{d}$).	7
Dong-2012 ${ }^{90}$	Northern Manhatta n Study	US	$\begin{aligned} & 1993-2011 \\ & (11.00) \end{aligned}$	36.30	$\begin{aligned} & 40-107 \\ & (69.00) \end{aligned}$	White 75.00 Black 24.99	43.20	general population	2981	CVD mortality including stroke, MI, HF, cardiac arrhythmia was identified through death certificates, medical records of hospitalizations, family interviews and primary care physicians.	Smoking: 1. never smokers or quitting >1 year; 0 . quitting ≤ 1 year or current smokers; PA: 1. MPA $\geq 150 \mathrm{~min} / \mathrm{w}$ or VPA $\geq 75 \mathrm{~min} / \mathrm{w}$ or MVPA $\geq 150 \mathrm{~min} / \mathrm{w} ; 0$. MPA $<150 \mathrm{~min} / \mathrm{w}$ and VPA <75 $\mathrm{min} / \mathrm{w}$ and MVPA < $150 \mathrm{~min} / \mathrm{w}$. BMI: $1 .<25 \mathrm{~kg} / \mathrm{m}^{2} ; 0 . \geq 25 \mathrm{~kg} / \mathrm{m}^{2}$. Diet (AHA, FFQ): 1. 4-5 components; 0. 0-3 components. SBP/DBP: 1. <120 and 80 mmHg (not treated); $0 .<120$ and 80 mmHg (treated) or ≥ 120 or 80 mmHg . FPG: $1 .<100 \mathrm{mg} / \mathrm{dl}$ (not treated); 0 . $<100 \mathrm{mg} / \mathrm{dl}$ (treated) $\geq 100 \mathrm{mg} / \mathrm{d}$. TC: $1 .<200 \mathrm{mg} / \mathrm{dl}$ (not treated); 0 . or $<200 \mathrm{mg} / \mathrm{dl}$ (treated) $\geq 200 \mathrm{mg} / \mathrm{dl}$.	98

Author-year	Cohort	Country	Follow-up duration (mean or median)	$\begin{aligned} & \text { Men } \\ & (\%) \end{aligned}$	$\begin{aligned} & \hline \text { Age } \\ & \text { (mean) } \end{aligned}$	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	$\begin{aligned} & \hline \text { NOS } \\ & \text { score } \end{aligned}$
$\begin{aligned} & \hline \text { Eguchi-2012 } \\ & \dagger \uparrow, 154 \end{aligned}$	$\begin{aligned} & \hline \text { Japan } \\ & \text { Collabor } \\ & \text { ative } \\ & \text { Cohort } \\ & \text { Study } \end{aligned}$	Japan	$\begin{aligned} & \text { 1988-2006 } \\ & (16.50) \end{aligned}$	43.59	$\begin{aligned} & \hline 40-79 \\ & (55.88) \end{aligned}$	Asian predominant	63.88	general population	43010	Cause and date of death were determined by reviewing death certificates. ICD-10 for stroke, CHD, and total CVD were I60-I69, I20-I25, and I01-I99.	Smoking: 1. not current smokers; 0 . current smokers. Alcohol drinking: $1 .<46 \mathrm{~g} /$ d; $0 . \geq 46$ g/d. PA: 1 . sports $\geq 5 \mathrm{~h} / \mathrm{w}$ or walking >1 h / d; 0 . sports $<5 \mathrm{~h} / \mathrm{w}$ and walking ≤ 1 h/d. BMI: $1.21-25 \mathrm{~kg} / \mathrm{m}^{2} ; 0 .<21 \mathrm{~kg} / \mathrm{m}^{2}$ or $>25 \mathrm{~kg} / \mathrm{m}^{2}$. Diet (fruit): $1 . \geq 1$ servings/d; $0 .<1$ serving/d. Diet (fish): $1 . \geq 1$ servings/d; $0 .<1$ serving/d. Diet (milk): 1. almost daily; 0 . <once /d. Sleeping: $1.5 .5-7.5 \mathrm{~h} / \mathrm{d} ; 0 .<5.5 \mathrm{~h} / \mathrm{d}$ or $>7.5 \mathrm{~h} / \mathrm{d}$.	8
	Japan Collabor ative Cohort Study	Japan	$\begin{aligned} & 1988-2009 \\ & (19.30) \end{aligned}$	43.61	$\begin{aligned} & 40-79 \\ & (55.24) \end{aligned}$	Asian predominant	63.88	general population	42946	Cause and date of death were determined by reviewing death certificates. ICD-10 for stroke, CHD, and total CVD were I60-I69, I20-I25, and I01-I99.	Smoking: 1. not current smokers; 0 . current smokers. Alcohol drinking: $1 .<46 \mathrm{~g} /$ d; $0 . \geq 46$ g/d. PA: 1 . sports $\geq 5 \mathrm{~h} / \mathrm{w}$ or walking >0.5 h / d; 0 . sports $<5 \mathrm{~h} / \mathrm{w}$ and walking $\leq 0.5 \mathrm{~h} / \mathrm{d}$. Diet (fruit): $1 . \geq 1$ servings/d; $0 .<1$ serving/d. Diet (fish): $1 . \geq 1$ servings/d; $0 .<1$ serving/d. Diet (milk): 1. almost daily; 0 . <once /d. Sleeping: 1. 5.5-7.4 h/d; $0 .<5.5 \mathrm{~h} / \mathrm{d}$ or $>7.4 \mathrm{~h} / \mathrm{d}$.	9
$\begin{aligned} & \text { Eguchi- } \\ & 2017^{51} \end{aligned}$	Japan Collabor	Japan	$\begin{aligned} & 1988-2009 \\ & (19.30) \end{aligned}$	43.24	$\begin{aligned} & 40-79 \\ & (55.52) \end{aligned}$	Asian predominant	63.88	general population	42647	Cause and date of death were	Smoking: 1. not current smokers; 0 . current smokers.	8

Author-year	Cohort	Country	Follow-up duration (mean or median)	$\begin{aligned} & \text { Men } \\ & (\%) \end{aligned}$	$\begin{aligned} & \hline \text { Age } \\ & \text { (mean) } \end{aligned}$	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	$\begin{aligned} & \text { NOS } \\ & \text { score } \end{aligned}$
	ative Cohort Study									determined by reviewing death certificates. ICD-10 for stroke, CHD, and total CVD were I60-I69, I20-I25, and I01-I99.	Alcohol drinking: $1 .<2$ gou/d (46g ethanol/d); $0 . \geq 2$ gou/d. PA: $1 . \geq 0.5 \mathrm{~h} / \mathrm{d}$ or $\geq 5 \mathrm{~h} / \mathrm{w} ; 0 .<0.5$ h / d and $<5 \mathrm{~h} / \mathrm{w}$. BMI: $1.21-25 \mathrm{~kg} / \mathrm{m}^{2} ; 0 .<21 \mathrm{~kg} / \mathrm{m}^{2}$ or $>25 \mathrm{~kg} / \mathrm{m}^{2}$. Diet (fruit): $1 . \geq 1$ servings/d; $0 .<1$ serving/d. Diet (fish): $1 . \geq 1$ servings/d; $0 .<1$ serving/d. Diet (milk): 1. almost daily; 0. <once /d. Sleeping: 1. 5.5-7.4 h/d; $0 .<5.5 \mathrm{~h} / \mathrm{d}$ or $>7.4 \mathrm{~h} / \mathrm{d}$.	
$\begin{aligned} & \text { Eriksen- } \\ & 2015^{156} \end{aligned}$	Southall and Brent Revisited	UK	$\begin{aligned} & 1988-2011 \\ & (21.00) \end{aligned}$	84.56	$\begin{aligned} & 40-69 \\ & (52.09) \end{aligned}$	White 52.00 Asian 48.00	NA	general population	2096	CVD mortality including fatal CHD (deaths caused from angina, MI or its sequelae or atherosclerotic heart disease. ICD9, 410-415; ICD10, I200-I259) and fatal stroke (deaths caused from following ICD-9 codes 430-439 or ICD-10 codes I600I698), were identified through health and lifestyle questionnaires, medical record review, attendance	Smoking: 1. not current smokers; 0 . current smokers. Alcohol drinking (M/F): 1. 1-21/14 units/w; 0 . <1 or >21/14 units/w. PA: 1 . MPA $\geq 5 \mathrm{~h} / \mathrm{w}$ or VPA ≥ 2.5 $\mathrm{h} / \mathrm{w} ; 0$. MPA $<5 \mathrm{~h} / \mathrm{w}$ and VPA <2.5 h/w. Diet (vegetables and fruits, simple dietary questionnaire): $1 . \geq 5.5$ times/w; 0. < 5.5 times/w.	7

Author-year	Cohort	Country	Follow-up duration (mean or median)	$\begin{aligned} & \text { Men } \\ & (\%) \end{aligned}$	Age (mean)	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	$\begin{aligned} & \text { NOS } \\ & \text { score } \end{aligned}$
Fazel-Tabar Malekshah2016^{93}	Golestan Cohort	Iran	$\begin{aligned} & 2004-2015 \\ & (8.08) \end{aligned}$	42.75	$\begin{aligned} & 40-75 \\ & (51.54) \end{aligned}$	White > 75.59	<31.10	general population	40708	at a study clinic visit, and the Office of National Statistics. CVD mortality (ICD-10, not reported) was identified through active follow-up, and confirmed by verbal autopsy and extensive medical documents.	Smoking: 1. never smokers; 0. ever smokers. PA: 1 . MVPA $\geq 30 \mathrm{~min} / \mathrm{d} ; 0$. MVPA <30 min/d. Diet (AHEI, FFQ): 1. highest 40\%; 0 . lower 60\%.	8
Ford-2011 ${ }^{45}$	National Health and Nutrition Examina tion Surveys III	US	$\begin{aligned} & \text { 1988-2006 } \\ & \text { (NA) } \end{aligned}$	46.75	$\begin{aligned} & \text { 17-NA } \\ & \text { (59.00) } \end{aligned}$	White 81.10 Black 11.10	61.88	general population	16958	Major CVD mortality (ICD-10, I00-I78) was identified through the National Death Index.	Smoking: $1 .<100$ cigarettes; $0 . \geq 100$ cigarettes. Alcohol drinking (M/F): 1. 0.159.9/29.9 drinks/m; 0. none or $\geq 60 / 30$ drinks $/ \mathrm{m}$. PA: 1 . VPA ≥ 3 times/w or MPA ≥ 5 times/w; 0. VPA < 3 times/w and MPA <5 times/w. Diet (a single 24-h recall, HEI): 1 . top 40%; 0 . lower 60%.	8
$\begin{aligned} & \text { Ford-2012 } \\ & (1)^{94} \end{aligned}$	National Health and Nutrition Examina tion Surveys 1999	US	$\begin{aligned} & 1999-2006 \\ & (5.80) \end{aligned}$	47.69	$\begin{aligned} & \text { 20-NA } \\ & (45.79) \end{aligned}$	White 72.22	52.90	general population	7622	CVD mortality was identified through the National Death Index.	Smoking: 1. quitting $>12 \mathrm{~m}$ or never smokers; 0 . quitting $\leq 12 \mathrm{~m}$ or current smokers. PA: 1. MVPA $\geq 150 \mathrm{~min} / \mathrm{w} ; 0$. MVPA $<150 \mathrm{~min} / \mathrm{w}$. BMI: $1 .<25 \mathrm{~kg} / \mathrm{m}^{2} ; 0 . \geq 25 \mathrm{~kg} / \mathrm{m}^{2}$. Diet (single $24-\mathrm{h}$ recall, HEI): $1 . \geq 81$ points; $0 .<81$ points. TC: $1 .<200 \mathrm{mg} / \mathrm{dl}$ (untreated); 0 . $<200 \mathrm{mg} / \mathrm{dl}$ (treated) or $\geq 200 \mathrm{mg} / \mathrm{dl}$. SBP/DBP: $1 .<120$ and 80 mmHg	8

Author-year	Cohort	Country	Follow-up duration (mean or median)	$\begin{aligned} & \text { Men } \\ & (\%) \end{aligned}$	Age (mean)	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	$\begin{aligned} & \text { NOS } \\ & \text { score } \end{aligned}$
Ford-2012 (2) ${ }^{\dagger, 95}$	National Health and Nutrition Examina tion Surveys 1999	US	$\begin{aligned} & 1999-2006 \\ & (5.70) \end{aligned}$	50.11	$\begin{aligned} & \text { 20-NA } \\ & (45.60) \end{aligned}$	White 72.64 Black 19.15	52.90	general population	8375	CVD mortality (ICD-10, I00-I78) was identified through the National Death Index.	(untreated); $0 .<120 / 80 \mathrm{mmHg}$ (treated) or $\geq 120 / 80 \mathrm{mmHg}$. HbA1c: $1 .<5.7 \% ; 0 . \geq 5.7 \%$. Smoking: 1. not current smokers; 0 . current smokers. PA: 1 . MVPA $\geq 150 \mathrm{~min} / \mathrm{w} ; 0$. MVPA < $150 \mathrm{~min} / \mathrm{w}$. Diet (HEI, a single 24-h recall): 1. top 40%; 0 . lower 60%.	8
$\begin{aligned} & \text { Foster- } \\ & 2018^{96} \end{aligned}$	UK Biobank	UK	$\begin{aligned} & 2006-2015 \\ & (4.90) \end{aligned}$	45.41	$\begin{aligned} & 40-69 \\ & (55.71) \end{aligned}$	White 94.79	46.10	General population	328594	Deaths were obtained from death certificates held by the NHS Information Centre and the NHS Central Register.	Smoking: 1. not current smokers; 0 . current smokers. Alcohol drinking: 1. not consume (almost) daily; 0. consume (almost) daily. PA: 1. MPA $\geq 150 \mathrm{~min} / \mathrm{w}$ or VPA $\geq 75 \mathrm{~min} / \mathrm{w} ; 0 . \mathrm{MPA}<150 \mathrm{~min} / \mathrm{w}$ and VPA $<75 \mathrm{~min} / \mathrm{w}$. Diet (fruits and vegetables, 24-h dietary recall): $1 . \geq 400 \mathrm{~g} / \mathrm{d} ; 0 .<400$ g/d. Diet (oily fish, 24-h dietary recall): 1 . \geq one portion/w; 0 . <one portion/w. Diet (red meat, 24-h dietary recall): 1. ≤ 3 portions/w; $0 .>3$ portions/w. Diet (processed meat, 24-h dietary recall): $1 . \leq 1$ portions/w; $0 .>1$ portions/w. Television viewing: $1 .<4 \mathrm{~h} / \mathrm{d} ; 0 . \geq 4$ h/d. Sleeping: $1.7-9 \mathrm{~h} / \mathrm{d} ; 0 .<7 \mathrm{~h} / \mathrm{d}$ or >9 h/d.	8

Author-year	Cohort	Country	Follow-up duration (mean or median)	$\begin{aligned} & \text { Men } \\ & (\%) \end{aligned}$	$\begin{aligned} & \hline \text { Age } \\ & \text { (mean) } \end{aligned}$	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	NOS score
$\begin{aligned} & \text { Gopinath- } \\ & 2010^{97} \end{aligned}$	Blue Mountai ns Eye Study	Australia	$\begin{aligned} & 1992-2007 \\ & \text { (NA) } \end{aligned}$	NA	$\begin{aligned} & \text { 49-NA } \\ & \text { (NA) } \end{aligned}$	NA	NA	general population	2283	CVD mortality was assessed using ICD9 and identified through the Australian National Death Index data.	Smoking: 1. not current smokers; 0 . current smokers. Alcohol drinking (M/F): $1 . \leq 21 / 14$ units/w; 0. >21/14 units/w. PA: $1 . \geq 3$ times/w; $0 .<3$ times/w. Diet (fruits and vegetables consumption): $1 . \geq 3$ times/d; $0 .<3$ times/d.	8
$\begin{aligned} & \text { Greenlee- } \\ & 2017^{98} \end{aligned}$	Cardiova scular Health Study	US	$\begin{aligned} & 1989-2011 \\ & (15.00) \end{aligned}$	38.56	$\begin{aligned} & 65-98 \\ & (72.00) \end{aligned}$	White 86.71 Black 11.72	72.91	general population	3491	CVD deaths included atherosclerotic coronary disease, CBVD, other atherosclerotic disease (such as aortic aneurysm), and other vascular disease (such as valvular heart disease or PE), and were identified from National Death Index and interviews with proxy respondents.	ACS: Smoking: 2. never smokers or quitting >1 year; 1 . quitting ≤ 1 year; 0 . current smokers. Alcohol drinking (M/F): 2. nondrinker; $1 .<2 / 1$ unit/d; $0 .>2 / 1$ unit/d. PA: 2. LTPA ≥ 8.75 MET-h/w; 1 . LTPA 0.10-8.74 MET-h/w; 0. zero MET-h/w. BMI: $2 .<25 \mathrm{~kg} / \mathrm{m}^{2}$ at baseline and age $50 ; 1.25-29.9 \mathrm{~kg} / \mathrm{m}^{2}$ at baseline and $<30 \mathrm{~kg} / \mathrm{m}^{2}$ at age 50 , or $25-29.9$ $\mathrm{kg} / \mathrm{m}^{2}$ at age 50 and $<30 \mathrm{~kg} / \mathrm{m}^{2}$ at baseline; $0 . \geq 30 \mathrm{~kg} / \mathrm{m}^{2}$ either baseline, age 50 , or both. Diet (ACS, including vegetables and fruits, red and processed meats, and whole grains consumption, FFQ): 2. ≥ 6 score; $1.3-5$ score; $0 .<3$ score. AHA: Smoking: 2. never smokers or quitting >1 year; 1 . quitting ≤ 1 year; 0 . current smokers. PA: 2. LTPA ≥ 8.75 MET-h/w; 1. LTPA 0.10-8.74 MET-h/w; 0. zero MET-h/w.	8

Author-year	Cohort	Country	Follow-up duration (mean or median)	$\begin{aligned} & \hline \text { Men } \\ & (\%) \end{aligned}$	Age (mean)	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	NOS score
											BMI: $2 .<25 \mathrm{~kg} / \mathrm{m}^{2} ; 1.25-29.9$ $\mathrm{kg} / \mathrm{m}^{2} ; 0 . \geq 30 \mathrm{~kg} / \mathrm{m}^{2}$. Diet (AHA, FFQ): 2. 4-5 components; 1. 2-3 components; 0 . 0-1 components. SBP/DBP: 2. <120 and 80 mmHg (untreated); 1. 120-139 or 80-89 mmHg (untreated) or <120 and 80 mmHg (treated); $0 . \geq 140$ or 90 mmHg . FPG: 2. $<100 \mathrm{mg} / \mathrm{dl}$ (untreated); 1. $100-125 \mathrm{mg} / \mathrm{dl}$ (untreated) or <100 $\mathrm{mg} / \mathrm{dl}$ (treated); $0 . \geq 126 \mathrm{mg} / \mathrm{dl}$. TC: $2 .<200 \mathrm{mg} / \mathrm{dl}$ (untreated); 1. $200-239 \mathrm{mg} / \mathrm{dl}$ (untreated) or <200 $\mathrm{mg} / \mathrm{dl}$ (treated); $0 . \geq 240 \mathrm{mg} / \mathrm{dl}$.	
Hamer2011^{99}	National Diet and Nutrition Survey	UK	$\begin{aligned} & \text { NA-2008 } \\ & (9.20) \end{aligned}$	50.75	$\begin{aligned} & 65-99 \\ & (76.50) \end{aligned}$	White predominant	NA	general population	1062	CVD mortality was identified through National Health Service administrative mortality data.	Smoking: 1. never smokers; 0 . ever smokers. Alcohol drinking (M/F): 1. 1-21/14 units/w; 0 . zero or >21/14 units/w. PA: 1. regular MVPA; 0 . irregular or no MVPA. Diet (daily vitamin C intake): $1 . \geq 50$ mU ; $0 .<50 \mathrm{mU}$.	8
Han-2018 ${ }^{157}$	Predictio n for ASCVD Risk in China project	China	$\begin{aligned} & 1998-2015 \\ & (7.24) \end{aligned}$	40.22	$\begin{aligned} & 20->65 \\ & (51.64) \end{aligned}$	Asian 100	NA	general population	93987	ASCVD mortality was death caused by ASCVD, which was identified through hospital records or death certificates.	7-point score: Smoking: 1. never smokers or former smokers quitting $>12 \mathrm{~m} ; 0$. current smokers or former smokers quitting $\leq 12 \mathrm{~m}$. PA: 1 . MPA $\geq 150 \mathrm{~min} / \mathrm{w}$ or VPA $\geq 75 \mathrm{~min} / \mathrm{w}$ or MVPA $\geq 150 \mathrm{~min} / \mathrm{w} ; 0$. MPA $<150 \mathrm{~min} / \mathrm{w}$ and VPA < 75 $\mathrm{min} / \mathrm{w}$ and MVPA $<150 \mathrm{~min} / \mathrm{w}$. BMI: $1 .<25 \mathrm{~kg} / \mathrm{m}^{2} ; 0 . \geq 25 \mathrm{~kg} / \mathrm{m}^{2}$.	9

Author-year	Cohort	Country	Follow-up duration (mean or median)	$\begin{aligned} & \text { Men } \\ & (\%) \end{aligned}$	Age (mean)	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	$\begin{aligned} & \text { NOS } \\ & \text { score } \end{aligned}$
Hoevenaar-	Monitori	Netherla	1994-2008	45.58	20-65	White	53.44	ner	14639	CVD mortality	Diet (AHA, FFQ): 1. 4-5 components; 0-3 components. SBP/DBP: 1. $<120 / 80 \mathrm{mmHg}$ (untreated); $0 .<120 / 80 \mathrm{mmHg}$ (treated) or $\geq 120 / 80 \mathrm{mmHg}$. FBG: $1 .<100 \mathrm{mg} / \mathrm{dl}$ (untreated); 0. $<100 \mathrm{mg} / \mathrm{dl}$ (treated) or $\geq 100 \mathrm{mg} / \mathrm{dl}$. TC: $1 .<200 \mathrm{mg} / \mathrm{dl}$ (untreated); 0 . $<200 \mathrm{mg} / \mathrm{dl}$ (treated) or $\geq 200 \mathrm{mg} / \mathrm{dl}$. 4-point score: smoking, PA, BMI, and diet. 5-point score:	8
$\begin{aligned} & \text { Blom-2014 } \\ & \dagger, 158 \end{aligned}$	Project on Risk Factors for Chronic Diseases		(12.00)		(42.00)	predominant		population		(ICD-10, I00-I99, G45, and R96) was identified through municipal population registries and "Statistics Netherlands".	Smoking: 1. not current smokers; 0 . current smokers. Alcohol drinking: $1 .<1$ glass/m; 0 . ≥ 1 glass $/ \mathrm{m}$. PA: $1 . \geq 3.5 \mathrm{~h} / \mathrm{w}$ cycling and sports; $0 .<3.5 \mathrm{~h} / \mathrm{w}$ cycling and sports. Diet (MDS, FFQ): 1. 5-8; 0. 0-4. Sleep: $1 . \geq 7 \mathrm{~h} ; 0 .<7 \mathrm{~h}$. 4-point score: without sleep	
$\begin{aligned} & \text { Inoue-Choi- } \\ & 2013^{101} \end{aligned}$	Iowa Women’ s Health Study	US	$\begin{aligned} & 2004-2009 \\ & (5.40) \end{aligned}$	0	$\begin{aligned} & 73-87 \\ & (78.90) \end{aligned}$	White predominant	86.10	cancer patients	2017	CVD mortality was identified through the State Health Registry of Iowa, supplemented with the National Death Index (National Center for Health Statistics).	Alcohol drinking: $1 . \leq 10.0 \mathrm{~g} / \mathrm{d} ; 0.5$. $10.1-20.0 \mathrm{~g} / \mathrm{d} ; 0 .>20.0 \mathrm{~g} / \mathrm{d}$. PA: 1. $\geq 30.0 \mathrm{~min} / \mathrm{d} ; 0.5 .0 .1-29.9$ $\mathrm{min} / \mathrm{d}$; 0 . none. BMI: $1.18 .5-24.9 \mathrm{~kg} / \mathrm{m}^{2} ; 0.525 .0-$ $29.9 \mathrm{~kg} / \mathrm{m}^{2} ; 0 . \geq 30.0 \mathrm{~kg} / \mathrm{m}^{2}$. Diet (SSB, FFQ): 1. zero g/d; 0.5. $<250 \mathrm{~g} / \mathrm{d} ; 0 . \geq 250 \mathrm{~g} / \mathrm{d}$. Diet (fruit and vegetable, FFQ): $1 . \geq 5$ servings/d; 0.5. 3-4 servings/d; $0 .<3$ servings/d. Diet (DF, FFQ): $1 . \geq 25.0 \mathrm{~g} / \mathrm{d} ; 0.5$. $12.5-24.9 \mathrm{~g} / \mathrm{d} ; 0 .<12.5 \mathrm{~g} / \mathrm{d}$.	8

Author-year	Cohort	Country	Follow-up duration (mean or median)	$\begin{aligned} & \text { Men } \\ & (\%) \end{aligned}$	Age (mean)	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	$\begin{aligned} & \text { NOS } \\ & \text { score } \end{aligned}$
Jin-2017 ${ }^{103}$				45.00			<45.92		928		Diet (red meat and processed meat, FFQ): $1 .<500 \mathrm{~g} / \mathrm{d}$ and $<3 \mathrm{~g} / \mathrm{d} ; 0.5$. $<500 \mathrm{~g} / \mathrm{d}$ and $3-49 \mathrm{~g} / \mathrm{d} ; 0 . \geq 500 \mathrm{~g} / \mathrm{d}$ or $\geq 50 \mathrm{~g} / \mathrm{d}$. Diet (sodium, FFQ): $1 . \leq 1500 \mathrm{mg} / \mathrm{d}$; $0.5 .1501-2400 \mathrm{mg} / \mathrm{d} ; 0 .>2400 \mathrm{mg} / \mathrm{d}$.	9
	NTI study		(9.10)		(74.00)	predominant		population		(including heart disease, stroke, and other CVD; ICD-9, 390-398, 402, 410438, and 440-448) was identified through the Tuscany Region Mortality General Registry and death certificates at the registry office of the municipality of residence.	former smokers; 0 . current smokers. PA: 2. light exercise $\geq 4 \mathrm{~h} / \mathrm{w}$, moderate exercise $\geq 1-2 \mathrm{~h} / \mathrm{w}$, or intense exercise many times/w; 1 . light exercise $2-4 \mathrm{~h} / \mathrm{w}$; 0 . inactive or with some walking. BMI: $2 .<25 \mathrm{~kg} / \mathrm{m}^{2} ; 1.25-29.9$ $\mathrm{kg} / \mathrm{m}^{2} ; 0 . \geq 30 \mathrm{~kg} / \mathrm{m}^{2}$. Diet (MDS, FFQ): 2. 6-9 points; 1. 45 points; 0. 0-3 points. SBP/DBP: 2. <120 and 80 mmHg (untreated); 1. 120-139 or 80-89 mmHg (untreated) or <120 and 80 mmHg (treated); $0 . \geq 140$ or 90 mmHg . FPG: 2. $<100 \mathrm{mg} / \mathrm{dl}$ (untreated); 1. $100-125 \mathrm{mg} / \mathrm{dl}$ (untreated) or <100 $\mathrm{mg} / \mathrm{dl}$ (treated); $0 . \geq 126 \mathrm{mg} / \mathrm{dl}$. TC: $2 .<200 \mathrm{mg} / \mathrm{dl}$ (untreated); 1. $200-239 \mathrm{mg} / \mathrm{dl}$ (untreated) or <200 $\mathrm{mg} / \mathrm{dl}$ (treated); $0 . \geq 240 \mathrm{mg} / \mathrm{dl}$.	
Khaw-2008 ${ }^{63}$	Europea n Prospecti ve Investiga tion into	UK	$\begin{aligned} & 1993-2006 \\ & (11.00) \end{aligned}$	45.35	$\begin{aligned} & 45-79 \\ & (58.13) \end{aligned}$	White 99.50	53.38	CVD or cancer patients	2057	CVD mortality (ICD-9, 400-438; ICD-10, I10-I79) was identified through death certification at the	Smoking: 1. not current smokers; 0 . current smokers. Alcohol drinking: 1. 1-14 units/w (1 unit $\approx 8 \mathrm{~g}$ alcohol); 0 . none or >14 units/w. PA: 1. LTPA $\geq 0.5 \mathrm{~h} / \mathrm{d} ; 0$. LTPA <0.5	9

Author-year	Cohort	Country	Follow-up duration (mean or median)	$\begin{aligned} & \hline \text { Men } \\ & (\%) \end{aligned}$	$\begin{aligned} & \hline \text { Age } \\ & \text { (mean) } \end{aligned}$	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	$\begin{aligned} & \text { NOS } \\ & \text { score } \end{aligned}$
	Cancer and Nutrition -Norfolk									Office of National Statistics.	h/d. Diet (plant food intake, blood vitamin C level): $1 . \geq 50 \mathrm{mmol} / 1 ; 0$. $<50 \mathrm{mmol} / \mathrm{l}$.	
Kim-2013 ${ }^{104}$	Seoul Male Cohort Study	South Korea	$\begin{aligned} & 1993-2011 \\ & (18.40) \end{aligned}$	100	$\begin{aligned} & 40-59 \\ & (47.53) \end{aligned}$	Asian predominant	>53.73	general population	12538	CVD mortality (ICD-10, I01-I99) was identified through the National Statistics Office.	Smoking: 1. never smokers; 0 . ever smokers. PA: 1 . MPA $\geq 150 \mathrm{~min} / \mathrm{w}, \mathrm{VPA} \geq 75$ $\mathrm{min} / \mathrm{w}$, or MVPA $\geq 150 \mathrm{~min} / \mathrm{w} ; 0$. MPA $<150 \mathrm{~min} / \mathrm{w}$, MVPA <150 $\mathrm{min} / \mathrm{w}$, and VPA $<75 \mathrm{~min} / \mathrm{w}$. BMI: 1. 23.1-24.9 kg/m²; $0 . \geq 25$ $\mathrm{kg} / \mathrm{m}^{2}$. Diet (Korean dietary pattern, FFQ): $1 . \geq 2$ points; $0 .<2$ points. SBP/DBP: 1. <120 and 80 mmHg (without medication); $0 . \geq 120$ or 80 mmHg , or <120 and 80 mmHg (with medication). FBG: $1 .<100 \mathrm{mg} / \mathrm{dl}$ (without medication); $0 . \geq 100 \mathrm{mg} / \mathrm{d}$, or <100 $\mathrm{mg} / \mathrm{dl}$ (with medication). TC: $1 .<200 \mathrm{mg} / \mathrm{dl}$ (without medication); $0 . \geq 200 \mathrm{mg} / \mathrm{dl}$, or <200 $\mathrm{mg} / \mathrm{dl}$ (with medication).	9
$\underset{105}{\text { King-2013 }}$	National Health and Nutrition Examina tion Surveys III	US	$\begin{aligned} & \text { 1988-2006 } \\ & \text { (NA) } \end{aligned}$	18.50	$\begin{aligned} & \text { 21-NA } \\ & \text { (NA) } \end{aligned}$	White 81.10 Black 11.10	61.88	people with normal blood pressure, low- density lipoprotein cholesterol or C-	11481	CVD mortality was determined by the National Death Index.	Smoking: 1. not current smokers; 0 . current smokers. Alcohol drinking (M/F): 1. 0.1-2/1 drinks/d; 0 . none or $>2 / 1$ drinks/d. PA: $1 .>12$ times $/ \mathrm{m} ; 0 . \leq 12$ times $/ \mathrm{m}$. BMI: $1.18 .5-29.9 \mathrm{~kg} / \mathrm{m}^{2} ; 0 .<18.5$ $\mathrm{kg} / \mathrm{m}^{2}$ or $\geq 30 \mathrm{~kg} / \mathrm{m}^{2}$. Diet (fruit and vegetables): $1 . \geq 5$ servings/d; 0. <5 servings/d.	7

Author-year	Cohort	Country	Follow-up duration (mean or median)	$\begin{aligned} & \text { Men } \\ & (\%) \end{aligned}$	$\begin{aligned} & \hline \text { Age } \\ & \text { (mean) } \end{aligned}$	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	$\begin{aligned} & \text { NOS } \\ & \text { score } \end{aligned}$
Knoops2004^{106}	Healthy Ageing: a Longitud inal study in Europe	Europe	$\begin{aligned} & 1988-2000 \\ & (10.00) \end{aligned}$	64.43	$\begin{aligned} & 70-90 \\ & (74.24) \end{aligned}$	White predominant	<66.86	reactive protein level general population	2339	Identification of CVD mortality (ICD-9, 390-459) and CHD mortality (ICD-9, 410-414) was not reported.	Smoking: 1. never smokers or quitting >15 years; 0 . quitting ≤ 15 years or current smokers. Alcohol drinking: $1 .>0 \mathrm{~g} / \mathrm{d}$; 0 . none. PA (Voorrips or Morris questionnaire): 1. the intermediate and the highest tertile; 0 . the lowest tertile.	8
$\begin{aligned} & \text { Kvaavik- } \\ & 2010^{108} \end{aligned}$	Health and Lifestyle Survey	UK	$\begin{aligned} & 1985-2005 \\ & (20.00) \end{aligned}$	51.35	$\begin{aligned} & \text { 18-NA } \\ & (43.70) \end{aligned}$	White 98.00	NA	general population	4886	CVD-cause mortality (ICD-9, 390-434 and 436448) was ascertained from death certificates.	Diet (mMDS, dietary history method): $1 . \geq 4$ points; $0 .<4$ points. Smoking: 1. not current smokers; 0 . current smokers. Alcohol drinking (M/F): $1 . \leq 21 / 14$ units/w; 0. >21/14 units/w. PA: $1 . \geq 120 \mathrm{~min} / \mathrm{w} ; 0 .<120 \mathrm{~min} / \mathrm{w}$. Diet (fruits and vegetables consumption, FFQ): $1 . \geq 3$ times/d; 0 . <3 times/d.	8
$\underset{110}{\text { Lee- } 20099^{\dagger}}$	Aerobics Center Longitud inal Study	US	$\begin{aligned} & \text { 1971-2003 } \\ & (14.70) \end{aligned}$	100	$\begin{aligned} & 30-79 \\ & (44.13) \end{aligned}$	White > 95.00	>70.00	general population	23657	CVD mortality (ICD-9, 390-449.9; ICD-10, I00-I78) were identified through the National Death Index and official death certificates.	Smoking: 1. never smoking; 0 . ever smoking. Fitness (CRF): 1. higher 80\%; 0 . lower 20\%. WC: $1 .<94 \mathrm{~cm} ; 0 . \geq 94 \mathrm{~cm}$.	7
Li-2018 ${ }^{1}$	Nurses' Health Health Professio	US	$\begin{aligned} & 1980-2014 \\ & (27.20- \\ & 33.90) \end{aligned}$	36.00	$\begin{aligned} & 34-75 \\ & (48.96) \end{aligned}$	White 96.34	Predomina nt	general population	123219	CVD mortality was identified from state vital statistics records, the National Death	Smoking: 1. never smokers; 0 . ever smokers. Alcohol drinking (M/F): 1. 5-30/15 $\mathrm{g} / \mathrm{d} ; 0 .<5 \mathrm{~g} / \mathrm{d}$ or $>30 / 15 \mathrm{~g} / \mathrm{d}$. MVPA: $1 .>30 \mathrm{~min} / \mathrm{d} ; 0 . \leq 30 \mathrm{~min} / \mathrm{d}$.	8

Author-year	Cohort	Country	Follow-up duration (mean or median)	$\begin{aligned} & \text { Men } \\ & (\%) \end{aligned}$	Age (mean)	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	$\begin{aligned} & \text { NOS } \\ & \text { score } \end{aligned}$
	nals Follow- Up Study									Index, reports by the families, and the postal system.	BMI: $1.18 .5-24.9 \mathrm{~kg} / \mathrm{m}^{2} ; 0 .<18.5$ $\mathrm{kg} / \mathrm{m}^{2}$ or $\geq 25 \mathrm{~kg} / \mathrm{m}^{2}$. Diet (AHEI, FFQ): 1. top 40% of each cohort distribution; 0 . lower 60% of each cohort distribution.	
Lin-2012 ${ }^{112}$	Taichung Diabetes Study	China	$\begin{aligned} & 2002-2008 \\ & (4.02) \end{aligned}$	51.93	$\begin{aligned} & \text { 30-NA } \\ & (58.51) \end{aligned}$	Asian predominant	NA	type 2 diabetes mellitus patients	5686	CVD mortality (ICD-9-CM, 390459) was identified through the Taiwan National Death Index.	Smoking: 1. never smokers; 0 . ever smokers. Alcohol drinking: 1. abstainer; 0 . drinker. PA: 1 . \geq once $/ \mathrm{w}$ for $>1 \mathrm{~m}$ continuously; 0 . <once /w or $<1 \mathrm{~m}$ continuously. Diet (carbohydrate intake, 24-h food diary): $1 .<65 \%$ E; $0 . \geq 65 \%$ E.	7
Liu-2014 ${ }^{115}$	Kailuan Study	China	$\begin{aligned} & 2006-2010 \\ & (4.02) \end{aligned}$	79.75	$\begin{aligned} & 18-98 \\ & (51.46) \end{aligned}$	Asian predominant	>6.91	general population	95429	CVD mortality (ICD-10, I05-I09, I11, I20-I27, and I30-I52) was ascertained by discharge lists from local hospitals and death certificates from state vital statistics offices and active follow-up.	Smoking: 1. never smokers; 0 . ever smokers; PA: 1. MVPA $\geq 80 \mathrm{~min} / \mathrm{w} ; 0$. MVPA < $80 \mathrm{~min} / \mathrm{w}$. BMI: $1 .<25 \mathrm{~kg} / \mathrm{m}^{2} ; 0 . \geq 25 \mathrm{~kg} / \mathrm{m}^{2}$. Diet (salt intake): 1. low salt intake; 0 . intermediate and high salt intake. SBP/DBP: 1. <120 and 80 mmHg (not treated); $0 .<120$ and 80 mmHg (treated) or ≥ 120 or 80 mmHg . FPG: $1 .<100 \mathrm{mg} / \mathrm{dl}$ (not treated); 0. $<100 \mathrm{mg} / \mathrm{dl}$ (treated) $\geq 100 \mathrm{mg} / \mathrm{d}$. TC: $1 .<200 \mathrm{mg} / \mathrm{dl}$ (not treated); 0. or $<200 \mathrm{mg} / \mathrm{dl}$ (treated) $\geq 200 \mathrm{mg} / \mathrm{dl}$.	8
Liu-2018 ${ }^{159}$	Nurses' Health Health Professio nals	US	$\begin{aligned} & 1980-2014 \\ & (13.30) \end{aligned}$	22.18	$\begin{aligned} & 34-75 \\ & (62.61) \end{aligned}$	White 95.13	Predomina nt	diabetes patients	11527	CVD mortality (ICD-8, 390-458 and 795) were identified through the National Death Index or reports by	5-point score: Smoking: 1. not current smokers; 0 . current smokers. Alcohol drinking (M/F): 1. 5-30/15 $\mathrm{g} / \mathrm{d} ; 0 .<5 \mathrm{~g} / \mathrm{d}$ or $>30 / 15 \mathrm{~g} / \mathrm{d}$.	9

Author-year	Cohort	Country	Follow-up duration (mean or median)	$\begin{aligned} & \text { Men } \\ & (\%) \end{aligned}$	$\begin{aligned} & \hline \begin{array}{l} \text { Age } \\ \text { (mean) } \end{array} \end{aligned}$	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	$\begin{aligned} & \text { NOS } \\ & \text { score } \end{aligned}$
	FollowUp Study									next of kin or postal authorities.	MVPA: $1 . \geq 150 \mathrm{~min} / \mathrm{w} ; 0 .<150$ min/w. BMI: $1 .<25.0 \mathrm{~kg} / \mathrm{m}^{2} ; 0 . \geq 25.0 \mathrm{~kg} / \mathrm{m}^{2}$. Diet (AHEI, FFQ): 1 . top 40% of each cohort distribution; 0 . lower 60% of each cohort distribution. 4-point score: smoking, drinking, MVPA, and diet.	
${ }_{116} \text { Lohse-2016 }{ }^{\dagger}$	MONItor ing trends and determin ants of CArdiov ascular diseaseSwitzerla nd \& National Research Program me1A	Switzerla nd	$\begin{aligned} & \text { 1977-NA } \\ & (21.70) \end{aligned}$	50.60	$\begin{aligned} & 25-74 \\ & (46.06) \end{aligned}$	White predominant	58.85	general population	16722	CVD mortality (ICD-8, 410-458; ICD-10, I20-I99) was identified through the Swiss National Cohort.	Alcohol drinking: 1. didn't drink yesterday; 0 . drank yesterday. PA (MPA $\geq 60 \mathrm{~min} / \mathrm{d}$ or VPA ≥ 30 $\mathrm{min} / \mathrm{d}): 1 . \geq 2 \mathrm{~d} / \mathrm{w} ; 0.5$. one $\mathrm{d} / \mathrm{w} ; 0$. <1d/w. Sedentary behavior: 1. regular exercise or exhausting; 0.5 . walking, cycling, other regular activities such as gardening, or average; 0 . mostly sitting or sedentary. BMI: $1.18 .5-24.9 \mathrm{~kg} / \mathrm{m}^{2} ; 0.5 .25-$ $29.9 \mathrm{~kg} / \mathrm{m}^{2} ; 0 .<18.5 \mathrm{~kg} / \mathrm{m}^{2}$ or ≥ 30 $\mathrm{kg} / \mathrm{m}^{2}$. Diet (energy density, score consisting of fat for cooking, bread, or salad, cut away fat from meat, and sweets/chocolate): 1. 2-3 points; 0.5 . one point; 0 . zero points. Diet (fruits and vegetables): 1. yesterday consume both fruits and vegetables; 0.5 . yesterday consume either fruits or vegetables; 0 . yesterday consume no fruits and vegetables. Diet (grains): 1. consume yesterday; 0 . no yesterday.	9

Author-year	Cohort	Country	Follow-up duration (mean or median)	Men (\%)	Age (mean)	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	NOS score
Luoto$1998{ }^{160}$	"The Finnish National Public Health Institute Study"	Finland	$\begin{aligned} & 1978-1993 \\ & (9.00) \end{aligned}$	46.74	$\begin{aligned} & 15-64 \\ & \text { (NA) } \end{aligned}$	White predominant	NA	general population	18974	CVD mortality was identified through the Central Population Register.	Diet (processed meat): 1. didn't consume yesterday; 0.5 . consume meat yesterday; 0 . consume sausage products yesterday. Diet (salt): 1 . never adding salt; 0.5 . sometimes adding salt; 0 . always adding salt. Smoking: 1. not smoking; 0 . smoking. PA: $1 . \geq 2-3$ times $/ m ; 0 .<2-3$ times/m. Diet: 1. use of butter on bread and whole milk containing $<3.9 \%$ fat; 0 . use of butter on bread and whole milk containing $\geq 3.9 \%$ fat.	9
Martin- Diener- 2014^{11}	MONItor ing trends	Switzerla nd	$\begin{aligned} & \text { 1977-2008 } \\ & (21.35) \end{aligned}$	48.60	$\begin{aligned} & 16-90 \\ & (45.10) \end{aligned}$	White predominant	<65.77	general population	16721	CVD mortality (ICD-8, 410-438; ICD-10, I00-I99)	Smoking: 1. not current smokers; 0 . current smokers. Alcohol drinking (M/F): 1. <40/20	8
	and									was identified	Alcohol drinking (M/F): $1 .<40 / 20$ $\mathrm{g} / \mathrm{d} ; 0 .>40 / 20 \mathrm{~g} / \mathrm{d}$. PA: 1. frequent walking or cycling, other frequent activities such as gardening, or regular VPA; 0 . light PA, mostly sedentary. Diet (fruit intake on the previous day): 1. yes; 0 . no.	
	determin									through the Swiss		
	ants of									National Cohort.		
	CArdiov ascular											
	disease-											
	Switzerla nd \&											
	National											
	Research											
	Program me1A											
$\begin{aligned} & \text { McCullough- } \\ & 2011^{119} \end{aligned}$	Cancer	US	$\begin{aligned} & 1992-2006 \\ & (13.07) \end{aligned}$	45.31	$\begin{aligned} & 50-74 \\ & (62.67) \end{aligned}$	White 97.99	92.66	current nonsmokers	111966	CVD mortality (ICD-9, 390-459; ICD-10, I00-I99) was identified	Alcohol drinking (M/F): 2. 0.1-2/1 drinks/d; 1. none; $0 .>2 / 1$ drinks/d. PA: 2. ≥ 17.5 MET-h/w; 1. 8.75-17.4 MET-h/w; 0. <8.75 MET-h/w.	7
	Preventi											
	Study-II											

Author-year	Cohort	Country	Follow-up duration (mean or median)	$\begin{aligned} & \text { Men } \\ & (\%) \end{aligned}$	Age (mean)	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	$\begin{aligned} & \text { NOS } \\ & \text { score } \end{aligned}$
	Nutrition Cohort									through National Death Index.	BMI: 2. $18.5-24.9 \mathrm{~kg} / \mathrm{m}^{2}$ at both time points; $1.25-30 \mathrm{~kg} / \mathrm{m}^{2}$ at both time points, or $18.5-24.9 \mathrm{~kg} / \mathrm{m}^{2}$ at one time point and $\geq 25 \mathrm{~kg} / \mathrm{m}^{2}$ at another time point; $0 .>30 \mathrm{~kg} / \mathrm{m}^{2}$ at both time points, or $>30 \mathrm{~kg} / \mathrm{m}^{2}$ at one time point and $25-30 \mathrm{~kg} / \mathrm{m}^{2}$ at another time point. Diet (ACS, FFQ): 2. 7-9 points; 1. 36 points; 0. 0-2 points.	
Mitchell2010^{161}	Aerobics Center Longitud inal Study	US	$\begin{aligned} & \text { 1974-2003 } \\ & (16.10) \end{aligned}$	100	$\begin{aligned} & 20-84 \\ & (43.80) \end{aligned}$	White 96.00 Black 1.00	>70.00	healthy middle or upper socioecono mic population	38110	CVD mortality (ICD-9, 390-449.9; ICD-10, I00-I78) was identified through the National Death Index and death certificates	Smoking: 1. not current smokers; 0 . current smokers. Alcohol drinking: 1. 1-14 drinks/w; 0 . none or >14 drinks/w. PA: 1. moderate or high PA; 0 . low PA. BMI: 1. $18.5-24.9 \mathrm{~kg} / \mathrm{m}^{2} ; 0 . \geq 25$ $\mathrm{kg} / \mathrm{m}^{2}$. CRF: 1. moderate/high CRF (upper two-thirds); 0. low CRF.	8
Mok-2018 ${ }^{122}$	Atherosc lerosis Risk in Commun ities Study	US	$\begin{aligned} & 1987-2013 \\ & (3.30) \end{aligned}$	43.80	$\begin{aligned} & 45-64 \\ & (54.50) \end{aligned}$	White 75.60 Black 24.40	70.50	myocardial infarction patients	1277	CVD mortality was defined as death attributable to CHD, HF, or stroke.	Smoking: 2. never smokers and former smokers quitting >1 year; 1 . former smokers quitting ≤ 1 year; 0 . current smokers. MVPA: $2 . \geq 150 \mathrm{~min} / \mathrm{w} ; 1.1-150$ $\mathrm{min} / \mathrm{w}$; 0 . none. BMI: $2 .<25 \mathrm{~kg} / \mathrm{m}^{2} ; 1.25-29.9$ $\mathrm{kg} / \mathrm{m}^{2} ; 0 . \geq 30 \mathrm{~kg} / \mathrm{m}^{2}$. Diet (AHA, FFQ): 2. 4-5 components; 1. 2-3 components; 0 . $0-1$ component. SBP/DBP: 2. $<120 / 80 \mathrm{mmHg}$ (untreated); $1 .<120 / 80 \mathrm{mmHg}$	6

Author-year	Cohort	Country	Follow-up duration (mean or median)	$\begin{aligned} & \text { Men } \\ & (\%) \end{aligned}$	$\begin{aligned} & \hline \text { Age } \\ & \text { (mean) } \end{aligned}$	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	$\begin{aligned} & \text { NOS } \\ & \text { score } \end{aligned}$
chu		China	1996-2007	0	40-70	Asian 100	42.10		63791		(treated) and 120-139/80-89 mmHg; $0 . \geq 140 / 90 \mathrm{mmHg}$. FBG: 2. $<5.6 \mathrm{mmol} / 1$ (untreated); 1. $<5.6 \mathrm{mmol} / \mathrm{l}$ (treated) or 5.6-6.9 $\mathrm{mmol} / \mathrm{l} ; 0 . \geq 7.0 \mathrm{mmol} / \mathrm{l}$. TC: $2 .<5.2 \mathrm{mmol} / \mathrm{l}$ (untreated); 1. $<5.2 \mathrm{mmol} / \mathrm{l}$ (treated) or 5.2-6.1 $\mathrm{mmol} / \mathrm{l} ; 0 . \geq 6.2 \mathrm{mmol} / \mathrm{l}$. 9 -point score:	8
$2010{ }^{124}$	Women' s Health Study		(9.10)		$(<56.95$			smokers and nondrinker		(ICD-9, 390-459) was identified through Shanghai cancer, vital statistics registries, and death certificates.	Exposed to spouse smoke: 1. never; 0 . ever. PA: 2. $\geq 2.0 \mathrm{MET} \mathrm{h} / \mathrm{d} ; 1.0 .1-1.99$ MET h/d; 0. none. BMI: 2. $18.5-24.99 \mathrm{~kg} / \mathrm{m}^{2} ; 1.25 .0-$ $29.99 \mathrm{~kg} / \mathrm{m}^{2} ; 0 . \geq 30.0 \mathrm{~kg} / \mathrm{m}^{2}$ or <18.5 $\mathrm{kg} / \mathrm{m}^{2}$. WHR: 2. tertile one (<0.786); 1 . tertile 2 ; 0 . tertile three (≥ 0.830). Diet (fruit and vegetable intake, FFQ): 2. tertile three ($\geq 626.5 \mathrm{~g} / \mathrm{d}$); 1 . tertile 2; 0 . tertile one ($<404.3 \mathrm{~g} / \mathrm{d}$). 5-point score: Exposed to spouse smoke: 1. never; 0 . ever. PA: $1 . \geq 2.0 \mathrm{MET} \mathrm{h} / \mathrm{d} ; 0 .<2.0 \mathrm{MET}$ h/d. BMI: $1.18 .5-24.99 \mathrm{~kg} / \mathrm{m}^{2} ; 0 . \geq 25.0$ $\mathrm{kg} / \mathrm{m}^{2}$ or $<18.5 \mathrm{~kg} / \mathrm{m}^{2}$. WHR: 1. tertile one (<0.786); 0 . tertile two and three (≥ 0.786). Diet (fruit and vegetable intake, FFQ): 1. tertile three ($\geq 626.5 \mathrm{~g} / \mathrm{d}$); 0 . tertile two and one ($<626.5 \mathrm{~g} / \mathrm{d}$).	

Author-year	Cohort	Country	Follow-up duration (mean or median)	$\begin{aligned} & \text { Men } \\ & (\%) \end{aligned}$	$\begin{aligned} & \hline \text { Age } \\ & \text { (mean) } \end{aligned}$	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	$\begin{aligned} & \text { NOS } \\ & \text { score } \end{aligned}$
$\begin{aligned} & \hline \text { Odegaard- } \\ & 2011^{\S, 126} \end{aligned}$	Singapor e Chinese Health Study	Singapor e	$\begin{aligned} & \text { 1993-2016 } \\ & (20.60) \end{aligned}$	45.10	$\begin{aligned} & \hline 45-74 \\ & (55.30) \end{aligned}$	Asian predominant	<32.70	general population	44052	CVD mortality (ICD-9, 390-459; ICD-10, I00-I99) was obtained through linkage with the nationwide Singapore Birth and Death Registry.	6-point score: Smoking: 1. never smokers; 0. ever smokers. Alcohol drinking (M/F): 1. 0.1-14/7 drinks/w; 0 . none or >14/7 drinks/w. PA: 1 . moderate activity $\geq 2 \mathrm{~h} / \mathrm{w}$, or strenuous activity $\geq 0.5 \mathrm{~h} / \mathrm{w} ; 0$. moderate activity $<2 \mathrm{~h} / \mathrm{w}$, or strenuous activity $<0.5 \mathrm{~h} / \mathrm{w}$. BMI (aged $<65 /$ aged ≥ 65): 1.18 .5 $21.4 / 24.4 \mathrm{~kg} / \mathrm{m}^{2} ; 0 .<18.5$ or $\geq 21.5 / 24.5 \mathrm{~kg} / \mathrm{m}^{2}$. Diet (AHEI-2010, FFQ): 1. highest 40%; 0 . Lower 60%. Sleeping: $1.7-8 \mathrm{~h} / \mathrm{d} ; 0 .<7$ or $>8 \mathrm{~h} / \mathrm{d}$. 5-point score: smoking, drinking, PA, BMI, and diet. 4-point score: smoking, PA, BMI, and diet.	8
$\begin{aligned} & \text { Petersen- } \\ & 2015^{129} \end{aligned}$	Diet, Cancer and Health cohort study	Denmark	$\begin{aligned} & 1993-2010 \\ & (14.00) \end{aligned}$	47.10	$\begin{aligned} & 50-64 \\ & (55.53) \end{aligned}$	White predominant	11.00	general population	51521	CVD mortality (ICD-10, I10-I25, I27-I52, I60-I64, and I70-I79) was identified through the Central Population Registry and Register of Causes of Death.	5-point score: Smoking: 1. never smokers or quitting ≥ 15 years; 0 . current smokers or quitting < 15 years. Alcohol drinking (M/F): $1 . \leq 14 / 7$ units/w; 0. >14/7 units/w. PA: $1 . \geq 30 \mathrm{~min} / \mathrm{d} ; 0 .<30 \mathrm{~min} / \mathrm{d}$. WC: $1 . \leq 102 \mathrm{~cm} ; 0 .>102 \mathrm{~cm}$. Diet (score consisting of fat, red and processed meat, fish, whole grain, and fruits and vegetables consumption, FFQ): 1. 2-5 components; 0. 0-1 component. 4-point score: smoking, drinking, PA, and diet.	8

Author-year	Cohort	Country	Follow-up duration (mean or median)	Men $(\%)$	Age (mean)	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status
					Sample size	Outcome attainment		
score								

Author-year	Cohort	Country	Follow-up duration (mean or median)	$\begin{aligned} & \text { Men } \\ & (\%) \end{aligned}$	Age (mean)	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	$\begin{aligned} & \text { NOS } \\ & \text { score } \end{aligned}$
	Lithuani Health, Alcohol and Psychoso cial Factors in Eastern Europe Study										TC: $1 .<5.2 \mathrm{mmol} / \mathrm{L} ; 0 . \geq 5.2$ $\mathrm{mmol} / \mathrm{L}$.	
$\begin{aligned} & \text { Towfighi- } \\ & 2012^{\dagger}, 139 \end{aligned}$	National Health and Nutrition Examina tion Surveys III	US	$\begin{aligned} & \text { 1988-2000 } \\ & \text { (NA) } \end{aligned}$	50.00	$\begin{aligned} & \text { NA } \\ & (67.00) \end{aligned}$	White 81.10 Black 11.10	61.88	stroke patients	388	Cardiovascular disease mortality including deaths from any heart disease, cerebrovascular cause, atherosclerosis or hypertension (UCOD-113 codes 054-074), was identified through National Death Index death certificate records.	Smoking: 1. not current smokers; 0 . current smokers. Alcohol drinking (M/F): 1. 0.1-2/1 drinks/d; 0 . none or $>2 / 1$ drinks/d. PA: $1 .>12$ times $/ \mathrm{m} ; 0 . \leq 12$ times $/ \mathrm{m}$. BMI: $1.18 .5-29.9 \mathrm{~kg} / \mathrm{m}^{2} ; 0 .<18.5$ or $\geq 30 \mathrm{~kg} / \mathrm{m}^{2}$. Diet (fruit and vegetables): $1 . \geq 5$ servings/d; 0. <5 servings/d.	8
$\begin{aligned} & \text { Van Dam- } \\ & 2008^{\dagger, 67} \end{aligned}$	Nurses, Health Study	US	$\begin{aligned} & 1980-2004 \\ & (22.62) \end{aligned}$	0	$\begin{aligned} & 34-59 \\ & \text { (NA) } \end{aligned}$	White predominant	Predomina nt	general population	77782	CVD mortality (ICD-8, 390-459 and 795) was identified through reports by next of kin, the postal authorities, death	Smoking: 1. never smokers; 0 . ever smokers. Alcohol drinking: 1. 1-14.9 g/d; 0 . $<1 \mathrm{~g} / \mathrm{d}$ or $\geq 15.0 \mathrm{~g} / \mathrm{d}$. PA (MVPA): $1 . \geq 30 \mathrm{~min} / \mathrm{d} ; 0 .<30$ $\mathrm{min} / \mathrm{d}$. BMI: $1.18 .5-25.0 \mathrm{~kg} / \mathrm{m}^{2} ; 0 .>25.0$	6

Author-year	Cohort	Country	Follow-up duration (mean or median)	$\begin{aligned} & \text { Men } \\ & (\%) \end{aligned}$	$\begin{aligned} & \hline \text { Age } \\ & \text { (mean) } \end{aligned}$	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	$\begin{aligned} & \text { NOS } \\ & \text { score } \end{aligned}$
van Lee	Rotterda	Netherla	1990-2011	40.47	55-NA	hite	69.73	general	2987	certificates, medical records, and National Death Index. CVD mortality	$\mathrm{kg} / \mathrm{m}^{2}$. Diet (AHEI, FFQ): 1. upper two fifths; 0 . lower three fifths.	9
$2016{ }^{144}$	m Study		(20.00)		(65.43)	predominant		population		(ICD-10, I00-I99), CHD mortality (ICD-10, I21, I24, I25, I46, I49, I50) and stroke mortality (ICD-10, I60-I69) were identified through municipal population registries.	$\mathrm{g} / \mathrm{d} ; 0 .>20 / 10 \mathrm{~g} / \mathrm{d}$. PA: $1 . \geq 150 \mathrm{~min} / \mathrm{w} ; 0 .<150 \mathrm{~min} / \mathrm{w}$. Diet (vegetable consumption, FFQ): 1. $150-200 \mathrm{~g} / \mathrm{d} ; 0 .<150 \mathrm{~g} / \mathrm{d}$ or >200 g/d. Diet (fruit consumption, FFQ): 1. $\geq 200 \mathrm{~g} / \mathrm{d} ; 0 .<200 \mathrm{~g} / \mathrm{d}$. Diet (DF, FFQ): 1. 30-40 g/d; 0. <30 g / d or $>40 \mathrm{~g} / \mathrm{d}$. Diet (fish consumption, FFQ): $1 . \geq 2$ portions/w and ≥ 1 oily fish; $0 .<2$ portions/w or <1 oily fish. Diet (SFA, FFQ): 1. <10\%E; 0. $\geq 10 \%$ E. Diet (mono trans-FA, FFQ): 1. $<1 \% \mathrm{E} ; 0 . \geq 1 \%$ E.	
$\begin{aligned} & \text { Vergnaud- } \\ & 2013^{145} \end{aligned}$	Europea n Prospecti ve Investiga tion into Cancer and Nutrition	Europe	$\begin{aligned} & 1992-2010 \\ & (12.80) \end{aligned}$	32.05	$\begin{aligned} & 25-70 \\ & (51.90) \end{aligned}$	White predominant	<67.34	general population	378864	Circulatory disease (ICD-10, I00-I99) was identified through cancer registries, boards of health, and death indexes, or active follow-up including inquiries to participants, municipal registries, regional	Alcohol drinking (M/F): $1 . \leq 20 / 10$ $\mathrm{g} / \mathrm{d} ; 0.5 .21-30 / 11-20 \mathrm{~g} / \mathrm{d} ; 0 .>30 / 20$ g/d. PA: 1. manual/heavy manual job, or $>2 \mathrm{~h} / \mathrm{w}$ of vigorous PA , or >30 $\mathrm{min} / \mathrm{d}$ of cycling/sports; 0.5 . cycling/sports $15-30 \mathrm{~min} / \mathrm{d}$; 0 . cycling/sports $<15 \mathrm{~min} / \mathrm{d}$. BMI: 1. $18.5-24.9 \mathrm{~kg} / \mathrm{m}^{2} ; 0.5$. $25-$ $29.9 \mathrm{~kg} / \mathrm{m}^{2} ; 0 .<18.5 \mathrm{~kg} / \mathrm{m}^{2}$ or ≥ 30.0 $\mathrm{kg} / \mathrm{m}^{2}$. Diet (energy-dense, dietary	7

Author-year	Cohort	Country	Follow-up duration (mean or median)	$\begin{aligned} & \text { Men } \\ & (\%) \end{aligned}$	$\begin{aligned} & \hline \begin{array}{l} \text { Age } \\ \text { (mean) } \end{array} \end{aligned}$	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	$\begin{aligned} & \text { NOS } \\ & \text { score } \end{aligned}$
										health departments, physicians and hospitals.	questionnaires): $0.5 . \leq 125$ $\mathrm{kcal} / 100 \mathrm{~g} / \mathrm{d} ; 0.25 .126-175$ $\mathrm{kcal} / 100 \mathrm{~g} / \mathrm{d} ; 0 .>175 \mathrm{kcal} / 100 \mathrm{~g} / \mathrm{d}$. Diet (SSB, dietary questionnaires): 0.5 . zero g/d; $0.25 . \leq 250 \mathrm{~g} / \mathrm{d} ; 0 .>250$ g/d. Diet (fruit and vegetable consumption, dietary questionnaires): 0.5 . $\geq 400 \mathrm{~g} / \mathrm{d}$; $0.25 .200-399 \mathrm{~g} / \mathrm{d} 0 .<200 \mathrm{~g} / \mathrm{d}$. Diet (DF, dietary questionnaires): $0.5 . \geq 25 \mathrm{~g} / \mathrm{d} ; 0.25 .12 .5-24.9 \mathrm{~g} / \mathrm{d} ; 0$. $<12.5 \mathrm{~g} / \mathrm{d}$. Diet (red and processed meat consumption, dietary questionnaires): $1 .<500 \mathrm{~g} / \mathrm{w}$ and <3 $\mathrm{g} / \mathrm{d} ; 0.5 .<500 \mathrm{~g} / \mathrm{w}$ and $3-49 \mathrm{~g} / \mathrm{d} ; 0$. $\geq 500 \mathrm{~g} / \mathrm{w}$ or $\geq 50 \mathrm{~g} / \mathrm{d}$. Cumulative breastfeeding: $1 . \geq 6 \mathrm{~m}$; 0.5 . 0.1-5.9 m; 0. zero m.	
Warren Andersen- 2016^{163}	the Southern Commun ity Cohort Study	US	$\begin{aligned} & \text { 2002-2011 } \\ & \text { (NA) } \end{aligned}$	85.49	$\begin{aligned} & 40-79 \\ & (50.65) \end{aligned}$	White 31.36 Black 68.64	73.06	general population	75689	CVD mortality (ICD-10, I00-I69) was identified through the Social Security Administration's Death Master File and National Death Index.	Smoking: 1. never smokers; 0. ever smokers. Alcohol drinking (M/F): $1 . \leq 2 / 1$ drink/d; $0 .>2 / 1$ drink/d. PA: 1. MPA $\geq 150 \mathrm{~min} / \mathrm{w}$, or VPA $\geq 75 \mathrm{~min} / \mathrm{w}$, or MVPA $\geq 150 \mathrm{~min} / \mathrm{w}$; 0 . MPA $<150 \mathrm{~min} / \mathrm{w}$, and VPA <75 $\mathrm{min} / \mathrm{w}$, and MVPA < $150 \mathrm{~min} / \mathrm{w}$. Sedentary behavior: $1 . \leq 5.75 \mathrm{~h} / \mathrm{d}$; $0 .>5.75 \mathrm{~h} / \mathrm{d}$ (lowest quartile). Diet (HEI, FFQ): 1. >66.7 points (highest quartile); $0 . \leq 66.7$ points.	7

Author-year	Cohort	Country	Follow-up duration (mean or median)	$\begin{aligned} & \text { Men } \\ & (\%) \end{aligned}$	$\begin{aligned} & \hline \begin{array}{l} \text { Age } \\ \text { (mean) } \end{array} \end{aligned}$	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	$\begin{aligned} & \text { NOS } \\ & \text { score } \end{aligned}$
$\begin{aligned} & \text { Wingard- } \\ & 1982^{147} \end{aligned}$	Human Populati on Laborato r	US	$\begin{aligned} & \text { 1965-1974 } \\ & \text { (NA) } \end{aligned}$	47.17	$\begin{aligned} & 30-69 \\ & (<53.28 \\ &) \end{aligned}$	NA	NA	general population	4725	IHD and other circulatory disease mortality were identified through California Death Registry.	Smoking: 1. never smokers; 0. ever smokers. Alcohol drinking: 1. <45 drinks/m; $0 .>45$ drinks/m. PA: 1. active; 0. inactive. Quetelet index (weight in pounds/(height in inches) ${ }^{2}$) based on Metropolitan Life Insurance reports: 1. 9.9% underweight- 29.9% overweight; 0 . extreme underweight or overweight. Sleeping: 1.7-8 h/night; $0 .<7$ $\mathrm{h} /$ night or $>8 \mathrm{~h} /$ night.	7
$\underset{148}{\text { Yang-2012 } \dagger,}$	National Health and Nutrition Examina tion Surveys III	US	$\begin{aligned} & 1988-2006 \\ & (14.50) \end{aligned}$	48.20	$\begin{aligned} & \text { 20-NA } \\ & (45.00) \end{aligned}$	White 81.10 Black 11.10	61.88	general population	13312	CVD mortality (ICD-10, I00-I78) and IHD mortality (ICD-10, I20-I25) were identified through the National Death Index.	Smoking: 1. not current smokers; 0 . current smokers. PA: 1. 3-5.9 METs for ≥ 5 times/w or ≥ 6 METs for ≥ 3 times $/ \mathrm{w}$; 0. 3-5.9 METs for <5 times/w and <6 METs for <3 times/w. BMI: $1 .<25 \mathrm{~kg} / \mathrm{m}^{2} ; 0 . \geq 25 \mathrm{~kg} / \mathrm{m}^{2}$. Diet (AHA, FFQ): $1 . \geq 2$ points; $0 .<2$ points. TC: $1 .<200 \mathrm{mg} / \mathrm{dl}$ (untreated); 0 . $<200 \mathrm{mg} / \mathrm{dl}$ (treated) or $\geq 200 \mathrm{mg} / \mathrm{dl}$. SBP/DBP: 1. <120 and 80 mmHg (untreated); $0 .<120 / 80 \mathrm{mmHg}$ (treated) or $\geq 120 / 80 \mathrm{mmHg}$. HbA1c: $1 .<5.7 \% ; 0 . \geq 5.7 \%$.	8
$\begin{aligned} & \text { Zhang- } \\ & 2017^{151} \end{aligned}$	Shanghai Men's Health Study	China	$\begin{aligned} & 2002-2013 \\ & (9.29) \end{aligned}$	100	$\begin{aligned} & 40-74 \\ & (55.34) \end{aligned}$	Asian predominant	59.90	general population	59747	CVD mortality (ICD-9, 390-459) was identified through Shanghai Vital Statistics.	Smoking: 1. never smokers or quitting ≥ 10 years; 0 . current smokers or quitting <10 years. Alcohol drinking: $1 . \leq 14$ drinks/w; 0. >14 drinks/w. PA: 1 . MVPA $\geq 150 \mathrm{~min} / \mathrm{w}$ (2 MET-	8

Author-year	Cohort	Country	Follow-up duration (mean or median)	$\begin{aligned} & \text { Men } \\ & (\%) \end{aligned}$	Age (mean)	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	$\begin{aligned} & \text { NOS } \\ & \text { score } \end{aligned}$
hou-	The	China	1983-2005	49.57	-59	Asian 100	NA		938	CVD mortality was	h/d); 0. MVPA < $150 \mathrm{~min} / \mathrm{w}$. Diet (Chinese Food Pagoda score consisting of grains, vegetables, fruits, dairy, beans, meat and poultry, fish and shrimp, eggs, fats and oils, and salt, FFQ): 1. top three quintiles; 0 . lower two quintiles.	
$2018{ }^{152}$	People's Republic of China- USA Collabor ative Study of Cardiova scular and Cardiopu lmonary Epidemi ology		(20.30)					lation		identified through death certificates or hospital records obtained from next-of-kin or local death registration department.	smokers. PA: 1. took part in physical exercises regularly; 0. not took part in physical exercises regularly. BMI: $1 .<24 \mathrm{~kg} / \mathrm{m}^{2} ; 0 . \geq 24 \mathrm{~kg} / \mathrm{m}^{2}$. Diet (AHA, 24-h dietary recall): 1. 4- 5 components; 0. 0-3 components. SBP/DBP: $1 .<120 / 80 \mathrm{mmHg}$ (untreated); $0 .<120 / 80 \mathrm{mmHg}$ (treated) or $\geq 120 / 80 \mathrm{mmHg}$. FBG: $1 .<100 \mathrm{mg} / \mathrm{dl}$ (untreated); 0 . $<100 \mathrm{mg} / \mathrm{dl}$ (treated) or $\geq 100 \mathrm{mg} / \mathrm{dl}$. TC: $1 .<200 \mathrm{mg} / \mathrm{dl}$ (untreated); 0 . $<200 \mathrm{mg} / \mathrm{dl}$ (treated) or $\geq 200 \mathrm{mg} / \mathrm{dl}$.	

${ }^{*}$ The percentage of ethnic groups may not sum to 100% since some participants belonged to the other ethnic groups or did not report the information.
${ }^{\dagger}$ These studies were only used in stratified analyses.
${ }^{\ddagger}$ This study also used a 5-point score, which integrated alcohol, fruit, fish, milk, vegetable, and bean intake as a diet item.
${ }^{\S}$ The author provided updated analyses for all-cause mortality, cardiovascular disease mortality and cancer mortality, so the information and data were based on the updated analyses.
\%E, percentage of total energy intake; ACS, American Cancer Society; AHA, American Heart Association; AHEI, Alternative Healthy Eating Index; aMDS, alternative Mediterranean diet score; ASCVD, atherosclerotic cardiovascular disease; BMI, body mass index; CBVD, cerebrovascular disease; CHD, coronary heart disease; CRF, cardiorespiratory fitness; CVD, cardiovascular disease; DASH, Dietary Approaches to Stop Hypertension; DBP, diastolic blood pressure; DF, dietary fiber; DHA, docosahexaenoic acid; EPA, eicosapentaenoic acid; FA, fatty acid; FBG, fasting blood glucose; FFQ, food frequency questionnaire; FPG, fasting plasm glucose; HbA1c, glycosylated hemoglobin; HDL-c, high-density lipoprotein cholesterol; HEI, Healthy Eating Index; HF, heart failure; ICD, International Classification of Diseases; IHD, ischemic heart disease; LTPA, leisure-time physical activity; M/F, for male and female respectively; MDS, Mediterranean diet score; MET, metabolic equivalent of task; MI, myocardial infarction; mMDS, modified Mediterranean diet score; MPA, moderate physical activity; MVPA, moderate to vigorous physical activity; NA, not sweetened beverage; TC, total cholesterol; UK, the United Kingdom; US, the United States; VPA, vigorous physical activity; WC, waist circumference; WHR, waist-to-hip ratio.

Table A5. Characteristics of studies related to cardiovascular disease incidence

Author-year	Cohort	Country	Follow-up duration (mean or median)	$\begin{aligned} & \text { Men } \\ & (\%) \end{aligned}$	Age (mean)	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	$\begin{aligned} & \hline \text { NOS } \\ & \text { score } \end{aligned}$
$\begin{aligned} & \text { Booth- } \\ & 2016^{81} \end{aligned}$	Reasons for Geograp hic and Racial Differen ces in Stroke	US	$\begin{aligned} & 2003-2012 \\ & (5.80) \end{aligned}$	57.56	$\begin{aligned} & 45-79 \\ & (66.60) \end{aligned}$	White 58.23 Black 41.77	89.14	population with a $10-$ year predicted risk $\geq 7.5 \%$	5709	ASCVD (nonfatal or fatal and ischemic or hemorrhagic) and CHD (nonfatal MI or CHD death) event, were identified through telephone contact with participants or proxies, adjudicated by medical records, death certificates, autopsy reports, online sources, and the National Death Index.	Smoking: 1. not current smokers; 0 . current smokers. PA: $1 . \geq 5$ times/w; $0 .<5$ times/w. WC (M/F): $1 . \leq 102 / 88 \mathrm{~cm}$; $0 .>102 / 88 \mathrm{~cm}$. Diet (MDS, FFQ): 1 . top 20%; 0 . lower 80\%. Diet (SFA intake): 1. top 20\%; 0. lower 80%.	8
$\begin{aligned} & \text { Carlsson- } \\ & 2013^{83} \end{aligned}$	"Stockho lm County 1997"	Sweden	$\begin{aligned} & \text { 1997-NA } \\ & (10.85) \end{aligned}$	48.18	$\begin{aligned} & 60-60 \\ & (60.00) \end{aligned}$	White predominant	37.89	general population	4232	Ischemic CVD (ICD-10, I20, I21, I25. I46, I63-I66) including all fatal and non-fatal MI, fatal and non-fatal ischemic stroke, and hospitalizations due to angina pectoris as the primary cause was	Smoking: 1. not current smokers; 0 . current smokers. Alcohol drinking: $1.0 .6-30 \mathrm{~g} / \mathrm{d}$; 0 . $<0.6 \mathrm{~g} / \mathrm{d}$ or $>30 \mathrm{~g} / \mathrm{d}$. PA: 1. LTPA (MVPA) \geq once $/ \mathrm{w} ; 0$. LTPA <once /w. Diet (fish intake): 1.weekly; $0 .<$ once /w. Diet (processed meats as a main meal): $1 .<$ once /w; 0 . weekly; Diet (fruit intake): 1. daily; $0 .<$ once	9

Dong-2012	Northern	US	$1993-2011$	36.30	$40-107$	White 75.00	43.2
	Manhatta		(11.00)		(69.00)	Black 24.99	
	n Study						

Emberson- 2005^{92}	British Regional	UK	$\begin{aligned} & 1978-2000 \\ & \text { (NA) } \end{aligned}$	100	$\begin{aligned} & 40-59 \\ & (49.20) \end{aligned}$	White predominant	NA	general population	6452	Major CVD events including death	$<200 \mathrm{mg} / \mathrm{dl}(\text { treated }) \geq 200 \mathrm{mg} / \mathrm{dl} .$ Smoking: 1 . never smokers; 0 . ever smokers.	7
										from CHD (ICD-9,	PA: 1. moderately vigorous or	
	Study									410-414) and stroke (ICD-9, 430-438)	vigorous; 0. moderate, light, occasional or none PA.	
										along with non-fatal MI or stroke were identified through the National Health	BMI: $1 . \leq 25 \mathrm{~kg} / \mathrm{m}^{2} ; 0 .>25 \mathrm{~kg} / \mathrm{m}^{2}$.	
										Service registers and general practitioner reports.		
Eriksen2015^{156}	Southall and	UK	$\begin{aligned} & 1988-2011 \\ & (21.00) \end{aligned}$	84.56	$\begin{aligned} & 40-69 \\ & (52.09) \end{aligned}$	White 52.00 Asian 48.00	NA	general	2096	CVD included fatal CHD (deaths	Smoking: 1. not current smokers; 0 .	7
	Brent										cohol drinking (M/F): 1. 1-21/14	
	Revisited									MI or its sequelae	units/w; $0 .<1$ or $>21 / 14$ units/w.	
										or atherosclerotic	PA: $1 . \mathrm{MPA} \geq 5 \mathrm{~h} / \mathrm{w}$ or VPA $\geq 2.5 \mathrm{~h} / \mathrm{w}$;	
										heart disease. ICD-	0. MPA $<5 \mathrm{~h} / \mathrm{w}$ and VPA $<2.5 \mathrm{~h} / \mathrm{w}$.	
										9, 410-415; ICD-	Diet (vegetables and fruits, simple	
										10, I200-I259), fatal	dietary questionnaire): $1 . \geq 5.5$	
										stroke (deaths	times/w; 0. <5.5 times/w.	
										caused from		
										following ICD-9		
										codes 430-439 or		
										ICD-10 codes I600-		
										I698), and non-fatal		
										CHD and stroke.		

Folsom$2011{ }^{165}$	Atherosc lerosis	US	1987-2007 (18.70)	43.86	$\begin{aligned} & 45-64 \\ & (54.00) \end{aligned}$	White 75.62 Black 24.38	80.00	general population	12744	CVD events comprised HF	Smoking: 1 . quitting $>12 \mathrm{~m}$ or never smokers; 0 . quitting $\leq 12 \mathrm{~m}$ or current	8
	Risk in									(ICD-9, 428; ICD-	smokers.	
	Commun									10, I50), definite or	PA: 1. MPA $\geq 150 \mathrm{~min} / \mathrm{w}$, or VPA ≥ 75	
	ities									probable MI,	$\mathrm{min} / \mathrm{w}$, or MVPA $\geq 150 \mathrm{~min} / \mathrm{w} ; 0$.	
	Study									definite fatal CHD,	MPA $<150 \mathrm{~min} / \mathrm{w}$, and VPA <75	
										and definite or	$\mathrm{min} / \mathrm{w}, \mathrm{MVPA}<150 \mathrm{~min} / \mathrm{w}$.	
										probable stroke, and	BMI: $1 .<25 \mathrm{~kg} / \mathrm{m}^{2} ; 0 . \geq 25 \mathrm{~kg} / \mathrm{m}^{2}$.	
										were ascertained by	Diet (AHA, FFQ): $1 . \geq 81$ points; 0 .	
										active follow-up,	<81 points.	
										discharge lists from	TC: $1 .<200 \mathrm{mg} / \mathrm{dl}$ (untreated); 0 .	
										the local hospital,	$<200 \mathrm{mg} / \mathrm{dl}$ (treated) or $\geq 200 \mathrm{mg} / \mathrm{dl}$.	
										and death	SBP/DBP: $1 .<120$ and 80 mmHg	
										certificates from	(untreated); $0 .<120 / 80 \mathrm{mmHg}$	
										state vital statistics	(treated) or $\geq 120 / 80 \mathrm{mmHg}$.	

| Greenlee- | Cardiova | US | 1989-2011
 (15.00) | 38.56 | $65-98$ | White 86.71 | 72.91 | general
 population |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2017^{98} | scular | | | | | | | |
| | Health | | | | | | | |
| | Study | | | | | | | |
| | | | | | | | | |

Records) or death \quad Diet (fruits and vegetables, 24-h with ICD-10 code dietary recall): $1 . \geq 400 \mathrm{~g} / \mathrm{d} ; 0 .<400$ I05-I89.9 g/d. Diet (oily fish, 24-h dietary recall): 1. $\geq o n e$ portion/w; 0 . <one portion/w. Diet (red meat, 24-h dietary recall): 1. ≤ 3 portions/w; $0 .>3$ portions/w. Diet (processed meat, 24-h dietary recall): $1 . \leq 1$ portions/w; $0 .>1$ portions/w.
Television viewing: $1 .<4 \mathrm{~h} / \mathrm{d} ; 0 . \geq 4$ h/d.
Sleeping: $1.7-9 \mathrm{~h} / \mathrm{d} ; 0 .<7 \mathrm{~h} / \mathrm{d}$ or >9 h/d.
CVD events were ACS
identified through Smoking: 2. never smokers or hospital records and quitting >1 year; 1. quitting ≤ 1 year; interviews with 0 . current smokers.
participants/proxies, Alcohol drinking (M/F): 2. nonincluding MI, drinker; $1 .<2 / 1$ unit/d; $0 .>2 / 1$ unit/d. congestive HF, and stroke.

PA: 2. LTPA ≥ 8.75 MET-h/w; 1 .
LTPA 0.10-8.74 MET-h/w; 0. zero MET-h/w.
BMI: $2 .<25 \mathrm{~kg} / \mathrm{m}^{2}$ at baseline and age $50 ; 1.25-29.9 \mathrm{~kg} / \mathrm{m}^{2}$ at baseline and $<30 \mathrm{~kg} / \mathrm{m}^{2}$ at age 50 , or 25-29.9 $\mathrm{kg} / \mathrm{m}^{2}$ at age 50 and $<30 \mathrm{~kg} / \mathrm{m}^{2}$ at baseline; $0 . \geq 30 \mathrm{~kg} / \mathrm{m}^{2}$ either baseline, age 50 , or both.
Diet (ACS, including vegetables and fruits, red and processed meats, and
whole grains consumption, FFQ): 2. ≥ 6 score; 1.3 - 5 score; $0 .<3$ score. AHA:
Smoking: 2. never smokers or quitting >1 year; 1 . quitting ≤ 1 year; 0 . current smokers.
PA: 2. LTPA ≥ 8.75 MET-h/w; 1 .
LTPA 0.10-8.74 MET-h/w; 0. zero MET-h/w.
BMI: $2 .<25 \mathrm{~kg} / \mathrm{m}^{2} ; 1.25-29.9$
$\mathrm{kg} / \mathrm{m}^{2} ; 0 . \geq 30 \mathrm{~kg} / \mathrm{m}^{2}$.
Diet (AHA, FFQ): 2. 4-5
components; 1. 2-3 components; 0 . 0-1 components.
SBP/DBP: 2. <120 and 80 mmHg (untreated); 1. 120-139 or 80-89 mmHg (untreated) or <120 and 80 mmHg (treated); $0 . \geq 140$ or 90 mmHg .
FPG: 2. $<100 \mathrm{mg} / \mathrm{dl}$ (untreated); 1. $100-125 \mathrm{mg} / \mathrm{dl}$ (untreated) or <100 $\mathrm{mg} / \mathrm{dl}$ (treated); $0 . \geq 126 \mathrm{mg} / \mathrm{dl}$. TC: $2 .<200 \mathrm{mg} / \mathrm{dl}$ (untreated); 1. $200-239 \mathrm{mg} / \mathrm{dl}$ (untreated) or <200 $\mathrm{mg} / \mathrm{dl}$ (treated); $0 . \geq 240 \mathrm{mg} / \mathrm{dl}$. 7-point score:
Smoking: 1. never smokers or former smokers quitting $>12 \mathrm{~m} ; 0$. current

Risk in

China

project

Hoevenaar-	Monitori	Netherla	$1994-2008$	45.58	$20-65$	White	53.44	general	14639
Blom-2014	ng	nds	(12.00)		(42.00)	predominant			
$\dagger, 158$	Project								
	on Risk								
	Factors								
	for								
	Chronic								

										Register with the Dutch Hospital	and diet.	
Hulsegge- 2016^{167}	Doetinch em	Netherla nds	$\begin{aligned} & 1993-2013 \\ & (12.20) \end{aligned}$	46.00	$\begin{aligned} & 26-66 \\ & (46.00) \end{aligned}$	White predominant	36.00	general population	5263	Discharge data. Fatal CVD cases were ascertained	Smoking: 1. not current smokers; 0 . current smokers.	9
	Cohort									through linkage with Statistics	Alcohol drinking (M/F): 1. one drink/m-2/1 drinks/d (1 drink=10 g);	
										Netherlands, and	$0 .<1$ drink $/ \mathrm{m}$ or $>2 / 1$ drinks/d.	
										non-fatal CVD	PA: $1 . \geq 3.5 \mathrm{~h} / \mathrm{w} ; 0 .<3.5 \mathrm{~h} / \mathrm{w}$.	
										cases were obtained	BMI: $1 .<30 \mathrm{~kg} / \mathrm{m}^{2} .0 . \geq 30 \mathrm{~kg} / \mathrm{m}^{2}$.	
										through	Diet (MDS, FFQ): $1 . \geq 5 ; 0 .<5$.	
										probabilistic		
										linkage with the		
										Dutch Hospital		
										Discharge Registry.		
										ICD-9 codes were		
										$410-414,415.1,$		
										427.5, 428, 430-		
										438, 440-442,		
										443.9, 444, 798.1,		
										798.2, 798.9, and corresponding ICD-		
										$10 .$		
Lachman-	Europea	UK	1993-2008	44.10	39-79	White 99.50	53.38	general	10043	CVD cases	Smoking: 2. never smokers; 1. ever	7
$2016{ }^{65}$	n		(10.00)							including CHD	smokers; 0. current smokers;	
	Prospecti									(ICD-10, I20-I25)	PA: 2. sedentary job with $>1.0 \mathrm{~h} / \mathrm{d}$	
	ve									and stroke were	recreational activity or standing job	
	Investiga									identified through	with $0.5 \mathrm{~h} / \mathrm{d}$ recreational activity or	

tion into

Cance

and
Nutrition
-Norfolk

Lingfors-	"Habo	Sweden	$1985-2013$ (>22.23)	100		$33-42$	White	20.00	General
2019^{114}	study"		(<42)	predominant		population			

| Liu-2018 ${ }^{159}$ | Nurses' | US | $1980-2014$
 (13.30) | 22.18 | $34-75$ | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | White 95.13 | Predomina | diabetes
 (62.61) | | nt |

and FN (surgical operations of coronary arteries). Data from the register of patients treated in hospital and the causes of mortality were also available.
Incident CVD was
defined as fatal and nonfatal CHD and stroke. Medical records were reviewed when the participants reported cardiovascular events on questionnaires. CHD cases including coronary artery bypass graft surgery and nonfatal MI
(ascertained according to the WHO criteria) were
consumption of vegetables, fine white bread, coarse fiber-rich bread, and visible fat, 4-item
questionnaire): 3. 5-7 points; 0. 0-4 points.

5-point score
Smoking: 1. not current smokers; 0 . current smokers.
Alcohol drinking (M/F): 1. 5-30/15
$\mathrm{g} / \mathrm{d} ; 0 .<5 \mathrm{~g} / \mathrm{d}$ or $>30 / 15 \mathrm{~g} / \mathrm{d}$.
MVPA: $1 . \geq 150 \mathrm{~min} / \mathrm{w} ; 0 .<150$ min/w.
BMI: $1 .<25.0 \mathrm{~kg} / \mathrm{m}^{2} ; 0 . \geq 25.0 \mathrm{~kg} / \mathrm{m}^{2}$.
Diet (AHEI, FFQ): 1 . top 40% of each cohort distribution; 0 . lower 60% of each cohort distribution. 4-point score: smoking, drinking, MVPA, and diet.

| | | identified through |
| :--- | :--- | :--- | :--- | :--- |
| medical records. | | |
| Nonfat stroke | | |
| cases defined based | | |

| Ommerborn- | Jackson | US | $2000-2011$ 35.58 $<43->7$ Black 83.94 general
 2016^{169} Heart (8.30) 2 | predominant | | population |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

records, and death	Diet: 2. light salt intake; 1. moderate certificates. salt intake; 0. heavy salt intake.
	SBP/DBP: 2. <120 and 80 mmHg
	(untreated); $1.120-139$ or $80-89$
	mmHg (untreated) or <120 and 80
	mmHg (treated); $0 . \geq 140$ or 90
	mmHg.

records, and death certificates.

CVD cases
including MI, stroke, cardiac procedures and CVD mortality were identified through active surveillance, medical record bstraction unit, and next of kin, physicians, medical coroners.

											3 points.	
$\begin{aligned} & \text { Struijk- } \\ & 2014^{162} \end{aligned}$	Europea n	Netherla nds	$\begin{aligned} & 1993-2008 \\ & (12.20) \end{aligned}$	25.90	$\begin{aligned} & 20-70 \\ & (48.90) \end{aligned}$	White predominant	20.70	general population	33671	CVD cases including CHD	Alcohol drinking (M/F): $10 . \leq 20 / 10$ $\mathrm{g} / \mathrm{d} ; 0 . \geq 60 / 40 \mathrm{~g} / \mathrm{d}$.	9
	Prospecti									(including IHD,	PA: $10 . \geq 3.5 \mathrm{~h} / \mathrm{w} ; 0$. zero h / w.	
	ve									cardiac arrest and	Diet (vegetables, FFQ): $10 . \geq 200 \mathrm{~g} / \mathrm{d}$;	
	Investiga									sudden death, ICD-	0. zero g/d.	
	tion into									9, 410-414, 427.5,	Diet (fruit, FFQ): $10 . \geq 200 \mathrm{~g} / \mathrm{d} ; 0$.	
	Cancer									798.1, 798.2, 798.9;	zero g/d.	
	and									ICD-10, I20-I25,	Diet (DF, FFQ): $10 . \geq 14 \mathrm{~g} / 4.2 \mathrm{MJ} ; 0$.	
	Nutrition									I46, R96), stroke	zero g/4.2MJ.	
	-									(ICD-9, 430-434,	Diet (EPA/DHA, FFQ): $10 . \geq 450$	
	Netherla									436; ICD-10, I60-	mg / d; 0. zero mg/d.	
	nds									I66) and other	Diet (SFA, FFQ): 10. $<10 \% \mathrm{E} ; 0$.	
										cardiovascular	$\geq 15 \% \mathrm{E}$.	
										events such as PAD	Diet (mono trans-FA, FFQ): 10.	
										and HF (ICD-9,	$\geq 1 \% \mathrm{E} ; 0 .<1 \% \mathrm{E}$.	
										428, 415.1, 443.9,	Diet (sodium, FFQ): $10 .<1.68 \mathrm{~g} / \mathrm{d} ; 0$.	
										435, 437, 438, 440-	$\geq 2.52 \mathrm{~g} / \mathrm{d}$.	
										442, 444; ICD-10,		
										G45, I67, I69, I70-		
										I74, I50) were		
										identified through		
										Dutch Centre for		
										Health Care		
										Information.		
Wu-2012 ${ }^{\dagger}$,	Kailuan	China	2006-2010	79.42	18-98	Asian	>6.99	general	91698	CVD events	Smoking: 1. never smokers; 0. ever	7
171	Study		(NA)		(51.52)	predominant		population		including fatal	smokers.	
										nonfatal MI	PA: $1 . \geq 80 \mathrm{~min} / \mathrm{w} ; 0 .<80 \mathrm{~min} / \mathrm{w}$.	

Zhou2018^{152}	The People's	China	$1983-2005$ (20.30)	49.57	$35-59$ (45.80)	Asian 100	NA	general	938	CVD cases were	Smoking: 1. never smokers; 0 . ever	8
	People's		(20.30)		(45.80)			population		defined as MI,	smokers.	
	Republic									CHD, sudden	PA: 1. took part in physical exercises	
	of									cardiac death, fatal	regularly; 0 . not took part in physical	
	China-									or nonfatal stroke,	exercises regularly.	
	USA									and were identified	BMI: $1 .<24 \mathrm{~kg} / \mathrm{m}^{2} ; 0 . \geq 24 \mathrm{~kg} / \mathrm{m}^{2}$.	
	Collabor									through death	Diet (AHA, 24-h dietary recall): 1. 4-	
	ative									certificates or	5 components; 0. 0-3 components.	
	Study of									hospital records	SBP/DBP: $1 .<120 / 80 \mathrm{mmHg}$	

Cardiova	obtained from next-	(untreated); $0 .<120 / 80 \mathrm{mmHg}$
scular	of-kin or local death \quad (treated) or $\geq 120 / 80 \mathrm{mmHg}$.	
and	registration	FBG: $1 .<100 \mathrm{mg} / \mathrm{dl}(\mathrm{untreated);} 0$.
Cardiopu	department.	$<100 \mathrm{mg} / \mathrm{dl}(\mathrm{treated)} \mathrm{or} \geq 100 \mathrm{mg} / \mathrm{dl}$.
lmonary	$\mathrm{TC:} 1 .<200 \mathrm{mg} / \mathrm{dl}(\mathrm{untreated);} 0$.	
Epidemi	$<200 \mathrm{mg} / \mathrm{dl}(\mathrm{treated})$ or $\geq 200 \mathrm{mg} / \mathrm{dl}$.	

* The percentage of ethnic groups may not sum to 100% since some participants belonged to the other ethnic groups or did not report the information.
${ }^{\dagger}$ These studies were only used in stratified analyses.
\%E, percentage of total energy intake; ACS, American Cancer Society; AHA, American Heart Association; AHEI, Alternative Healthy Eating Index; ASCVD, atherosclerotic cardiovascular disease; BMI, body mass index; CHD, coronary heart disease; CVD, cardiovascular disease; DASH, Dietary Approaches to Stop Hypertension; DBP, diastolic blood pressure; DHA, docosahexaenoic acid; ECG, electrocardiogram; eGFR, estimated glomerular filtration rate; EPA, eicosapentaenoic acid; FA, fatty acid; FBG, fasting blood glucose; FFQ, food frequency questionnaire; FPG, fasting plasm glucose; FSG, fasting serum glucose; HbA1c, glycosylated hemoglobin; HF, heart failure; ICD, International Classification of Diseases; IHD, ischemic heart disease; LDL-c, low-density lipoprotein cholesterol; LTPA, leisure-time physical activity; M/F, for male and female respectively; MCE, major cardiovascular events; MDS, Mediterranean diet score; MET, metabolic equivalent of task; MI, myocardial infarction; MPA, moderate physical activity; MVPA, moderate to vigorous physical activity; NA, not available; NOS, Newcastle-Ottawa Scale; PA, physical activity; PAD, peripheral artery disease; SBP, systolic blood pressure; SFA, saturated fatty acid; SSB, sugar-sweetened beverage; TC, total cholesterol; UK, the United Kingdom; US, the United States; VPA, vigorous physical activity; WC, waist circumference; WHO, World Health Organization.

Table A6. Characteristics of studies related to coronary heart disease mortality and stroke mortality

Author-year	Cohort	Country	Follow-up duration (mean or median)	$\begin{aligned} & \text { Men } \\ & (\%) \end{aligned}$	$\begin{aligned} & \text { Age } \\ & \text { (mean) } \end{aligned}$	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	NOS score
CHD Mortality												
Britton2008^{172}	Whitehal $1 \text { II }$	UK	$\begin{aligned} & 1985-2004 \\ & (17.00) \end{aligned}$	66.74	$\begin{aligned} & \hline 35-55 \\ & (44.37) \end{aligned}$	White predominant	NA	general population	9655	CHD incidence was based on clinically verified events and included fatal CHD (ICD-9, 410-414; ICD-10, I20-I25) or incident non-fatal MI (defined following MONItoring trends and determinants of CArdiovascular disease criteria).	Smoking: 1. not current smokers; 0 . current smokers. PA: 1 . MPA or VPA $\geq 3 \mathrm{~h} / \mathrm{w} ; 0$. MPA or VPA $<3 \mathrm{~h} / \mathrm{w}$. Diet (questionnaire): 1. eat fruit or vegetables daily; 0 . not eat fruit or vegetables daily.	7
Eguchi- 2017^{51}	Japan Collabor ative Cohort Study	Japan	$\begin{aligned} & 1988-2009 \\ & (19.30) \end{aligned}$	43.24	$\begin{aligned} & 40-79 \\ & (55.52) \end{aligned}$	Asian predominant	63.88	general population	42647	The cause and date of death were determined by reviewing death certificates. ICD-10 for CHD was I20I25.	Smoking: 1. not current smokers; 0 . current smokers. Alcohol drinking: $1 .<2$ gou/d (46 g ethanol/d); $0 . \geq 2$ gou/d. PA: $1 . \geq 0.5 \mathrm{~h} / \mathrm{d}$ or $\geq 5 \mathrm{~h} / \mathrm{w} ; 0 .<0.5 \mathrm{~h} / \mathrm{d}$ and $<5 \mathrm{~h} / \mathrm{w}$. BMI: $1.21-25 \mathrm{~kg} / \mathrm{m}^{2} ; 0 .<21 \mathrm{~kg} / \mathrm{m}^{2}$ or $>25 \mathrm{~kg} / \mathrm{m}^{2}$. Diet (fruit): $1 . \geq 1$ servings/d; $0 .<1$ serving/d.	8

Author-year	Cohort	Country	Follow-up duration (mean or median)	Men (\%)	Age (mean)	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	NOS score
											Diet (fish): $1 . \geq 1$ servings/d; $0 .<1$ serving/d. Diet (milk): 1. almost daily; 0. <once /d. Sleeping: 1. $5.5-7.4 \mathrm{~h} / \mathrm{d} ; 0 .<5.5 \mathrm{~h} / \mathrm{d}$ or $>7.4 \mathrm{~h} / \mathrm{d}$.	
Knoops$2004{ }^{106}$	Healthy Ageing: a Longitud inal study in Europe	Europe	$\begin{aligned} & 1988-2000 \\ & (10.00) \end{aligned}$	64.43	$\begin{aligned} & 70-90 \\ & (74.24) \end{aligned}$	White predominant	<66.86	general population	2339	Identification of CVD mortality (ICD-9, 390-459) and CHD mortality (ICD-9, 410-414) was not reported.	Smoking: 1. never smokers or quitting >15 years; 0 . quitting ≤ 15 years or current smokers. Alcohol drinking: $1 .>0 \mathrm{~g} / \mathrm{d} ; 0$. none. PA (Voorrips or Morris questionnaire): 1. the intermediate and the highest tertile; 0 . the lowest tertile. Diet (mMDS, dietary history method): $1 . \geq 4$ points; $0 .<4$ points.	8
Meng$1999{ }^{120}$	"Hawaii Departm ent of Health survey"	US	$\begin{aligned} & 1975-1994 \\ & (15.36) \end{aligned}$	49.50	$\begin{aligned} & 18-\mathrm{NA} \\ & (44.81) \end{aligned}$	White 31.06 Asian 62.61	NA	general population	31700	CHD mortality and stroke mortality were identified through the mortality files from the Department of Health.	Smoking: 4. never smokers; 3 . former smokers; 2. current smokers $\leq 1 \mathrm{ppd}$; 1. current smokers 1.1-1.5 ppd; 0 . current smokers $>1.5 \mathrm{ppd}$. Alcohol drinking (M/F): 1. 1-7/3 drinks/w; 0 . none or $>7 / 3$ drinks/w. BMI: 3. 19.6-24.8 kg/m²; $2 .<19.6$ $\mathrm{kg} / \mathrm{m}^{2}$ or $24.9-29.2 \mathrm{~kg} / \mathrm{m}^{2} ; 1$. $29.3-$ $32.5 \mathrm{~kg} / \mathrm{m}^{2} ; 0 . \geq 32.6 \mathrm{~kg} / \mathrm{m}^{2}$.	8

Author-year	Cohort	Country	Follow-up duration (mean or median)	$\begin{aligned} & \hline \text { Men } \\ & (\%) \end{aligned}$	$\begin{aligned} & \hline \text { Age } \\ & \text { (mean) } \end{aligned}$	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	$\begin{aligned} & \text { NOS } \\ & \text { score } \end{aligned}$
											Diet (fat intake from animal products): $1 .>385 \mathrm{~g} / \mathrm{w} ; 0 . \leq 385 \mathrm{~g} / \mathrm{w}$. Diet (fruit and vegetables consumption): 1. >1350 g/w; 0 . $\leq 1350 \mathrm{~g} / \mathrm{w}$.	
$\begin{aligned} & \text { Odegaard- } \\ & 2011^{126} \end{aligned}$	Singapor Chinese Health Study	Singapor e	$\begin{aligned} & 1993-2009 \\ & (11.75) \end{aligned}$	45.09	$\begin{aligned} & 45-74 \\ & (55.35) \end{aligned}$	Asian predominant	<32.70	general population	50466	CHD mortality (ICD-9, 410.0- 414.9 and 427.5) was identified through nationwide registry of birth and death.	Smoking: 1. never smokers; 0 . ever smokers. Alcohol drinking: 1. 1-14 drinks/w; 0 . none or >2 drinks/d. PA: 1 . MPA $\geq 2 \mathrm{~h} / \mathrm{w}$ or any strenuous activity; 0 . MPA $<2 \mathrm{~h} / \mathrm{w}$ or no strenuous activity. BMI (age <65 years/ ≥ 65 years): 1 . $18.5-21.5 / 24.5 \mathrm{~kg} / \mathrm{m}^{2} ; 0 .<18.5 \mathrm{~kg} / \mathrm{m}^{2}$ or $>21.5 / 24.5 \mathrm{~kg} / \mathrm{m}^{2}$. Diet (dietary pattern score characterized by high intake of vegetables, fruits, and soy, FFQ): 1 . upper 60%; 0 . lowest 40%. Sleeping: $1.6-8 \mathrm{~h} / \mathrm{d} ; 0 .<6 \mathrm{~h} / \mathrm{d}$ or ≥ 9 h / d.	7
Struijk- 2014^{162}	Europea n Prospecti ve	Netherla nds	$\begin{aligned} & 1993-2008 \\ & (12.20) \end{aligned}$	25.90	$\begin{aligned} & 20-70 \\ & (48.90) \end{aligned}$	White predominant	20.70	general population	33671	CHD cases (including IHD, cardiac arrest and sudden death; ICD-	Alcohol drinking (M/F): $10 . \leq 20 / 10$ $\mathrm{g} / \mathrm{d} ; 0 . \geq 60 / 40 \mathrm{~g} / \mathrm{d}$. PA: $10 . \geq 3.5 \mathrm{~h} / \mathrm{w}$; 0 . zero h / w. Diet (vegetables, FFQ): $10 . \geq 200$	9

Author-year	Cohort	Country	Follow-up duration (mean or median)	$\begin{aligned} & \text { Men } \\ & (\%) \end{aligned}$	Age (mean)	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	$\begin{aligned} & \hline \text { NOS } \\ & \text { score } \end{aligned}$
	Investiga tion into Cancer and Nutrition Netherla nds									$\begin{aligned} & \hline 9,410-414,427.5, \\ & 798.1,798.2,798.9 ; \\ & \text { ICD-10, I20-I25, } \\ & \text { I46, R96) were } \\ & \text { identified through } \\ & \text { Dutch Centre for } \\ & \text { Health Care } \\ & \text { Information. } \end{aligned}$	g/d; 0. zero g/d. Diet (fruit, FFQ): $10 . \geq 200 \mathrm{~g} / \mathrm{d} ; 0$. zero g / d. Diet (DF, FFQ): $10 . \geq 14 \mathrm{~g} / 4.2 \mathrm{MJ} ; 0$. zero $\mathrm{g} / 4.2 \mathrm{MJ}$. Diet (EPA/DHA, FFQ): $10 . \geq 450$ $\mathrm{mg} / \mathrm{d} ; 0$. zero mg / d. Diet (SFA, FFQ): $10 .<10 \% \mathrm{E} ; 0$. $\geq 15 \%$ E. Diet (mono trans-FA, FFQ): 10 . $\geq 1 \% \mathrm{E}$; $0 .<1 \% \mathrm{E}$. Diet (sodium, FFQ): $10 .<1.68 \mathrm{~g} / \mathrm{d}$; 0 . $\geq 2.52 \mathrm{~g} / \mathrm{d}$.	
Tamosiunas- 2014^{137}	MONItor ing trends and determin ants of CArdiov ascular disease- Lithuani Health,	Lithuania	$\begin{aligned} & 1983-2011 \\ & (13.30) \end{aligned}$	46.13	$\begin{aligned} & 45-64 \\ & (55.18) \end{aligned}$	White predominant	63.66	general population	5635	CHD mortality (ICD-9, 410-414; ICD-10, I20-I25) were identified through the regional mortality register.	Smoking: 1. never smokers; 0 . ever smokers. PA (LTPA): $1 . \geq 7 \mathrm{~h} / \mathrm{w} ; 0 .<7 \mathrm{~h} / \mathrm{w}$. BMI: $1 .<25.0 \mathrm{~kg} / \mathrm{m}^{2} ; 0 . \geq 25.0$ $\mathrm{kg} / \mathrm{m}^{2}$. SBP/DBP: $1 .<120$ and 80 mmHg (untreated); $0 . \geq 120$ or 80 mmHg , or <120 and 80 mmHg (treated). FBG: $1 .<5.55 \mathrm{mmol} / \mathrm{L} ; 0 . \geq 5.55$ mmol/L. TC: $1 .<5.2 \mathrm{mmol} / \mathrm{L} ; 0 . \geq 5.2$ $\mathrm{mmol} / \mathrm{L}$.	8

Author-year	Cohort	Country	Follow-up duration (mean or median)	$\begin{aligned} & \hline \text { Men } \\ & (\%) \end{aligned}$	Age (mean)	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	$\begin{aligned} & \hline \text { NOS } \\ & \text { score } \end{aligned}$
Wingard- 1982^{147}	Human Populati on Laborato r	US	$\begin{aligned} & 1965-1974 \\ & \text { (NA) } \end{aligned}$	47.17	$\begin{aligned} & 30-69 \\ & (<53.28 \\ &) \end{aligned}$	NA	NA	general population	4725	All-cause mortality was identified through California Death Registry.	$<1 \% \mathrm{E} ; 0 . \geq 1 \% \mathrm{E}$. Diet (salt, FFQ): $1 . \leq 6 \mathrm{~g} / \mathrm{d} ; 0 .>6 \mathrm{~g} / \mathrm{d}$. Smoking: 1. never smokers; 0 . ever smokers. Alcohol drinking: $1 .<45$ drinks/m; $0 .>45$ drinks/m. PA: 1. active; 0 . inactive. Quetelet index (weight in pounds/(height in inches) ${ }^{2}$) based on Metropolitan Life Insurance reports: 1. 9.9% underweight- 29.9% overweight; 0 . extreme underweight or overweight. Sleeping: 1.7-8 h/night; $0 .<7$ $\mathrm{h} /$ night or $>8 \mathrm{~h} /$ night.	7
Yang-2012 ${ }^{148}$	National Health and Nutrition Examina tion Surveys III	US	$\begin{aligned} & 1988-2006 \\ & (14.50) \end{aligned}$	48.20	$\begin{aligned} & 20-\mathrm{NA} \\ & (45.00) \end{aligned}$	White 81.10 Black 11.10	61.88	general population	13312	IHD mortality (ICD-10, I20-I25) were identified through the National Death Index.	Smoking: 1. not current smokers; 0 . current smokers. PA: 1. 3-5.9 METs for ≥ 5 times/w or ≥ 6 METs for ≥ 3 times/w; 0. 3-5.9 METs for <5 times/w and <6 METs for <3 times/w. BMI: $1 .<25 \mathrm{~kg} / \mathrm{m}^{2} ; 0 . \geq 25 \mathrm{~kg} / \mathrm{m}^{2}$. Diet (AHA, FFQ): $1 . \geq 2$ points; $0 .<2$ points. TC: $1 .<200 \mathrm{mg} / \mathrm{dl}$ (untreated); 0 .	8

Author-year	Cohort	Country	Follow-up duration (mean or median)	$\begin{aligned} & \hline \text { Men } \\ & (\%) \end{aligned}$	Age (mean)	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	$\begin{aligned} & \hline \text { NOS } \\ & \text { score } \end{aligned}$
											$<200 \mathrm{mg} / \mathrm{dl}$ (treated) or $\geq 200 \mathrm{mg} / \mathrm{dl}$. SBP/DBP: $1 .<120$ and 80 mmHg (untreated); $0 .<120 / 80 \mathrm{mmHg}$ (treated) or $\geq 120 / 80 \mathrm{mmHg}$. HbA1c: $1 .<5.7 \% ; 0 . \geq 5.7 \%$.	
Stroke Mortality												
Eguchi- 2017^{51}	Japan Collabor ative Cohort Study	Japan	$\begin{aligned} & \hline 1988-2009 \\ & (19.30) \end{aligned}$	43.24	$\begin{aligned} & 40-79 \\ & (55.52) \end{aligned}$	Asian predominant	63.88	general population	42647	The cause and date of death were determined by reviewing death certificates. ICD-10 for stroke was I01I99.	Smoking: 1. not current smokers; 0 . current smokers. Alcohol drinking: $1 .<2$ gou/d (46g ethanol/d); $0 . \geq 2$ gou/d. PA: $1 . \geq 0.5 \mathrm{~h} / \mathrm{d}$ or $\geq 5 \mathrm{~h} / \mathrm{w} ; 0 .<0.5 \mathrm{~h} / \mathrm{d}$ and $<5 \mathrm{~h} / \mathrm{w}$. BMI: $1.21-25 \mathrm{~kg} / \mathrm{m}^{2} ; 0 .<21 \mathrm{~kg} / \mathrm{m}^{2}$ or $>25 \mathrm{~kg} / \mathrm{m}^{2}$. Diet (fruit): $1 . \geq 1$ servings/d; $0 .<1$ serving/d. Diet (fish): $1 . \geq 1$ servings/d; $0 .<1$ serving/d. Diet (milk): 1. almost daily; 0. <once /d. Sleeping: 1.5.5-7.4 h/d; $0 .<5.5 \mathrm{~h} / \mathrm{d}$ or $>7.4 \mathrm{~h} / \mathrm{d}$.	8
Li-2018 ${ }^{1}$	Nurses' Health 	US	$\begin{aligned} & 1980-2014 \\ & (27.20- \\ & 33.90) \end{aligned}$	36.00	$\begin{aligned} & 34-75 \\ & (48.96) \end{aligned}$	White 96.34	Predominant	general population	123219	Stroke mortality was identified from state vital statistics	Smoking: 1. never smokers; 0 . ever smokers. Alcohol drinking (M/F): 1. 5-30/15	8

Author-year	Cohort	Country	Follow-up duration (mean or median)	$\begin{aligned} & \hline \text { Men } \\ & (\%) \end{aligned}$	Age (mean)	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	NOS score
	Health Professio nals Follow- Up Study									records, the National Death Index, reports by the families, and the postal system.	$\mathrm{g} / \mathrm{d} ; 0 .<5 \mathrm{~g} / \mathrm{d}$ or $>30 / 15 \mathrm{~g} / \mathrm{d}$. MVPA: $1 .>30 \mathrm{~min} / \mathrm{d} ; 0 . \leq 30 \mathrm{~min} / \mathrm{d}$. BMI: $1.18 .5-24.9 \mathrm{~kg} / \mathrm{m}^{2} ; 0 .<18.5$ $\mathrm{kg} / \mathrm{m}^{2}$ or $\geq 25 \mathrm{~kg} / \mathrm{m}^{2}$. Diet (AHEI, FFQ): 1. top 40% of each cohort distribution; 0 . lower 60% of each cohort distribution.	
Meng1999^{120}	"Hawaii Departm ent of Health survey"	US	$\begin{aligned} & 1975-1994 \\ & (15.36) \end{aligned}$	49.50	$\begin{aligned} & 18-\mathrm{NA} \\ & (44.81) \end{aligned}$	White 31.06 Asian 62.61	NA	general population	31700	Stroke mortality was identified through the mortality files from the Department of Health.	Smoking: 4. never smokers; 3 . former smokers; 2 . current smokers $\leq 1 \mathrm{ppd}$; 1 . current smokers 1.1-1.5 ppd; 0 . current smokers $>1.5 \mathrm{ppd}$. Alcohol drinking (M/F): 1. 1-7/3 drinks/w; 0 . none or $>7 / 3$ drinks/w. BMI: 3. 19.6-24.8 kg/m²; $2 .<19.6$ $\mathrm{kg} / \mathrm{m}^{2}$ or $24.9-29.2 \mathrm{~kg} / \mathrm{m}^{2}$; 1. 29.3$32.5 \mathrm{~kg} / \mathrm{m}^{2} ; 0 . \geq 32.6 \mathrm{~kg} / \mathrm{m}^{2}$. Diet (fat intake from animal products): $1 .>385 \mathrm{~g} / \mathrm{w} ; 0 . \leq 385 \mathrm{~g} / \mathrm{w}$. Diet (fruit and vegetables consumption): $1 .>1350 \mathrm{~g} / \mathrm{w} ; 0$. $\leq 1350 \mathrm{~g} / \mathrm{w}$.	8
$\begin{aligned} & \text { Odegaard- } \\ & 2011^{126} \end{aligned}$	Singapor e Chinese Health	Singapor e	$\begin{aligned} & 1993-2009 \\ & (11.75) \end{aligned}$	45.09	$\begin{aligned} & 45-74 \\ & (55.35) \end{aligned}$	Asian predominant	<32.70	general population	50466	CBVD mortality (ICD-9, 430.0438.0) was identified through	Smoking: 1. never smokers; 0 . ever smokers. Alcohol drinking: 1. 1-14 drinks/w; 0 . none or >2 drinks/d.	7

Author-year	Cohort	Country	Follow-up duration (mean or median)	$\begin{aligned} & \text { Men } \\ & (\%) \end{aligned}$	$\begin{aligned} & \hline \begin{array}{l} \text { Age } \\ \text { (mean) } \end{array} \end{aligned}$	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	NOS score
	Study									nationwide registry of birth and death.	PA: 1 . MPA $\geq 2 \mathrm{~h} / \mathrm{w}$ or any strenuous activity; 0 . MPA $<2 \mathrm{~h} / \mathrm{w}$ or no strenuous activity. BMI (age <65 years/ ≥ 65 years): 1 . $18.5-21.5 / 24.5 \mathrm{~kg} / \mathrm{m}^{2} ; 0 .<18.5 \mathrm{~kg} / \mathrm{m}^{2}$ or $>21.5 / 24.5 \mathrm{~kg} / \mathrm{m}^{2}$. Diet (dietary pattern score characterized by high intake of vegetables, fruits, and soy, FFQ): 1 . upper 60\%; 0 . lowest 40%. Sleeping: $1.6-8 \mathrm{~h} / \mathrm{d} ; 0 .<6 \mathrm{~h} / \mathrm{d}$ or ≥ 9 h/d.	
van Lee- 2016^{144}	Rotterda m Study	Netherla nds	$\begin{aligned} & 1990-2011 \\ & (20.00) \end{aligned}$	40.47	$\begin{aligned} & 55-\mathrm{NA} \\ & (65.43) \end{aligned}$	White predominant	69.73	general population	2987	Stroke mortality (ICD-10, I60-I69) were identified through municipal population registries.	Alcohol drinking (M/F): $1 . \leq 20 / 10$ $\mathrm{g} / \mathrm{d} ; 0 .>20 / 10 \mathrm{~g} / \mathrm{d}$. PA: $1 . \geq 150 \mathrm{~min} / \mathrm{w} ; 0 .<150 \mathrm{~min} / \mathrm{w}$. Diet (vegetable consumption, FFQ): 1. $150-200 \mathrm{~g} / \mathrm{d} ; 0 .<150 \mathrm{~g} / \mathrm{d}$ or >200 g / d. Diet (fruit consumption, FFQ): 1. $\geq 200 \mathrm{~g} / \mathrm{d} ; 0 .<200 \mathrm{~g} / \mathrm{d}$. Diet (DF, FFQ): 1. 30-40 g/d; 0. < 30 g / d or $>40 \mathrm{~g} / \mathrm{d}$. Diet (fish consumption, FFQ): $1 . \geq 2$ portions/w and ≥ 1 oily fish; $0 .<2$ portions/w or <1 oily fish.	9

Author-year	Cohort	Country	Follow-up duration (mean or median)	Men $(\%)$	Age (mean)	

*The percentage of ethnic groups may not sum to 100% since some participants belonged to the other ethnic groups or did not report the information.
\%E, percentage of total energy intake; AHA, American Heart Association; AHEI, Alternative Healthy Eating Index; BMI, body mass index; CHD, coronary heart disease; DBP, diastolic blood pressure; DF, dietary fiber; DHA, docosahexaenoic acid; EPA, eicosapentaenoic acid; FA, fatty acid; FBG, fasting blood glucose; FFQ, food frequency questionnaire; HbA1c, glycosylated hemoglobin; ICD, International Classification of Diseases; IHD, ischemic heart disease; LTPA, leisure-time physical activity; M/F, for male and female respectively; MET, metabolic equivalent of task; MI, myocardial infarction; mMDS, modified Mediterranean diet score; MPA, moderate physical activity; MVPA, moderate to vigorous physical activity; NA, not available; NOS, NewcastleOttawa Scale; PA, physical activity; SBP, systolic blood pressure; SFA, saturated fatty acid; TC, total cholesterol; UK, the United Kingdom; US, the United States; VPA, vigorous physical activity.

Table A7. Characteristics of studies related to incident coronary heart disease, stroke, heart failure, hypertension, atrial fibrillation, and peripheral artery disease

Author-year	Cohort	Country	Follow-up duration (mean or median)	$\begin{aligned} & \text { Men } \\ & (\%) \end{aligned}$	$\begin{aligned} & \text { Age } \\ & \text { (mean) } \end{aligned}$	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	$\begin{aligned} & \text { Sample } \\ & \text { size } \end{aligned}$	Outcome attainment	Definition of healthy lifestyle	$\begin{aligned} & \hline \text { NOS } \\ & \text { score } \end{aligned}$

Incident CHD												
Ahmed-2013 ${ }^{75}$	Multi- Ethnic Study of Atheroscle rosis	US	$\begin{aligned} & 2000-2011 \\ & (7.60) \end{aligned}$	47.00	$\begin{aligned} & 44-84 \\ & (62.00) \end{aligned}$	White 62.00 Black 26.00 Asian 13.00	82.30	general population	6229	CHD events consisting of nonfatal MI, resuscitated cardiac arrest, angina, coronary revascularization, and death due to CHD, were identified through death certificates, medical records, and next-ofkin interviews.	Smoking: 1. not current smokers; 0 . current smokers. PA: 1 . MPA $>150 \mathrm{~min} / \mathrm{w}$ or VPA >75 $\mathrm{min} / \mathrm{w} ; 0$. MPA $\leq 150 \mathrm{~min} / \mathrm{w}$ and VPA $\leq 75 \mathrm{~min} / \mathrm{w}$. BMI: 1. 18.5-24.9; $0 . \geq 25$ or <18.5. Diet (MDS, FFQ): 1. above the median; 0 . below the median.	9
Akesson- 2007^{173}	"Swedish women 48 to 83 year"	Sweden	$\begin{aligned} & 1997-2003 \\ & (6.20) \end{aligned}$	0	$\begin{aligned} & 48-83 \\ & (59.18) \end{aligned}$	White predominant	>23.40	general population	24444	MI cases (ICD-10, I21) were identified through the Swedish National Inpatient and Cause of Death Registers and the Swedish Death Registry.	Smoking: 1. never smokers or quitting smoking ≥ 1 year; 0 . quitting smoking <1 year or current smokers. Alcohol drinking: $1 . \geq 5 \mathrm{~g} / \mathrm{d} ; 0 .<5 \mathrm{~g} / \mathrm{d}$. PA: 1. walked/cycled $\geq 40 \mathrm{~min} / \mathrm{d}$ and vigorous exercise $\geq 1 \mathrm{~h} / \mathrm{w}$; 0 . walked/cycled $<40 \mathrm{~min} / \mathrm{d}$ and vigorous exercise $<1 \mathrm{~h} / \mathrm{w}$. WC: $1 .<85 \mathrm{~cm} ; 0 . \geq 85 \mathrm{~cm}$. Diet (Healthy dietary pattern, consisting of vegetables, fruits, and	

Author-year	Cohort	Country	Follow-up duration (mean or median)	$\begin{aligned} & \hline \text { Men } \\ & (\%) \end{aligned}$	Age (mean)	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	NOS score
											legumes, FFQ): 1. top 60%; 0 . lower 40%.	
Akesson- 2014^{174}	"Swedish men 45 to 79 years"	Sweden	$\begin{aligned} & 1997-2009 \\ & (11.00) \end{aligned}$	100	$\begin{aligned} & 45-79 \\ & (58.60) \end{aligned}$	White predominant	>19.60	general population	20721	MI cases (ICD-10, I21) were identified through the Swedish National Inpatient and Cause of Death Registers and the Swedish Death Registry.	Smoking: 1. never smokers or quitting smoking ≥ 20 years; 0 . quitting smoking <20 years or current smokers. Alcohol drinking: $1.10-30 \mathrm{~g} / \mathrm{d} ; 0 .<10$ g / d or $>30 \mathrm{~g} / \mathrm{d}$. PA: 1. walked/cycled $\geq 40 \mathrm{~min} / \mathrm{d}$ and vigorous exercise $\geq 1 \mathrm{~h} / \mathrm{w}$; 0 . walked/cycled $<40 \mathrm{~min} /$ d and vigorous exercise $<1 \mathrm{~h} / \mathrm{w}$. WC: $1 .<95 \mathrm{~cm} ; 0 . \geq 95 \mathrm{~cm}$. Diet (Recommended Food Score, consisting of fruits, vegetables, legumes, nuts, reduced-fat dairy products, whole grains, and fish, FFQ): 1 . top 20%; 0 . lower 80%.	
Atkins2018^{77}	Clinical Practice Research Datalink \& UK Biobank	UK	$\begin{aligned} & 2000-2016 \\ & (6.25) \end{aligned}$	48.83	$\begin{aligned} & 60-69 \\ & (63.55) \end{aligned}$	White predominant	NA	general population	421411	The methods of identifying CHD cases were not reported.	Clinical Practice Research Datalink: Smoking: 2. never smokers; 1. former smokers; 0 . current smokers. PA: 2. vigorous activity; 1. moderate activity; 0 . none or mild activity. BMI: $2 .<25 \mathrm{~kg} / \mathrm{m}^{2} ; 1.25-29.99 \mathrm{~kg} /$ $\mathrm{m}^{2} ; 0 . \geq 30 \mathrm{~kg} / \mathrm{m}^{2}$.	7

Author-year	Cohort	Country	Follow-up duration (mean or median)	$\begin{aligned} & \hline \text { Men } \\ & (\%) \end{aligned}$	Age (mean)	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	NOS score

SBP/DBP: 2. <120 and 80 mmHg
(untreated); 1. 120-139 or 80-89
mmHg or <120 and 80 mmHg
(treated); $0 . \geq 140$ or 90 mmHg .
FSG: $2 .<5.6 \mathrm{mmol} / 1$ (not treated) or
no data on FSG or diabetes; 1. 5.6-7 $\mathrm{mmol} / \mathrm{l}$ (not treated) or $<5.6 \mathrm{mmol} / 1$ (treated), or diabetes diagnosis and not treated or with no treatment information; $0 .>7 \mathrm{mmol} / 1$ or diabetes diagnosis and treated.
TC: $2 .<5.172 \mathrm{mmol} / 1$ (not treated) or no data on TC; 1. $5.172-6.21 \mathrm{mmol} / 1$ (not treated), or $<5.172 \mathrm{mmol} / 1$ (treated), or hypercholesterolemia diagnosis and not treated or with no treatment information; $0 .>6.21$ $\mathrm{mmol} / \mathrm{l}$, or hypercholesterolemia diagnosis and treated.
UK Biobank:
Smoking: 2. never or quitting $>12 \mathrm{~m}$;

1. quitting $\leq 12 \mathrm{~m} ; 0$. current.

PA: 2. MPA $\geq 150 \mathrm{~min} / \mathrm{w}$, or VPA ≥ 75
$\mathrm{min} / \mathrm{w}$, or MVPA $\geq 150 \mathrm{~min} / \mathrm{w} ; 1$.
MPA 1-149 min/w, or VPA 1-74

Author-year	Cohort	Country	Follow-up duration (mean or	Men $(\%)$	Age (mean)	Ethnicity (\%)*	Proportion of high school graduates	Health status	Sample size	Outcome attainment
score										

Geographi
c and
\min / w, or MVPA 1-149 min/w; 0 . none.
BMI: $2 .<25 \mathrm{~kg} / \mathrm{m}^{2} ; 1.25-29.99 \mathrm{~kg} /$ $\mathrm{m}^{2} ; 0 . \geq 30 \mathrm{~kg} / \mathrm{m}^{2}$.
SBP/DBP: 2. <120 and 80 mmHg
(untreated); 1. 120-139 or 80-89 mmHg or <120 and 80 mmHg (treated); $0 . \geq 140$ or 90 mmHg .
FSG: 2. no self-reported prevalent diabetes and no insulin medication; 1. self-reported prevalent diabetes but no insulin medication; 0 . selfreported prevalent diabetes and insulin medication.
TC: 2. no self-reported prevalent high cholesterol and no cholesterol medication; 1. self-reported prevalent high cholesterol but no cholesterol medication; 0 . self-reported prevalent high cholesterol and cholesterol medication.
CHD (nonfatal MI or Smoking: 1. not current smokers; 0 . 8 acute CHD death) current smokers.
was identified
through telephone WC (M/F): $1 . \leq 102 / 88 \mathrm{~cm} ; 0 .>102 / 88$

Author-year	Cohort	Country	Follow-up duration (mean or median)	$\begin{aligned} & \hline \text { Men } \\ & (\%) \end{aligned}$	Age (mean)	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	NOS score
	Racial Difference s in Stroke									contacts with participants or proxies, adjudicated by medical records, death certificates, autopsy reports, online sources, and the National Death Index.	cm. Diet (MDS, FFQ): 1. top 20\%; 0 . lower 80%.	
$\begin{aligned} & \text { Chiuve- } \\ & 2006^{175} \end{aligned}$	Health Profession als Follow-up Study		$\begin{aligned} & 1986-2002 \\ & \text { (NA) } \end{aligned}$	100	$\begin{aligned} & 40-75 \\ & (53.50) \end{aligned}$	White predominant	Predominant	general population	33759	Incident CHD (nonfatal MI or fatal CHD, confirmed MIs were defined according to WHO criteria, and cardiacspecific troponin levels when available) were identified through medical records, autopsy or hospital records, and some probable cases	Smoking: 1. not current smokers; 0 . current smokers. Alcohol drinking: $1.5-30 \mathrm{~g} / \mathrm{d} ; 0 .<5$ g / d or $>30 \mathrm{~g} / \mathrm{d}$. PA: 1 . MVPA $\geq 30 \mathrm{~min} / \mathrm{d} ; 0$. MVPA $<30 \mathrm{~min} / \mathrm{d}$. BMI: $1 .<25 \mathrm{~kg} / \mathrm{m}^{2} ; 0 . \geq 25 \mathrm{~kg} / \mathrm{m}^{2}$. Diet (AHEI, FFQ): 1. top 40\%; 0 . lower 60\%.	7

Author-year	Cohort	Country	Follow-up duration (mean or median)	$\begin{aligned} & \text { Men } \\ & (\%) \end{aligned}$	Age (mean)	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	NOS score
$\begin{aligned} & \hline \text { Chomistek- } \\ & 2015^{49} \end{aligned}$	Nurses’ Health Study II	US	$\begin{aligned} & 1991-2011 \\ & \text { (NA) } \end{aligned}$	0	$\begin{aligned} & \hline 27-44 \\ & (37.10) \end{aligned}$	White predominant	Predominant	general population	88940	Incident CHD (nonfatal MI according to WHO criteria including symptoms and either diagnostic ECG changes or elevated cardiac enzymes, or fatal CHD) were selfreported and further confirmed by medical records, and autopsy or hospital records.	Smoking: 1. not current smokers; 0 . current smokers. Alcohol drinking: $1.0 .1-14.9 \mathrm{~g} / \mathrm{d} ; 0$. none or $\geq 15 \mathrm{~g} / \mathrm{d}$. PA: 1 . MVPA $\geq 2.5 \mathrm{~h} / \mathrm{w} ; 0$. MVPA <2.5 h/w. Sedentary behavior (watching television): $1 . \leq 7 \mathrm{~h} / \mathrm{w} ; 0 .>7 \mathrm{~h} / \mathrm{w}$. BMI: $1.18 .5-24.9 \mathrm{~kg} / \mathrm{m}^{2} ; 0 .<18.5$ $\mathrm{kg} / \mathrm{m}^{2}$ or $\geq 25 \mathrm{~kg} / \mathrm{m}^{2}$. Diet (AHEI-2010, FFQ): 1. top 40\% (≥ 47 points); 0 . lower 60%.	8^{\dagger}
Dong-2012 ${ }^{90}$	Northern Manhattan Study	US	$\begin{aligned} & 1993-2011 \\ & (11.00) \end{aligned}$	36.30	$\begin{aligned} & 40-107 \\ & (69.00) \end{aligned}$	White 75.00 Black 24.99	43.20	general population	2981	MI cases were identified through telephone interviews and verified by a positive screen.	Smoking: 1. never smokers or quitting >1 year; 0 . quitting ≤ 1 year or current smokers; PA: 1. MPA $\geq 150 \mathrm{~min} / \mathrm{w}$ or VPA ≥ 75 $\mathrm{min} / \mathrm{w}$ or MVPA $\geq 150 \mathrm{~min} / \mathrm{w}$; 0 . MPA $<150 \mathrm{~min} / \mathrm{w}$ and VPA $<75 \mathrm{~min} / \mathrm{w}$ and MVPA $<150 \mathrm{~min} / \mathrm{w}$. BMI: $1 .<25 \mathrm{~kg} / \mathrm{m}^{2} ; 0 . \geq 25 \mathrm{~kg} / \mathrm{m}^{2}$. Diet (AHA, FFQ): 1. $4-5$ components; 0. 0-3 components. SBP/DBP: $1 .<120$ and 80 mmHg (not	8

Author-year	Cohort	Country	Follow-up duration (mean or median)	$\begin{aligned} & \text { Men } \\ & (\%) \end{aligned}$	$\begin{aligned} & \hline \text { Age } \\ & \text { (mean) } \end{aligned}$	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	NOS score
Han-2018 ${ }^{157}$	Prediction for ASCVD Risk in China project	China	$\begin{aligned} & 1998-2015 \\ & (7.24) \end{aligned}$	40.22	$\begin{aligned} & 20->65 \\ & (51.64) \end{aligned}$	Asian 100	NA	general population	93987	CHD cases were identified through hospital records or death certificates.	7-point score: Smoking: 1. never smokers or former smokers quitting $>12 \mathrm{~m} ; 0$. current smokers or former smokers quitting $\leq 12 \mathrm{~m}$. PA: 1. MPA $\geq 150 \mathrm{~min} / \mathrm{w}$ or VPA ≥ 75 $\mathrm{min} / \mathrm{w}$ or MVPA $\geq 150 \mathrm{~min} / \mathrm{w}$; 0 . MPA $<150 \mathrm{~min} / \mathrm{w}$ and VPA $<75 \mathrm{~min} / \mathrm{w}$ and MVPA $<150 \mathrm{~min} / \mathrm{w}$. BMI: $1 .<25 \mathrm{~kg} / \mathrm{m}^{2} ; 0 . \geq 25 \mathrm{~kg} / \mathrm{m}^{2}$. Diet (AHA, FFQ): 1. 4-5 components; 0-3 components. SBP/DBP: $1 .<120 / 80 \mathrm{mmHg}$ (untreated); $0 .<120 / 80 \mathrm{mmHg}$ (treated) or $\geq 120 / 80 \mathrm{mmHg}$. FBG: $1 .<100 \mathrm{mg} / \mathrm{dl}$ (untreated); 0 . $<100 \mathrm{mg} / \mathrm{dl}$ (treated) or $\geq 100 \mathrm{mg} / \mathrm{dl}$. TC: $1 .<200 \mathrm{mg} / \mathrm{dl}$ (untreated); 0 . $<200 \mathrm{mg} / \mathrm{dl}$ (treated) or $\geq 200 \mathrm{mg} / \mathrm{dl}$. 4-point score: smoking, PA, BMI, and diet.	9
Khera- 2016^{176}	Atherosc lerosis Risk in Commun	US	$\begin{aligned} & \text { 1987-NA } \\ & (19.76) \end{aligned}$	23.38	$\begin{aligned} & 45-64 \\ & (55.82) \end{aligned}$	NA	NA	general population	51425	CHD events including MI, coronary revascularization,	Smoking: 1. not current smokers; 0 . current smokers. PA: $1 . \geq$ once $/ \mathrm{w} ; 0 .<$ once /w. BMI: $1 .<30 \mathrm{~kg} / \mathrm{m}^{2} ; 0 . \geq 30 \mathrm{~kg} / \mathrm{m}^{2}$.	8

Author-year	Cohort	Country	Follow-up duration (mean or median)	$\begin{aligned} & \hline \text { Men } \\ & (\%) \end{aligned}$	Age (mean)	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	$\begin{aligned} & \text { NOS } \\ & \text { score } \end{aligned}$
	ities Malmö Diet and Cancer Women's Genome Health Study									and death from coronary causes, were identified through medical records.	Diet (score consisting of fruits, nuts, vegetables, whole grains, fish, dairy products, refined grains, processed meats, unprocessed red meats, and SSB, FFQ): $1 . \geq 6$ points; $0 .<6$ points.	
Lachman- 2016^{65}	Europea n Prospecti ve Investiga tion into Cancer and Nutrition -Norfolk	UK	$\begin{aligned} & 1993-2008 \\ & (10.00) \end{aligned}$	44.10	$\begin{aligned} & 39-79 \\ & (57.00) \end{aligned}$	White 99.50	53.38	general population	10043	CVD cases including CHD (ICD-10, I20-I25) and stroke were identified through the East Norfolk Health Authority database and death certificates (ICD10, CHD, I20-I25; stroke, I60-I63).	Smoking: 2. never smokers; 1. ever smokers; 0. current smokers; PA: 2. sedentary job with $>1.0 \mathrm{~h} / \mathrm{d}$ recreational activity or standing job with $0.5 \mathrm{~h} / \mathrm{d}$ recreational activity or physical job with at least some recreational activity or heavy manual job; 1. sedentary job with $0.1-1.0 \mathrm{~h} / \mathrm{d}$ recreational activity or standing job with $\leq 0.5 \mathrm{~h} / \mathrm{d}$ recreational activity or physical job with no recreational activity; 0 . sedentary job and no recreational activity. BMI: 2. $<25 \mathrm{~kg} / \mathrm{m}^{2} ; 1.25-29.99$ $\mathrm{kg} / \mathrm{m}^{2} ; 0 . \geq 30 \mathrm{~kg} / \mathrm{m}^{2}$.	7

Author-year	Cohort	Country	Follow-up duration (mean or median)	$\begin{aligned} & \text { Men } \\ & (\%) \end{aligned}$	Age (mean)	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	NOS score
											Diet (AHA, FFQ): 2. 4-5 components; 1. 2-3 components; 0 . $0-1$ components. SBP/DBP: 2. <120 and 80 mmHg (not treated); 1. 120-139 or 80-89 mmHg , or <120 and 80 mmHg (treated) $0 . \geq 140$ or 90 mmHg . HbA1c: 2. $<5.7 \%$; 1. 5.7-6.5\%; 0 . $\geq 6.5 \%$. TC: $2 .<5.2 \mathrm{mmol} / \mathrm{l} ; 1.5 .2-6.2$ $\mathrm{mmol} / \mathrm{l} ; 0 . \geq 6.2 \mathrm{mmol} / \mathrm{l}$.	
Lee-2009 ${ }^{110}$	Aerobics Center Longitud inal Study	US	$\begin{aligned} & 1971-2003 \\ & (14.70) \end{aligned}$	100	$\begin{aligned} & 30-79 \\ & (44.13) \end{aligned}$	White >95.00	>70.00	general population	23657	CHD events including nonfatal MI, coronary revascularization and definite fatal CHD (ICD-9, 410414; ICD-10, I20I25) were identified from mail-back health surveys and the National Death Index and official death certificates.	Smoking: 1. never smoking; 0 . ever smoking. Fitness (CRF): 1. higher 80\%; 0 . lower 20\%. WC: $1 .<94 \mathrm{~cm} ; 0 . \geq 94 \mathrm{~cm}$.	7
Leger-	"Fred	US	2010-2016	46.74	20.20-	White 89.15	NA	hematopoi	2198	IHD (not specified	Smoking: 1. not current smokers; 0 .	6

Author-year	Cohort	Country	Follow-up duration (mean or median)	$\begin{aligned} & \text { Men } \\ & (\%) \end{aligned}$	Age (mean)	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	$\begin{aligned} & \text { NOS } \\ & \text { score } \end{aligned}$
$2018{ }^{111}$	Hutchins on Cancer Research Center Study"		(NA)		$\begin{aligned} & \hline 83.30 \\ & (55.90) \end{aligned}$			etic cell transplanta tion survivors		in the article) were identified through annual surveys and annual contact with families, referring providers, and periodic searches of public sources.	current smokers. PA: 1 . VPA $\geq 75 \mathrm{~min} / \mathrm{w}$ or MPA ≥ 150 $\mathrm{min} / \mathrm{w} ; 0$. VPA $<75 \mathrm{~min} / \mathrm{w}$ and MPA $<150 \mathrm{~min} / \mathrm{w}$. Diet (fruit/vegetable intake): $1 . \geq 5$ servings/d; $0 .<5$ servings/d.	
Liu-2018 ${ }^{159}$	Nurses' Health Health Professio nals Follow- Up Study	US	$\begin{aligned} & 1980-2014 \\ & (13.30) \end{aligned}$	22.18	$\begin{aligned} & 34-75 \\ & (62.61) \end{aligned}$	White 95.13	Predomina nt	diabetes patients	11527	CHD cases including coronary artery bypass graft surgery and nonfatal MI (ascertained according to the WHO criteria) were identified through medical records.	5-point score: Smoking: 1. not current smokers; 0 . current smokers. Alcohol drinking (M/F): 1. 5-30/15 $\mathrm{g} / \mathrm{d} ; 0 .<5 \mathrm{~g} / \mathrm{d}$ or $>30 / 15 \mathrm{~g} / \mathrm{d}$. MVPA: $1 . \geq 150 \mathrm{~min} / \mathrm{w} ; 0 .<150$ $\mathrm{min} / \mathrm{w}$. BMI: $1 .<25.0 \mathrm{~kg} / \mathrm{m}^{2} ; 0 . \geq 25.0$ $\mathrm{kg} / \mathrm{m}^{2}$. Diet (AHEI, FFQ): 1. top 40% of each cohort distribution; 0 . lower 60% of each cohort distribution. 4-point score: smoking, drinking, MVPA, and diet.	9
Lv-2017 ${ }^{177}$	China Kadoorie Biobank	China	$\begin{aligned} & 2004-2015 \\ & (7.20) \end{aligned}$	41.01	$\begin{aligned} & 30-79 \\ & (50.69) \end{aligned}$	Asian predominant	<49.45	general population	461211	IHD cases (including IHD death and nonfatal	Smoking: 1. never smokers or stopped for reasons other than illness; 0 . current smokers or stopped	9

Author-year	Cohort	Country	Follow-up duration (mean or median)	$\begin{aligned} & \text { Men } \\ & (\%) \end{aligned}$	Age (mean)	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	NOS score
										MI) were identified through local disease and death registries, the national health insurance system, and active followup.	for illness. Alcohol drinking: 1. 0.1-29.9 g/d; 0 . none or $\geq 30 \mathrm{~g} / \mathrm{d}$. PA: 1. sex-specific upper quarter of the PA level; 0. sex-specific lower three-quarter of the PA level. BMI: $1.18 .5-23.9 \mathrm{~kg} / \mathrm{m}^{2} ; 0 .<18.5$ $\mathrm{kg} / \mathrm{m}^{2}$ or $\geq 24.0 \mathrm{~kg} / \mathrm{m}^{2}$. WHR (M/F): $1 .<0.90 / 0.85 ; 0$. $\geq 0.90 / 0.85$. Diet (FFQ): 1. eating vegetables, fruits, and wheat every day and red meat less than daily; 0 . not eating vegetables, fruits or wheat every day, or eat red meat daily.	
Miao-2015 ${ }^{71}$	Kailuan study	China	$\begin{aligned} & 2006-2013 \\ & (6.81) \end{aligned}$	79.50	$\begin{aligned} & \text { NA } \\ & (51.60) \end{aligned}$	Asian predominant	>6.90	general population	91598	MI cases were identified through discharge summaries, medical records, and death certificates.	Smoking: 2. never smokers; 1. former smokers; 0 . current smokers. PA: $2 . \geq 80 \mathrm{~min} / \mathrm{w} ; 1.0-80 \mathrm{~min} / \mathrm{w} ; 2$. never exercise. BMI: $2 .<25 \mathrm{~kg} / \mathrm{m}^{2} ; 1.25-29.9$ $\mathrm{kg} / \mathrm{m}^{2} ; 0 . \geq 30 \mathrm{~kg} / \mathrm{m}^{2}$. Diet: 2. light salt intake; 1. moderate salt intake; 0 . heavy salt intake. SBP/DBP: 2. <120 and 80 mmHg (untreated); 1. 120-139 or 80-89	9

Author-year	Cohort	Country	Follow-up duration (mean or median)	$\begin{aligned} & \text { Men } \\ & (\%) \end{aligned}$	$\begin{aligned} & \hline \text { Age } \\ & \text { (mean) } \end{aligned}$	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	NOS score
											mmHg (untreated) or <120 and 80 mmHg (treated); $0 . \geq 140$ or 90 mmHg . FBG: $2 .<100 \mathrm{mg} / \mathrm{dl}$ (untreated); 1. $100-125 \mathrm{mg} / \mathrm{dl}$ (untreated) or <100 $\mathrm{mg} / \mathrm{dl}$ (treated); $0 . \geq 126 \mathrm{mg} / \mathrm{dl}$. TC: $2 .<200 \mathrm{mg} / \mathrm{dl}$ (untreated); 1. $200-239 \mathrm{mg} / \mathrm{dl}$ (untreated) or <200 $\mathrm{mg} / \mathrm{dl}$ (treated); $0 . \geq 240 \mathrm{mg} / \mathrm{dl}$.	
Mok-2018 ${ }^{122}$	Atherosc lerosis Risk in Commun ities Study	US	$\begin{aligned} & 1987-2013 \\ & (24.20) \end{aligned}$	43.80	$\begin{aligned} & 45-64 \\ & (54.50) \end{aligned}$	White 75.60 Black 24.40	70.50	general population	13079	MI cases were collected from hospital discharges for insurance status, medical history, and inpatient pharmacologic treatment.	Smoking: 2. never smokers and former smokers quitting >1 year; 1 . former smokers quitting ≤ 1 year; 0 . current smokers. MVPA: $2 . \geq 150 \mathrm{~min} / \mathrm{w} ; 1.1-150$ min/w; 0. none. BMI: $2 .<25 \mathrm{~kg} / \mathrm{m}^{2} ; 1.25-29.9$ $\mathrm{kg} / \mathrm{m}^{2} ; 0 . \geq 30 \mathrm{~kg} / \mathrm{m}^{2}$. Diet (AHA, FFQ): 2. 4-5 components; 1. 2-3 components; 0 . $0-1$ component. SBP/DBP: 2. $<120 / 80 \mathrm{mmHg}$ (untreated); $1 .<120 / 80 \mathrm{mmHg}$ (treated) and $120-139 / 80-89 \mathrm{mmHg}$; $0 . \geq 140 / 90 \mathrm{mmHg}$. FBG: 2. $<5.6 \mathrm{mmol} / 1$ (untreated); 1.	7

Author-year	Cohort	Country	Follow-up duration (mean or median)	Men (\%)	$\begin{aligned} & \hline \text { Age } \\ & \text { (mean) } \end{aligned}$	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	$\begin{aligned} & \text { NOS } \\ & \text { score } \end{aligned}$
											$<5.6 \mathrm{mmol} / 1$ (treated) or 5.6-6.9 $\mathrm{mmol} / 1 ; 0 . \geq 7.0 \mathrm{mmol} / \mathrm{l}$. TC: $2 .<5.2 \mathrm{mmol} / \mathrm{l}$ (untreated); 1. $<5.2 \mathrm{mmol} / \mathrm{l}$ (treated) or 5.2-6.1 $\mathrm{mmol} / \mathrm{l} ; 0 . \geq 6.2 \mathrm{mmol} / \mathrm{l}$.	
Struijk2014^{162}	Europea n Prospecti ve Investiga tion into Cancer and Nutrition Netherla nds	Netherla nds	$\begin{aligned} & 1993-2008 \\ & (12.20) \end{aligned}$	25.90	$\begin{aligned} & 20-70 \\ & (48.90) \end{aligned}$	White predominant	20.70	general population	33671	CHD cases (including IHD, cardiac arrest, and sudden death, ICD9, 410-414, 427.5, 798.1, 798.2, 798.9; ICD-10, I20-I25, I46, R96) were identified through Dutch Centre for Health Care Information.	Alcohol drinking (M/F): 10. $\leq 20 / 10$ $\mathrm{g} / \mathrm{d} ; 0 . \geq 60 / 40 \mathrm{~g} / \mathrm{d}$. PA: $10 . \geq 3.5 \mathrm{~h} / \mathrm{w}$; 0 . zero h/w. Diet (vegetables, FFQ): 10. ≥ 200 g/d; 0 . zero g / d. Diet (fruit, FFQ): $10 . \geq 200 \mathrm{~g} / \mathrm{d} ; 0$. zero g / d. Diet (DF, FFQ): $10 . \geq 14 \mathrm{~g} / 4.2 \mathrm{MJ} ; 0$. zero $\mathrm{g} / 4.2 \mathrm{MJ}$. Diet (EPA/DHA, FFQ): $10 . \geq 450$ mg / d; 0 . zero mg / d. Diet (SFA, FFQ): 10. <10\%E; 0 . $\geq 15 \%$ E. Diet (mono trans-FA, FFQ): 10. $\geq 1 \% \mathrm{E} ; 0 .<1 \% \mathrm{E}$. Diet (sodium, FFQ): $10 .<1.68 \mathrm{~g} / \mathrm{d} ; 0$. $\geq 2.52 \mathrm{~g} / \mathrm{d}$.	9
Taubman2009^{178}	Nurses' Health Study	US	$\begin{aligned} & \text { 1982-2002 } \\ & \text { (NA) } \end{aligned}$	0	$\begin{aligned} & 36-55 \\ & \text { (NA) } \end{aligned}$	White predominant	Predomina nt	general population	78746	Methods for identifying fatal and nonfatal MI cases	Smoking: 1. not current smokers; 0 . current smokers. Alcohol drinking: $1 . \geq 5 \mathrm{~g}$ alcohol/d;	7

Author-year	Cohort	Country	Follow-up duration (mean or median)	Men (\%)	$\begin{aligned} & \hline \begin{array}{l} \text { Age } \\ \text { (mean) } \end{array} \end{aligned}$	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	$\begin{aligned} & \text { NOS } \\ & \text { score } \end{aligned}$
										were not reported.	0. $<5 \mathrm{~g}$ alcohol/d. PA: $1 . \geq 30 \mathrm{~min} / \mathrm{d} ; 0 .<30 \mathrm{~min} / \mathrm{d}$. BMI: $1 .<25 \mathrm{~kg} / \mathrm{m}^{2} ; 0 . \geq 25 \mathrm{~kg} / \mathrm{m}^{2}$. Diet (score consisting of trans fat, glycemic load, cereal fiber, marine n- 3 fatty acids, folate, and the ratio of PUFA to SFA): 1. top two quintiles; 0 . lower three quintiles.	
Zhou- 2018^{152}	The People's Republic of China- USA Collabor ative Study of Cardiova scular and Cardiopu Imonary Epidemi ology	China	$\begin{aligned} & 1983-2005 \\ & (20.30) \end{aligned}$	49.57	$\begin{aligned} & 35-59 \\ & (45.80) \end{aligned}$	Asian 100	NA	general population	938	CVD cases were defined as MI, CHD, sudden cardiac death, fatal or nonfatal stroke, and were identified through death certificates or hospital records obtained from next-of-kin or local death registration department.	Smoking: 1. never smokers; 0 . ever smokers. PA: 1. took part in physical exercises regularly; 0. not took part in physical exercises regularly. BMI: $1 .<24 \mathrm{~kg} / \mathrm{m}^{2} ; 0 . \geq 24 \mathrm{~kg} / \mathrm{m}^{2}$. Diet (AHA, 24-h dietary recall): 1.4- 5 components; 0. 0-3 components. SBP/DBP: $1 .<120 / 80 \mathrm{mmHg}$ (untreated); $0 .<120 / 80 \mathrm{mmHg}$ (treated) or $\geq 120 / 80 \mathrm{mmHg}$. FBG: $1 .<100 \mathrm{mg} / \mathrm{dl}$ (untreated); 0 . $<100 \mathrm{mg} / \mathrm{dl}$ (treated) or $\geq 100 \mathrm{mg} / \mathrm{dl}$. TC: $1 .<200 \mathrm{mg} / \mathrm{dl}$ (untreated); 0 . $<200 \mathrm{mg} / \mathrm{dl}$ (treated) or $\geq 200 \mathrm{mg} / \mathrm{dl}$.	8
Incident Stroke												

Author-year	Cohort	Country	Follow-up duration (mean or median)	$\begin{aligned} & \text { Men } \\ & (\%) \end{aligned}$	Age (mean)	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	$\begin{aligned} & \text { NOS } \\ & \text { score } \end{aligned}$
Atkins- 2018^{77}	Clinical Practice Research Datalink \& UK Biobank	UK	$\begin{aligned} & \text { 2000-2016 } \\ & (6.25) \end{aligned}$	48.83	$\begin{aligned} & 60-69 \\ & (63.55) \end{aligned}$	White predominant	NA	general population	421411	The methods of identifying stroke cases were not reported.	Clinical Practice Research Datalink: Smoking: 2. never smokers; 1. former smokers; 0 . current smokers. PA: 2. vigorous activity; 1 . moderate activity; 0 . none or mild activity. BMI: $2 .<25 \mathrm{~kg} / \mathrm{m}^{2} ; 1.25-29.99 \mathrm{~kg} /$ $\mathrm{m}^{2} ; 0 . \geq 30 \mathrm{~kg} / \mathrm{m}^{2}$. SBP/DBP: 2. <120 and 80 mmHg (untreated); 1. 120-139 or 80-89 mmHg or <120 and 80 mmHg (treated); $0 . \geq 140$ or 90 mmHg . FSG: $2 .<5.6 \mathrm{mmol} / 1$ (not treated) or no data on FSG or diabetes; 1. 5.6-7 $\mathrm{mmol} / \mathrm{l}$ (not treated) or $<5.6 \mathrm{mmol} / 1$ (treated), or diabetes diagnosis and not treated or with no treatment information; $0 .>7 \mathrm{mmol} / 1$ or diabetes diagnosis and treated. TC: 2. $<5.172 \mathrm{mmol} / 1$ (not treated) or no data on TC; 1. 5.172-6.21 mmol/ (not treated), or $<5.172 \mathrm{mmol} / \mathrm{l}$ (treated), or hypercholesterolemia diagnosis and not treated or with no treatment information; $0 .>6.21$ $\mathrm{mmol} / \mathrm{l}$, or hypercholesterolemia	7

Author-year	Cohort	Country	Follow-up duration (mean or	Men $(\%)$	Age $($ mean $)$	Ethnicity (\%)*	Proportion of high school graduates	Health status	Sample size
				Outcome attainment					
score									

diagnosis and treated.

UK Biobank:
Smoking: 2. never or quitting $>12 \mathrm{~m}$;

1. quitting $\leq 12 \mathrm{~m} ; 0$. current.

PA: 2. MPA $\geq 150 \mathrm{~min} / \mathrm{w}$, or $\mathrm{VPA} \geq 75$
$\mathrm{min} / \mathrm{w}$, or MVPA $\geq 150 \mathrm{~min} / \mathrm{w}$; 1 .
MPA 1-149 min/w, or VPA 1-74 $\mathrm{min} / \mathrm{w}$, or MVPA 1-149 min/w; 0 . none.
BMI: $2 .<25 \mathrm{~kg} / \mathrm{m}^{2} ; 1.25-29.99 \mathrm{~kg} /$ $\mathrm{m}^{2} ; 0 . \geq 30 \mathrm{~kg} / \mathrm{m}^{2}$.
SBP/DBP: 2. <120 and 80 mmHg
(untreated); 1. 120-139 or 80-89 mmHg or <120 and 80 mmHg (treated); $0 . \geq 140$ or 90 mmHg . FSG: 2. no self-reported prevalent diabetes and no insulin medication;

1. self-reported prevalent diabetes
but no insulin medication; 0 . selfreported prevalent diabetes and insulin medication.
TC: 2. no self-reported prevalent high cholesterol and no cholesterol medication; 1. self-reported prevalent high cholesterol but no cholesterol

Author-year	Cohort	Country	Follow-up duration (mean or median)	Men (\%)	Age (mean)	Ethnicity (\%)*	Proportion of highschoolgraduates$(\%)$	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	$\begin{aligned} & \text { NOS } \\ & \text { score } \end{aligned}$
											medication; 0 . self-reported prevalent high cholesterol and cholesterol medication.	
Chiuve- 2008^{179}	Health Professio nals Follow- up Study Nurses' Health Study	US	$\begin{aligned} & 1986-2004 \\ & (>19.56) \end{aligned}$	38.01	$\begin{aligned} & \text { NA } \\ & (53.50) \end{aligned}$	White predominant	Predominant	general population	114928	Confirmed strokes (neurological deficit, rapid or sudden onset, lasting $\geq 24 \mathrm{~h}$ or until death, National Survey of Stroke criteria) were identified through selfreported physician diagnosis, adjudicated by medical records. If medical records are unavailable, the cases will be designated as probable cases (25% in Nurses' Health Study and 23\% in Health	Smoking: 1. not current smokers; 0 . current smokers. Alcohol drinking (M/F): 1. 5-30/15 $\mathrm{g} / \mathrm{d} ; 0 .<5 \mathrm{~g} / \mathrm{d}$ or $>30 / 15 \mathrm{~g} / \mathrm{d}$. PA: 1 . MPA $\geq 30 \mathrm{~min} / \mathrm{d} ; 0$. MPA <30 $\mathrm{min} / \mathrm{d}$. BMI: $1 .<25 \mathrm{~kg} / \mathrm{m}^{2} ; 0 . \geq 25 \mathrm{~kg} / \mathrm{m}^{2}$. Diet (AHEI, FFQ): 1. top 40\%; 0 . lower 60\%.	7

Author-year	Cohort	Country	Follow-up duration (mean or median)	$\begin{aligned} & \text { Men } \\ & (\%) \end{aligned}$	$\begin{aligned} & \hline \text { Age } \\ & \text { (mean) } \end{aligned}$	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	NOS score
										Professionals Follow-up Study). Fatal stroke cases were identified by next of kin, postal authorities or the National Death Index and confirmed by medical records, autopsy reports and death certificates.		
Dong-2012 ${ }^{90}$	Northern Manhatta n Study	US	$\begin{aligned} & \text { 1993-2011 } \\ & (11.00) \end{aligned}$	36.30	$\begin{aligned} & 40-107 \\ & (69.00) \end{aligned}$	White 75.00 Black 24.99	43.20	general population	2981	Stroke cases were identified through telephone interviews and verified by a positive screen.	Smoking: 1. never smokers or quitting >1 year; 0 . quitting ≤ 1 year or current smokers; PA: 1 . MPA $\geq 150 \mathrm{~min} / \mathrm{w}$ or VPA ≥ 75 $\mathrm{min} / \mathrm{w}$ or $\mathrm{MVPA} \geq 150 \mathrm{~min} / \mathrm{w} ; 0$. MPA $<150 \mathrm{~min} / \mathrm{w}$ and VPA <75 $\mathrm{min} / \mathrm{w}$ and MVPA $<150 \mathrm{~min} / \mathrm{w}$. BMI: $1 .<25 \mathrm{~kg} / \mathrm{m}^{2} ; 0 . \geq 25 \mathrm{~kg} / \mathrm{m}^{2}$. Diet (AHA, FFQ): 1. 4-5 components; 0. 0-3 components. SBP/DBP: 1. <120 and 80 mmHg (not treated); $0 .<120$ and 80 mmHg (treated) or ≥ 120 or 80 mmHg .	8

Author-year	Cohort	Country	Follow-up duration (mean or median)	$\begin{aligned} & \text { Men } \\ & (\%) \end{aligned}$	Age (mean)	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	NOS score
											FPG: $1 .<100 \mathrm{mg} / \mathrm{dl}$ (not treated); 0 . $<100 \mathrm{mg} / \mathrm{dl}$ (treated) $\geq 100 \mathrm{mg} / \mathrm{d}$. TC: $1 .<200 \mathrm{mg} / \mathrm{dl}$ (not treated); 0 . or $<200 \mathrm{mg} / \mathrm{dl}$ (treated) $\geq 200 \mathrm{mg} / \mathrm{dl}$.	
Ford-2009 ${ }^{69}$	Europea n Prospecti ve Investiga tion into Cancer and Nutrition -Potsdam	Germany	$\begin{aligned} & 1994-2006 \\ & (7.80) \end{aligned}$	38.72	$\begin{aligned} & 35-65 \\ & (49.30) \end{aligned}$	White predominant	62.40	general population	23153	Stroke cases (ICD10, I160, I161, I163, I164) were identified through self-reports and verified through medical records.	Smoking: 1. never smokers; 0 . ever smokers. PA: $1 . \geq 3.5 \mathrm{~h} / \mathrm{w} ; 0 .<3.5 \mathrm{~h} / \mathrm{w}$. BMI: $1 .<30 \mathrm{~kg} / \mathrm{m}^{2} ; 0 . \geq 30 \mathrm{~kg} / \mathrm{mw}$. Diet (summed z score consisting of fruits and vegetables, whole grain bread, and red meat consumption, FFQ): 1. >median; $0 . \leq$ median.	8
Han-2018 ${ }^{157}$	Predictio n for ASCVD Risk in China project	China	$\begin{aligned} & 1998-2015 \\ & (7.24) \end{aligned}$	40.22	$\begin{aligned} & 20->65 \\ & (51.64) \end{aligned}$	Asian 100	NA	general population	93987	Stroke cases were identified through hospital records or death certificates.	7-point score: Smoking: 1. never smokers or former smokers quitting $>12 \mathrm{~m} ; 0$. current smokers or former smokers quitting $\leq 12 \mathrm{~m}$. PA: 1. MPA $\geq 150 \mathrm{~min} / \mathrm{w}$ or VPA ≥ 75 $\mathrm{min} / \mathrm{w}$ or MVPA $\geq 150 \mathrm{~min} / \mathrm{w} ; 0$. MPA $<150 \mathrm{~min} / \mathrm{w}$ and VPA <75 $\mathrm{min} / \mathrm{w}$ and MVPA $<150 \mathrm{~min} / \mathrm{w}$.	9

Author-year	Cohort	Country	Follow-up duration (mean or median)	$\begin{aligned} & \text { Men } \\ & (\%) \end{aligned}$	$\begin{aligned} & \hline \text { Age } \\ & \text { (mean) } \end{aligned}$	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	NOS score
											BMI: $1 .<25 \mathrm{~kg} / \mathrm{m}^{2} ; 0 . \geq 25 \mathrm{~kg} / \mathrm{m}^{2}$. Diet (AHA, FFQ): 1. 4-5 components; 0-3 components. SBP/DBP: $1 .<120 / 80 \mathrm{mmHg}$ (untreated); $0 .<120 / 80 \mathrm{mmHg}$ (treated) or $\geq 120 / 80 \mathrm{mmHg}$. FBG: $1 .<100 \mathrm{mg} / \mathrm{dl}$ (untreated); 0 . $<100 \mathrm{mg} / \mathrm{dl}$ (treated) or $\geq 100 \mathrm{mg} / \mathrm{dl}$. TC: $1 .<200 \mathrm{mg} / \mathrm{dl}$ (untreated); 0 . $<200 \mathrm{mg} / \mathrm{dl}$ (treated) or $\geq 200 \mathrm{mg} / \mathrm{dl}$. 4-point score: smoking, PA, BMI, and diet.	
Kulshreshtha -2013^{180}	Reasons for Geograp hic and Racial Differen ces in Stroke	US	$\begin{aligned} & 2003-2010 \\ & (4.90) \end{aligned}$	42.00	$\begin{aligned} & 45-98 \\ & (65.00) \end{aligned}$	White 58.31 Black 41.69	89.14	general population	22914	Stroke events (defined according to the WHO definition, and those characterized by symptoms lasting $<24 \mathrm{~h}$ with neuroimaging consistent with acute ischemia or hemorrhage were also defined) were identified by	Smoking: 2. never smokers or quitting >1 year; 1 . quitting ≤ 1 year; 0 . current smokers. PA: 2. intense PA ≥ 4 times/w; 1 . intense PA 1-3 times/w; 0. no PA. BMI: 2. $<25 \mathrm{~kg} / \mathrm{m}^{2} ; 1.25-29.99$ $\mathrm{kg} / \mathrm{m}^{2} ; 0 . \geq 30 \mathrm{~kg} / \mathrm{m}^{2}$. Diet (AHA, FFQ): 2. 4-5 components; 1. 2-3 components; 0 . $0-1$ components. SBP/DBP: 2. <120 and 80 mmHg (untreated); 1. 120-139 or 80-89 mmHg or <120 and 80 mmHg	8

Author-year	Cohort	Country	Follow-up duration (mean or median)	$\begin{aligned} & \text { Men } \\ & (\%) \end{aligned}$	$\begin{aligned} & \hline \text { Age } \\ & \text { (mean) } \end{aligned}$	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	$\begin{aligned} & \text { NOS } \\ & \text { score } \end{aligned}$
										contacting with participants or their proxies medical records	(treated); $0 . \geq 140$ or 90 mmHg . FBG: $2 .<100 \mathrm{mg} / \mathrm{dl}$ (untreated); 1. $100-125 \mathrm{mg} / \mathrm{dl}$ or $<100 \mathrm{mg} / \mathrm{dl}$ (treated); $0 . \geq 126 \mathrm{mg} / \mathrm{dl}$. TC: $2 .<200 \mathrm{mg} / \mathrm{dl}$ (untreated); 1. $200-239 \mathrm{mg} / \mathrm{dl}$ or $<200 \mathrm{mg} / \mathrm{dl}$ (treated); $0 . \geq 240 \mathrm{mg} / \mathrm{dl}$.	
Larsson- 2014^{181}	Swedish Mammo graphy Cohort	Sweden	$\begin{aligned} & 1998-2008 \\ & (10.40) \end{aligned}$	0	$\begin{aligned} & 49-83 \\ & (60.95) \end{aligned}$	White predominant	>20.29	general population	31696	Stroke cases (ICD10, cerebral infarction I63, intracerebral hemorrhage I61, subarachnoid hemorrhage I60, and unspecified stroke I64) were identified from the Swedish National Patient Register and the Swedish Cause of Death Register.	Smoking: 1. never smokers; 0. ever smokers. Drinking; $1.5-15 \mathrm{~g} / \mathrm{d} ; 0 .<5 \mathrm{~g} / \mathrm{d}$ or $>15 \mathrm{~g} / \mathrm{d}$. PA: 1. walking/bicycling $\geq 40 \mathrm{~min} / \mathrm{d}$ and exercise $\geq 1 \mathrm{~h} / \mathrm{w} ; 0$. walking $/$ bicycling $<40 \mathrm{~min} / \mathrm{d}$ or exercise $<1 \mathrm{~h} / \mathrm{w}$. BMI: $1 .<25 \mathrm{~kg} / \mathrm{m}^{2} ; 0 . \geq 25 \mathrm{~kg} / \mathrm{m}^{2}$. Diet (Recommended Food Score consisting of fruits, vegetables, legumes, nuts, low-fat dairy foods, whole-grain foods, and fish, FFQ): 1. above the median (21 points); 0 . below the median.	8
Larsson2015^{182}	Cohort of	Sweden	$\begin{aligned} & 1997-2008 \\ & (9.80) \end{aligned}$	100	$\begin{aligned} & 45-79 \\ & (59.00) \end{aligned}$	White predominant	>18.00	general population	35455	Stroke cases including ischemic	Smoking: 1. not current smokers; 0 . current smokers.	9

Author-year	Cohort	Country	Follow-up duration (mean or median)	$\begin{aligned} & \text { Men } \\ & (\%) \end{aligned}$	Age (mean)	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	$\begin{aligned} & \hline \text { NOS } \\ & \text { score } \end{aligned}$
Liu-2018 ${ }^{159}$	Swedish	US	$\begin{aligned} & 1980-2014 \\ & (13.30) \end{aligned}$	22.18	$\begin{aligned} & 34-75 \\ & (62.61) \end{aligned}$	White 95.13	Predomina nt	diabetes patients	11527	stroke (ICD-10, I63), hemorrhagic stroke (ICD-10, I60-I61) and unspecified stroke (I64) were identified through the Swedish National Inpatient Register and the Swedish Cause of Death Register. Nonfatal stroke cases defined based on the National Survey of Stroke criteria were identified through medical records.	Alcohol drinking: 1. $0.1-30 \mathrm{~g} / \mathrm{d} ; 0$. none or $>30 \mathrm{~g} / \mathrm{d}$. PA (walking/bicycling or exercise): $1 . \geq 150 \mathrm{~min} / \mathrm{w} ; 0 .<150 \mathrm{~min} / \mathrm{w}$. BMI: $1.18 .5-25 \mathrm{~kg} / \mathrm{m}^{2} ; 0 . \geq 25$ $\mathrm{kg} / \mathrm{m}^{2}$. Diet (≥ 5 servings/d fruits and vegetables and $<30 \mathrm{~g} / \mathrm{d}$ processed meat, FFQ): 1. yes; 0. no.	9
	Men											
	Nurses'										5-point score:	
	Health										Smoking: 1. not current smokers; 0 .	
	Study \&										current smokers.	
	Health										Alcohol drinking (M/F): 1. 5-30/15	
	Professio										$\mathrm{g} / \mathrm{d} ; 0 .<5 \mathrm{~g} / \mathrm{d}$ or $>30 / 15 \mathrm{~g} / \mathrm{d}$.	
	nals										MVPA: $1 . \geq 150 \mathrm{~min} / \mathrm{w} ; 0 .<150$	
	Follow-										$\mathrm{min} / \mathrm{w}$.	
	Up										BMI: $1 .<25.0 \mathrm{~kg} / \mathrm{m}^{2} ; 0 . \geq 25.0$	
	Study										$\mathrm{kg} / \mathrm{m}^{2}$.	
											Diet (AHEI, FFQ): 1. top 40% of each cohort distribution; 0 . lower	
											60% of each cohort distribution.	
											4-point score: smoking, drinking,	

| Author-year | Cohort | Country | Follow-up
 duration
 (mean or | Men
 $(\%)$ | Age
 (mean) | Ethnicity (\%)* | Proportion
 of high
 school
 graduates
 $(\%)$ | Health
 status | Sample
 size |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | Outcome |
| :--- |
| attainment |

Author-year	Cohort	Country	Follow-up duration (mean or median)	Men (\%)	$\begin{aligned} & \hline \text { Age } \\ & \text { (mean) } \end{aligned}$	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	$\begin{aligned} & \text { NOS } \\ & \text { score } \end{aligned}$
											(untreated); $1 .<120 / 80 \mathrm{mmHg}$ (treated) and $120-139 / 80-89 \mathrm{mmHg}$; $0 . \geq 140 / 90 \mathrm{mmHg}$. FBG: $2 .<5.6 \mathrm{mmol} / 1$ (untreated); 1. $<5.6 \mathrm{mmol} / 1$ (treated) or 5.6-6.9 $\mathrm{mmol} / \mathrm{l} ; 0 . \geq 7.0 \mathrm{mmol} / \mathrm{l}$. TC: $2 .<5.2 \mathrm{mmol} / \mathrm{l}$ (untreated); 1. $<5.2 \mathrm{mmol} / 1$ (treated) or 5.2-6.1 $\mathrm{mmol} / \mathrm{l} ; 0 . \geq 6.2 \mathrm{mmol} / \mathrm{l}$.	
Myint$2009{ }^{183}$	Europea n Prospecti ve Investiga tion into Cancer and Nutrition -Norfolk	UK	$\begin{aligned} & 1993-2007 \\ & (11.50) \end{aligned}$	44.75	$\begin{aligned} & 40-79 \\ & (58.27) \end{aligned}$	White 99.50	53.38	general population	20040	Stroke cases were identified through death certificate data and hospital record linkage.	Smoking: 1. not current smokers; 0 . current smokers. Alcohol drinking: 1. 1-14 units/w; 0 . none or >14 units/w. PA: 1. non-sedentary occupation or LTPA $\geq 30 \mathrm{~min} / \mathrm{d}$; 0 . sedentary occupation and LTPA $<30 \mathrm{~min} / \mathrm{d}$. Diet (plasma vitamin C level): $1 . \geq 50$ $\mu \mathrm{mol} / \mathrm{l} ; 0 .<50 \mu \mathrm{~mol} / \mathrm{l}$.	8
Pase-2016 ${ }^{184}$	Framing ham Offsprin g cohort	US	$\begin{aligned} & 1998-2011 \\ & (>12.57) \end{aligned}$	45.00	$\begin{aligned} & 45-89 \\ & (62.00) \end{aligned}$	White predominant	96.00	general population	2631	Stroke was defined as focal neurological symptoms of rapid onset and presumed vascular origin,	Smoking: 1 . never or quitting $>12 \mathrm{~m}$; 0 . current or quitting $\leq 12 \mathrm{~m}$. PA: 1. MPA $\geq 150 \mathrm{~min} / \mathrm{w}$ or VPA ≥ 75 $\mathrm{min} / \mathrm{w}$ or MVPA $\geq 75 \mathrm{~min} / \mathrm{w} ; 0$. MPA $<150 \mathrm{~min} / \mathrm{w}$ and VPA $<75 \mathrm{~min} / \mathrm{w}$ and MVPA $<75 \mathrm{~min} / \mathrm{w}$.	7

Author-year	Cohort	Country	Follow-up duration (mean or median)	$\begin{aligned} & \hline \text { Men } \\ & (\%) \end{aligned}$	$\begin{aligned} & \hline \begin{array}{l} \text { Age } \\ \text { (mean) } \end{array} \end{aligned}$	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	$\begin{aligned} & \hline \text { NOS } \\ & \text { score } \end{aligned}$
										lasting >24 hours or resulting in death within 24 hours, and was identified through medical records.	BMI: $1 .<25 \mathrm{~kg} / \mathrm{m}^{2} ; 0 . \geq 25 \mathrm{~kg} / \mathrm{m}^{2}$. Diet (score consisting of fruit and vegetables, fish, fiber-rich whole grains, sodium, and SSB consumption, FFQ): 1.>2 components; $0 . \leq 2$ components. SBP/DBP: $1 .<120$ and 80 mmHg (not treated); $0 . \geq 120$ or 80 mmHg , or <120 and 80 mmHg (treated). FPG: $1 .<100 \mathrm{mg} / \mathrm{dl}$ (not treated); 0 . $\geq 100 \mathrm{mg} / \mathrm{dl}$ or $<100 \mathrm{mg} / \mathrm{dl}$ (treated). TC: $1 .<200 \mathrm{mg} / \mathrm{dl}$ (treated); $0 . \geq 200$ $\mathrm{mg} / \mathrm{dl}$ or $<200 \mathrm{mg} / \mathrm{dl}$ (treated).	
Rist-2016 ${ }^{58}$	Women's Health Study	US	$\begin{aligned} & \text { 1992-NA } \\ & (17.20) \end{aligned}$	0	$\begin{aligned} & \text { 45-NA } \\ & \text { (54.67) } \end{aligned}$	White 94.42 Black 2.17	44.06	general population	37634	Stroke cases were identified through self-reported data and confirmed by medical records.	Smoking: 0 . current smokers smoking ≥ 15 cigarettes/d; 1 . current smokers smoking <15 cigarettes/d; 2 . former smokers smoking ≥ 20 packyears; 3. past smokers smoking <20 pack-year; 4. never smokers. Alcohol drinking: 0. never; $1 .<1$ drink/w; 2. ≥ 10.5 drinks/w; 3. 1-3 drinks/w; 4. 4-10.4 drinks/w. PA (strenuous exercise): 0 . rarely or never; 1. <once /w; 2. once /w; 3. 2-3 times/w; 4 . ≥ 4 times/w.	7

Author-year	Cohort	Country	Follow-up duration (mean or median)	$\begin{aligned} & \text { Men } \\ & (\%) \end{aligned}$	$\begin{aligned} & \hline \begin{array}{l} \text { Age } \\ \text { (mean) } \end{array} \end{aligned}$	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	$\begin{aligned} & \text { NOS } \\ & \text { score } \end{aligned}$
Struijk2014^{162}		Netherla nds	$\begin{aligned} & 1993-2008 \\ & (12.20) \end{aligned}$	25.90	$\begin{aligned} & 20-70 \\ & (48.90) \end{aligned}$	White predominant	20,70	general population	33671	Stroke (ICD-9, 430434, 436; ICD-10, I60-I66) cases were identified through the Dutch Centre for Health Care Information.	$\begin{aligned} & \text { BMI: } 0 . \geq 35.0 \mathrm{~kg} / \mathrm{m}^{2} ; 1.30 .0-34.9 \\ & \mathrm{~kg} / \mathrm{m}^{2} ; 2.25 .0-29.9 \mathrm{~kg} / \mathrm{m}^{2} ; 3.22 .0- \\ & 24.9 \mathrm{~kg} / \mathrm{m}^{2} ; 4 .<22.0 \mathrm{~kg} / \mathrm{m}^{2} . \end{aligned}$ Diet (score consisting of cereal fiber, folate, the ratio of PUFA to SFA, omega- 3 fatty acids, trans fats, and glycemic load, FFQ): 0. quintile $1 ; 1$. quintile 2 ; 2 . quintile 3 ; 3 . quintile 4 ; 4. quintile 5 .	9
	$\begin{aligned} & \text { Europea } \\ & \mathrm{n} \end{aligned}$										Alcohol drinking (M/F): 10. $\leq 20 / 10$ $\mathrm{g} / \mathrm{d} ; 0 . \geq 60 / 40 \mathrm{~g} / \mathrm{d}$.	
	Prospecti ve										PA: $10 . \geq 3.5 \mathrm{~h} / \mathrm{w} ; 0$. zero h / w. Diet (vegetables, FFQ): $10 . \geq 200$	
	Investiga										g / d; 0 . zero g / d.	
	tion into										Diet (fruit, FFQ): $10 . \geq 200 \mathrm{~g} / \mathrm{d} ; 0$.	
	Cancer										zero g/d.	
	and										Diet (DF, FFQ): $10 . \geq 14 \mathrm{~g} / 4.2 \mathrm{MJ} ; 0$.	
	Nutrition										zero $\mathrm{g} / 4.2 \mathrm{MJ}$.	
	-										Diet (EPA/DHA, FFQ): $10 . \geq 450$	
	Netherla										mg / d; 0. zero mg/d.	
	nds										Diet (SFA, FFQ): $10 .<10 \% \mathrm{E}$; 0 .	
											Diet (mono trans-FA, FFQ): 10.	
											$\geq 1 \%$ E; $0 .<1 \%$ E.	
											Diet (sodium, FFQ): $10 .<1.68 \mathrm{~g} / \mathrm{d} ; 0$.	

Author-year	Cohort	Country	Follow-up duration (mean or median)	$\begin{aligned} & \text { Men } \\ & (\%) \end{aligned}$	Age (mean)	Ethnicity (\%)*	Proportion of high school graduates	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	$\begin{aligned} & \text { NOS } \\ & \text { score } \end{aligned}$

Author-year	Cohort	Country	Follow-up duration (mean or median)	$\begin{aligned} & \text { Men } \\ & (\%) \end{aligned}$	Age (mean)	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	$\begin{aligned} & \text { NOS } \\ & \text { score } \end{aligned}$
										were diagnosed according to WHO criteria combined with a brain CT or MR) were identified through active follow-up, discharge summaries, medical records, and death certificates.	PA (MVPA): $1 .>80 \mathrm{~min} / \mathrm{w} ; 0 . \leq 80$ min/w. BMI: $1 .<25 \mathrm{~kg} / \mathrm{m} 2 ; 0 . \geq 25 \mathrm{~kg} / \mathrm{m} 2$. Diet (salt, 24-hour dietary salt intake): $1 .<6 \mathrm{~g} / \mathrm{d} ; 0 . \geq 6 \mathrm{~g} / \mathrm{d}$. SBP/DBP: $1 .<120$ and 80 mmHg (without medication); $0 . \geq 120$ or 80 mmHg , or <120 and 80 mmHg (with medicine). FBG: $1 .<100 \mathrm{mg} / \mathrm{dl}$ (without medication); $0 . \geq 100 \mathrm{mg} / \mathrm{dl}$ or <100 $\mathrm{mg} / \mathrm{dl}$ (with medication). TC: $1 .<200 \mathrm{mg} / \mathrm{dl}$ (without medication); $0 . \geq 200 \mathrm{mg} / \mathrm{dl}$ (without medication) or $<200 \mathrm{mg} / \mathrm{dl}$ (with medication).	
Zhou2018^{152}	The People's Republic of China- USA Collabor ative Study of	China	$\begin{aligned} & 1983-2005 \\ & (20.30) \end{aligned}$	49.57	$\begin{aligned} & 35-59 \\ & (45.80) \end{aligned}$	Asian 100	NA	general population	938	CVD cases were defined as MI, CHD, sudden cardiac death, fatal or nonfatal stroke, and were identified through death certificates or hospital records	Smoking: 1. never smokers; 0 . ever smokers. PA: 1. took part in physical exercises regularly; 0. not took part in physical exercises regularly. BMI: $1 .<24 \mathrm{~kg} / \mathrm{m}^{2} ; 0 . \geq 24 \mathrm{~kg} / \mathrm{m}^{2}$. Diet (AHA, 24-h dietary recall): 1. 4- 5 components; 0. 0-3 components. SBP/DBP: $1 .<120 / 80 \mathrm{mmHg}$	8

Author-year	Cohort	Country	Follow-up duration (mean or median)	$\begin{aligned} & \text { Men } \\ & (\%) \end{aligned}$	Age (mean)	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	NOS score
	Cardiova scular and Cardiopu lmonary Epidemi ology									obtained from next-of-kin or local death registration department.	(untreated); $0 .<120 / 80 \mathrm{mmHg}$ (treated) or $\geq 120 / 80 \mathrm{mmHg}$. FBG: $1 .<100 \mathrm{mg} / \mathrm{dl}$ (untreated); 0 . $<100 \mathrm{mg} / \mathrm{dl}$ (treated) or $\geq 100 \mathrm{mg} / \mathrm{dl}$. TC: $1 .<200 \mathrm{mg} / \mathrm{dl}$ (untreated); 0 . $<200 \mathrm{mg} / \mathrm{dl}$ (treated) or $\geq 200 \mathrm{mg} / \mathrm{dl}$.	
Incident Heart Failure												
Agha2014^{186}	Women's Health Initiative Observat ional Study	US	$\begin{aligned} & \text { 1993-1998 } \\ & (11.00) \end{aligned}$	0	$\begin{aligned} & 50-79 \\ & (63.50) \end{aligned}$	White 88.38 Black 7.37	95.38	general population	84537	Hospital HF cases were identified through medical record.	Smoking: 1. not current smokers; 0 . current smokers. PA: 1. MPA $\geq 150 \mathrm{~min} / \mathrm{w}$ or VPA ≥ 75 $\mathrm{min} / \mathrm{w}$; $0 . \mathrm{MPA}<150 \mathrm{~min} / \mathrm{w}$ and VPA $<75 \mathrm{~min} / \mathrm{w}$. BMI: 1. 18.5-24.9; $0 . \geq 25$. Diet (AHEI, FFQ): 1. top 20\%; 0 . lower 80%.	8
Atkins- 2018^{77}	Clinical Practice Research Datalink \& UK Biobank	UK	$\begin{aligned} & 2000-2016 \\ & (6.25) \end{aligned}$	48.83	$\begin{aligned} & 60-69 \\ & (63.55) \end{aligned}$	White predominant	NA	general population	421411	The methods of identifying HF cases were not reported.	Clinical Practice Research Datalink: Smoking: 2. never smokers; 1. former smokers; 0 . current smokers. PA: 2. vigorous activity; 1. moderate activity; 0 . none or mild activity. BMI: $2 .<25 \mathrm{~kg} / \mathrm{m}^{2} ; 1.25-29.99 \mathrm{~kg} /$ $\mathrm{m}^{2} ; 0 . \geq 30 \mathrm{~kg} / \mathrm{m}^{2}$. SBP/DBP: 2. <120 and 80 mmHg (untreated); 1. 120-139 or 80-89	7

Author-year	Cohort	Country	Follow-up duration (mean or median)	$\begin{aligned} & \text { Men } \\ & (\%) \end{aligned}$	$\begin{aligned} & \hline \text { Age } \\ & \text { (mean) } \end{aligned}$	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	$\begin{aligned} & \text { NOS } \\ & \text { score } \end{aligned}$

mmHg or <120 and 80 mmHg
(treated); $0 . \geq 140$ or 90 mmHg .
FSG: $2 .<5.6 \mathrm{mmol} / 1$ (not treated) or no data on FSG or diabetes; 1. 5.6-7 $\mathrm{mmol} / \mathrm{l}$ (not treated) or $<5.6 \mathrm{mmol} / \mathrm{l}$ (treated), or diabetes diagnosis and not treated or with no treatment information; $0 .>7 \mathrm{mmol} / \mathrm{l}$ or diabetes diagnosis and treated.
TC: $2 .<5.172 \mathrm{mmol} / 1$ (not treated) or no data on TG; 1. $5.172-6.21 \mathrm{mmol} / 1$ (not treated), or $<5.172 \mathrm{mmol} / \mathrm{l}$ (treated), or hypercholesterolemia diagnosis and not treated or with no treatment information; $0 .>6.21$ $\mathrm{mmol} / \mathrm{l}$, or hypercholesterolemia diagnosis and treated.
UK Biobank:
Smoking: 2. never or quitting $>12 \mathrm{~m}$;

1. quitting $\leq 12 \mathrm{~m} ; 0$. current.

PA: 2. MPA $\geq 150 \mathrm{~min} / \mathrm{w}$, or $\mathrm{VPA} \geq 75$
\min / w, or MVPA $\geq 150 \mathrm{~min} / \mathrm{w}$; 1 . MPA 1-149 min/w, or VPA 1-74 $\mathrm{min} / \mathrm{w}$, or MVPA 1-149 min/w; 0 .
none.

Author-year	Cohort	Country	Follow-up duration (mean or median)	$\begin{aligned} & \hline \text { Men } \\ & (\%) \end{aligned}$	Age (mean)	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifesty	NOS score
											BMI: $2 .<25 \mathrm{~kg} / \mathrm{m}^{2} ; 1.25-29.99 \mathrm{~kg} /$ $\mathrm{m}^{2} ; 0 . \geq 30 \mathrm{~kg} / \mathrm{m}^{2}$. SBP/DBP: 2. <120 and 80 mmHg (untreated); 1. 120-139 or 80-89 mmHg or <120 and 80 mmHg (treated); $0 . \geq 140$ or 90 mmHg . FSG: 2. no self-reported prevalent diabetes and no insulin medication; 1. self-reported prevalent diabetes but no insulin medication; 0 . selfreported prevalent diabetes and insulin medication. TC: 2. no self-reported prevalent high cholesterol and no cholesterol medication; 1. self-reported prevalent high cholesterol but no cholesterol medication; 0 . self-reported prevalent high cholesterol and cholesterol medication.	
Del Gobbo- 2015^{187}	Cardiova scular Health Study	US	$\begin{aligned} & \text { 1989-NA } \\ & (21.50) \end{aligned}$	39.00	$\begin{aligned} & 65-\mathrm{NA} \\ & (72.00) \end{aligned}$	White 89.00 Black 11.00	72.91	general population	4490	Incident HF cases were identified through annual clinic examinations and telephone inquiries, and	Smoking: 1. not current smokers; 0 . current smokers. Alcohol drinking: $1 . \geq 1$ drink/w; 0 . <1 drink/w. PA: 1 . LTPA $\geq 850 \mathrm{kcal} / \mathrm{w} ; 0$. LTPA $<850 \mathrm{kcal} / \mathrm{w}$.	9

Author-year	Cohort	Country	Follow-up duration (mean or median)	$\begin{aligned} & \text { Men } \\ & (\%) \end{aligned}$	$\begin{aligned} & \hline \begin{array}{l} \text { Age } \\ \text { (mean) } \end{array} \end{aligned}$	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	$\begin{aligned} & \text { NOS } \\ & \text { score } \end{aligned}$
										adjudicated by medical records, diagnostic tests, clinical consultations, and interview. Confirmation of HF required diagnosis by a treating physician, HF symptoms plus signs or supportive findings on echocardiography, contrast ventriculography or chest radiograph, and medical therapy for HF .	BMI: $1 .<30 \mathrm{~kg} / \mathrm{m}^{2} ; 0 . \geq 30 \mathrm{~kg} / \mathrm{m}^{2}$. walking pace: $1 . \geq 2 \mathrm{mph} ; 0 .<2 \mathrm{mph}$.	
Folsom- 2015^{2}	Atherosc lerosis Risk in Commun ities Study	US	$\begin{aligned} & 1987-2011 \\ & (22.50) \end{aligned}$	45.40	$\begin{aligned} & 45-64 \\ & (54.10) \end{aligned}$	White 75.72 Black 24.28	80.00	general population	13462	$\begin{aligned} & \text { HF (ICD-9, 428.0- } \\ & 428.9 ; \text { ICD-10, I50) } \end{aligned}$ including hospitalization or death were identified through	Smoking: 2. Never or quitting >12 months; 1 . quitting <12 months; 0 . current. PA: 2. MPA/MVPA $>150 \mathrm{~min} / \mathrm{w}$ or VPA $>75 \mathrm{~min} / \mathrm{w}$; 1 . MPA/MVPA $1-$ $149 \mathrm{~min} / \mathrm{w}$ or VPA $1-74 \mathrm{~min} / \mathrm{w} ; 0$.	9

Author-year	Cohort	Country	Follow-up duration (mean or median)	$\begin{aligned} & \text { Men } \\ & (\%) \end{aligned}$	Age (mean)	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	$\begin{aligned} & \hline \text { NOS } \\ & \text { score } \end{aligned}$
										contact with participants and ascertained by discharge lists and death certificates.	none PA. BMI: 2. $<25 \mathrm{~kg} / \mathrm{m}^{2} ; 1.25-29.99$ $\mathrm{kg} / \mathrm{m}^{2} ; 0 . \geq 30 \mathrm{~kg} / \mathrm{m}^{2}$. Diet (AHA, FFQ): 2. 4-5 components; 1. 2-3 components; 0 . 0-1 components. SBP/DBP: 2. $<120 / 80 \mathrm{mmHg}$ without medication; 1. 120-139/8089 mmHg or treated to $<120 / 80$ $\mathrm{mmHg} ; 0 . \geq 140 / 90 \mathrm{mmHg}$. FSG: $2 .<100 \mathrm{mg} / \mathrm{dl}$ without medication; $1.100-125 \mathrm{mg} / \mathrm{dl}$ or treated to $<100 \mathrm{mg} / \mathrm{dl} ; 0 . \geq 126 \mathrm{mg} / \mathrm{dl}$. TC: $2 .<200 \mathrm{mg} / \mathrm{dl}$ without medication; $1.200-239 \mathrm{mg} / \mathrm{dl}$ or treated to $<200 \mathrm{mg} / \mathrm{dl} ; 0 .>240$ $\mathrm{mg} / \mathrm{dl}$.	
Larsson- $2016(1)^{188}$		Sweden	$\begin{aligned} & 1997-2010 \\ & (12.10) \end{aligned}$	52.51	$\begin{aligned} & 45-79 \\ & (60.06) \end{aligned}$	White predominant	>18.00	general population	64679	HF cases (ICD-10, I50, and I11.0) were ascertained by linkage with the Swedish National Patient Register and the Swedish Cause of Death Register.	Smoking: 1. not current smokers; 0 . current smokers. PA: 1. $\geq 150 \mathrm{~min} / \mathrm{w} ; 0 .<150 \mathrm{~min} / \mathrm{w}$. BMI: $1.18 .5-25 \mathrm{~kg} / \mathrm{m}^{2} ; 0 .>25$ $\mathrm{kg} / \mathrm{m}^{2}$. Diet (mMDS, FFQ): 1. 4-8 points; 0 . 0-3 points.	8

Author-year	Cohort	Country	Follow-up duration (mean or median)	$\begin{aligned} & \text { Men } \\ & (\%) \end{aligned}$	Age (mean)	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	$\begin{aligned} & \text { NOS } \\ & \text { score } \end{aligned}$
Nayor- 2016^{189}	Framing ham Offsprin g cohort	US	$\begin{aligned} & 1995-2011 \\ & (12.30) \end{aligned}$	47.00	$\begin{aligned} & \hline \text { NA } \\ & (59.00) \end{aligned}$	White predominant	96.00	general population	3201	HF cases were identified through medical records.	Smoking: 2. never smokers or quitting $>12 \mathrm{~m} ; 1$. quitting $\leq 12 \mathrm{~m} ; 0$. current smokers. PA (physical activity index): 2. top quartile; 1 . second quartile; 0 . lower two quartiles. BMI: $2 .<25 \mathrm{~kg} / \mathrm{m}^{2} ; 1.25-29.9$ $\mathrm{kg} / \mathrm{m}^{2} ; 0 . \geq 30 \mathrm{~kg} / \mathrm{m}^{2}$. Diet (AHA, FFQ): 2. 2-5 components; 1. one component; 0 . zero component. SBP/DBP: 2. <120 and 80 mmHg (untreated); 1. 120-139 or 80-89 mmHg (untreated) or <120 and 80 mmHg (treated); $0 . \geq 140$ or 90 mmHg . FPG: 2. $<100 \mathrm{mg} / \mathrm{dl}$ (untreated); 1. $100-125 \mathrm{mg} / \mathrm{dl}$ (untreated) or <100 $\mathrm{mg} / \mathrm{dl}$ (treated); $0 . \geq 126 \mathrm{mg} / \mathrm{dl}$. TC: $2 .<200 \mathrm{mg} / \mathrm{dl}$ (untreated); 1. $200-239 \mathrm{mg} / \mathrm{dl}$ (untreated) or <200 $\mathrm{mg} / \mathrm{dl}$ (treated); $0 . \geq 240 \mathrm{mg} / \mathrm{dl}$.	8
$\begin{aligned} & \text { Ogunmoroti- } \\ & 2017^{190} \end{aligned}$	Multi- Ethnic Study of	US	$\begin{aligned} & 2000-\mathrm{NA} \\ & (12.20) \end{aligned}$	47.00	$\begin{aligned} & 45-84 \\ & (62.00) \end{aligned}$	White 61.00 Black 28.00 Asian 11.00	82.30	general population	6506	HF cases were reported by participants and	Smoking: 1. never smokers and former smokers quitting $>12 \mathrm{~m} ; 0$. former smokers quitting $\leq 12 \mathrm{~m}$ and	8

Author-year	Cohort	Country	Follow-up duration (mean or median)	$\begin{aligned} & \text { Men } \\ & (\%) \end{aligned}$	Age (mean)	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	$\begin{aligned} & \hline \text { NOS } \\ & \text { score } \end{aligned}$
											SBP/DBP: $1 .<120$ and 80 mmHg (untreated); $0 . \geq 120$ or 80 mmHg , or <120 and 80 mmHg (treated). FPG/HbA1c: $1 .<100 \mathrm{mg} / \mathrm{dl}$ or $<5.7 \% ; 0 . \geq 100 \mathrm{mg} / \mathrm{dL}$ and $\geq 5.7 \%$, or $<100 \mathrm{mg} / \mathrm{dl}$ or $<5.7 \%$ (treated). TC: $1 .<200 \mathrm{mg} / \mathrm{dl} ; 0 . \geq 200 \mathrm{mg} / \mathrm{dl}$ or $<200 \mathrm{mg} / \mathrm{dl}$ (treated).	
Wang2011^{192}	FINRIS K Study	Finland	$\begin{aligned} & 1982-2007 \\ & (14.10) \end{aligned}$	48.18	$\begin{aligned} & 25-74 \\ & \text { (NA) } \end{aligned}$	White predominant	<87.78	general population	38075	HF cases (ICD-8, 427.00 and 427.10; ICD-9, 428, 4029B and 4148A-X; ICD- 10, I50, I11.0, I13.0 and I13.2) were identified through the Finnish Hospital Discharge Register and the National Social Insurance Institution's Register.	Smoking: 1. not current smokers; 0 . current smokers. PA: 1. moderate or high; 0 . low. BMI: $1 .<25 \mathrm{~kg} / \mathrm{m}^{2} ; 0 . \geq 25 \mathrm{~kg} / \mathrm{m}^{2}$. Diet (vegetable consumption): $1 . \geq 3$ times/w; $0 . \leq 2$ times/w.	9
Incident AF												
Di Benedetto- 2018^{193}	Europea n Prospecti	UK	$\begin{aligned} & 1993-2015 \\ & (17.10) \end{aligned}$	45.18	$\begin{aligned} & 39-79 \\ & (58.53) \end{aligned}$	White 99.50	53.38	General population	21499	AF (ICD-10, I48) was obtained through routine	Smoking: 1. not current smokers; 0 . current smokers. Alcohol drinking: $1 .<14$ units/w; 0 .	7

Author-year	Cohort	Country	Follow-up duration (mean or median)	$\begin{aligned} & \hline \text { Men } \\ & (\%) \end{aligned}$	Age (mean)	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	NOS score
	ve Investiga tion into Cancer and Nutrition -Norfolk									annual record linkage to National Health Service hospital information systems.	$\begin{aligned} & \geq 14 \text { units } / \mathrm{w} . \text { BMI: } 2 .<25.0 \mathrm{~kg} / \mathrm{m}^{2} ; 1 . \\ & 25.0-27.5 \mathrm{~kg} / \mathrm{m}^{2} ; 0 .>27.5 \mathrm{~kg} / \mathrm{m}^{2} . \end{aligned}$	
Larsson- $2016(2)^{194}$	Cohort of Swedish Swedish Mammo graphy Cohort	Sweden	$\begin{aligned} & 1998-2009 \\ & (10.90) \end{aligned}$	54.29	$\begin{aligned} & 45-79 \\ & (60.46) \end{aligned}$	White predominant	17.00	General population	72390	AF (ICD-10 code I48) was obtained through the linkage of study participants, using the unique personal identification number assigned to each Swedish citizen, with the Swedish National Inpatient Register.	Smoking: 1. not current smokers; 0 . current smokers. Alcohol drinking (M/F): $1 . \leq 2 / 1$ drinks/d; 0. >2/1 drinks/d. PA: 1. regular exercise for ≥ 20 $\mathrm{min} / \mathrm{d}$; 0 . exercise for $<20 \mathrm{~min} / \mathrm{d}$. BMI: $1 .<25 \mathrm{~kg} / \mathrm{m}^{2} ; 0 . \geq 25 \mathrm{~kg} / \mathrm{m}^{2}$.	8
Incident PAD												
Lopez- Laguna- 2018^{195}	PREvenc ión con DIeta MEDiter	Spain	$\begin{aligned} & \text { 2003-NA } \\ & (4.80) \end{aligned}$	42.50	$\begin{aligned} & 55-80 \\ & (67.08) \end{aligned}$	White predominant	22.21	High-risk population	7122	PAD cases were obtained by medical records and confirmed by at	Smoking: 1. not current smokers; 0 . current smokers. Alcohol drinking (M/F): 1. 10-50/5$25 \mathrm{~g} / \mathrm{d} ; 0 .<10 / 5$ or $>50 / 25 \mathrm{~g} / \mathrm{d}$.	8

Author-year	Cohort	Country	Follow-up duration (mean or median)	$\begin{aligned} & \text { Men } \\ & (\%) \end{aligned}$	Age (mean)	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	$\begin{aligned} & \hline \text { NOS } \\ & \text { score } \end{aligned}$
	ránea trial									least one of the following criteria: an ankle-brachial index lower than 0.9 at rest, clinical evidence of arterial occlusive disease, or an endovascular or open surgical revascularization (or amputation).	PA: 1. ≥ 500 METs-min/w; $0 .<500$ METs-min/w. BMI: $1 .<25 \mathrm{~kg} / \mathrm{m}^{2} ; 0 . \geq 25 \mathrm{~kg} / \mathrm{m}^{2}$. Diet (MDS, FFQ): $1 . \geq 9$ points; $0 .<9$ points.	
Unkart- 2019^{196}	Multi- Ethnic Study of Atherosc lerosis	US	$\begin{aligned} & 2000-2012 \\ & (9.20) \end{aligned}$	47.35	$\begin{aligned} & 44-84 \\ & (61.32) \end{aligned}$	White 61.87 Black 25.57 Asian 12.55	>66.12	General population	5529	PAD was defined as an ankle-brachial index $\leqslant 0.9$.	Smoking: 2. never smokers and former smokers quitting $>12 \mathrm{~m} ; 1$. former smokers quitting $\leq 12 \mathrm{~m} ; 0$. current smokers. PA: 2. MPA $\geq 150 \mathrm{~min} / \mathrm{w}$ or VPA ≥ 75 $\mathrm{min} / \mathrm{w} ; 1$. MPA 1-149 min/w or VPA $1-74 \mathrm{~min} / \mathrm{w} ; 0$. no exercise. BMI: 2. $<25.00 \mathrm{~kg} / \mathrm{m}^{2} ; 1.25 .00-$ $29.99 \mathrm{~kg} / \mathrm{m}^{2} ; 0 . \geq 30.00 \mathrm{~kg} / \mathrm{m}^{2}$. Diet (AHA, FFQ): 2. 4-5 components; 1. 2-3 components; 0 . $0-1$ component. SBP/DBP: 2. $<120 / 80 \mathrm{mmHg}$ (untreated); $1.120-139 / 80-89 \mathrm{mmHg}$	7

Author-year	Cohort	Country	Follow-up duration (mean or median)	$\begin{aligned} & \hline \text { Men } \\ & (\%) \end{aligned}$	$\begin{aligned} & \hline \text { Age } \\ & \text { (mean) } \end{aligned}$	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	$\begin{aligned} & \text { NOS } \\ & \text { score } \end{aligned}$
											or $<120 / 80 \mathrm{mmHg}$ (treated); 0 . $\geq 140 / 90 \mathrm{mmHg}$. FBG: 2. $<100 \mathrm{mg} / \mathrm{dl}$ (untreated); 1. $100-125 \mathrm{mg} / \mathrm{dl}$ or $<100 \mathrm{mg} / \mathrm{dl}$ (treated); $0 . \geq 126 \mathrm{mg} / \mathrm{dl}$. TC: $2 .<200 \mathrm{mg} / \mathrm{dl}$ (untreated); 1. $200-239 \mathrm{mg} / \mathrm{dl}$ or $<200 \mathrm{mg} / \mathrm{dl}$ (treated); $0 . \geq 240 \mathrm{mg} / \mathrm{dl}$.	
Incident Hypertension												
Andriolo- 2019^{197}	Europea n Prospecti ve Investiga tion into Cancer and Nutrition -Potsdam	Germany	$\begin{aligned} & \text { 1994-NA } \\ & (10.30) \end{aligned}$	32.01	$\begin{aligned} & 36-65 \\ & (47.38) \end{aligned}$	White predominant	62.40	General population	11923	Incident hypertension was self-reported and verified and confirmed by the treating physician (ICD-10: I10).	Smoking: 1. never smoking; 0 . current and former smoking. PA (Improved Physical Activity Index): 1. moderately active and active/very active; 0 . inactive. BMI: $1 . \leq 25 \mathrm{~kg} / \mathrm{m}^{2} ; 0 .>25 \mathrm{~kg} / \mathrm{m}^{2}$; WC (M/F): $1 . \leq 102 / 88 \mathrm{~cm}$; $0 .>102 / 88 \mathrm{~cm}$. Diet (modified DASH, FFQ): 1. top 2 tertiles; 0. lowest tertile.	9

Author-year	Cohort	Country	Follow-up duration (mean or median)	Men (\%)	$\begin{aligned} & \hline \text { Age } \\ & \text { (mean) } \end{aligned}$	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	$\begin{aligned} & \text { NOS } \\ & \text { score } \end{aligned}$
Banda- 2010^{198}	Aerobics Center Longitud inal Study	US	$\begin{aligned} & 1974-2004 \\ & (10.70) \end{aligned}$	100	$\begin{aligned} & 20-82 \\ & (44.00) \end{aligned}$	White predominant	Predomina nt	general population	14568	Hypertension was identified through questionnaires by asking whether a physician had ever told them they had hypertension.	Smoking: 1. not current smokers; 0 . current smokers. Alcohol drinking: 1. 1-14 drinks/w; 0 . zero or >14 drinks/w. PA: 1. report any activities in the prior three months; 0 . report no activities in the prior three months. BMI: $1.18 .5-24.9 \mathrm{~kg} / \mathrm{m}^{2} ; 0 . \geq 25.0$ $\mathrm{kg} / \mathrm{m}^{2}$. Physically fit (CRF): 1. upper two tertiles; 0 . the lowest tertile.	8
$\begin{aligned} & \text { Chomistek- } \\ & 2015^{49} \end{aligned}$	Nurses' Health Study II	US	$\begin{aligned} & 1991-2011 \\ & \text { (NA) } \end{aligned}$	0	$\begin{aligned} & 27-44 \\ & (37.10) \end{aligned}$	White predominant	Predomina nt	general population	88940	Hypertension cases were self-reported from biennial questionnaires.	Smoking: 1. not current smokers; 0 . current smokers. Alcohol drinking: 1. 0.1-14.9 g/d; 0 . none or $\geq 15 \mathrm{~g} / \mathrm{d}$. PA: 1 . MVPA $\geq 2.5 \mathrm{~h} / \mathrm{w} ; 0$. MVPA $<2.5 \mathrm{~h} / \mathrm{w}$. Sedentary behavior (watching television): $1 . \leq 7 \mathrm{~h} / \mathrm{w} ; 0 .>7 \mathrm{~h} / \mathrm{w}$. BMI: $1.18 .5-24.9 \mathrm{~kg} / \mathrm{m}^{2} ; 0 .<18.5$ $\mathrm{kg} / \mathrm{m}^{2}$ or $\geq 25 \mathrm{~kg} / \mathrm{m}^{2}$. Diet (AHEI-2010, FFQ): 1. top 40\% (≥ 47 points); 0. lower 60%.	7^{\dagger}
Díaz Gutiérrez-	Seguimie nto	Spain	$\begin{aligned} & 1999-2014 \\ & (10.20) \end{aligned}$	32.99	$\begin{aligned} & 19-91 \\ & (35.27) \end{aligned}$	White predominant	100	General population	14057	Hypertension was self-reported, which	Smoking: 1. never smokers; 0 . current or former smokers.	

Author-year	Cohort	Country	Follow-up duration (mean or median)	$\begin{aligned} & \text { Men } \\ & (\%) \end{aligned}$	Age (mean)	Ethnicity (\%)*	Proportion of high school graduates (\%)	Health status	Sample size	Outcome attainment	Definition of healthy lifestyle	$\begin{aligned} & \text { NOS } \\ & \text { score } \end{aligned}$
$2019{ }^{199}$	Universi dad de Navarra Cohort									was validated by a subsample of the cohort.	Alcohol drinking (M/F): 1. 0.1-10/5 g / d; 0 . abstainer or $>10 / 5 \mathrm{~g} / \mathrm{d}$. Binge drinking (≤ 5 alcoholic drinks on any occasion): 1 . never; 0 . ever. PA: 1. >20 METs-h/w; $0 . \leq 20$ METsh/w. BMI: $1 . \leq 22 \mathrm{~kg} / \mathrm{m}^{2} ; 0 .>22 \mathrm{~kg} / \mathrm{m}^{2}$. Diet (MDS, FFQ): $1 . \geq 4$ points; $0 .<4$ points.	
$\begin{aligned} & \text { Nguyen- } \\ & 2019^{200} \end{aligned}$	$\begin{aligned} & 45 \text { and } \\ & \text { Up } \\ & \text { Study } \end{aligned}$	Australia	$\begin{aligned} & \text { 2006-NA } \\ & (2.70) \end{aligned}$	42.03	$\begin{aligned} & \text { 45-NA } \\ & (58.30) \end{aligned}$	White predominant	74.00	General population	32393	Hypertension was self-reported.	Smoking: 1. not current smokers; 0 . current smokers. Alcohol drinking: $1 . \leq 14$ drinks/w; $0 .>14$ drinks/d. PA: 1. MVPA $\geq 150 \mathrm{~min} / \mathrm{w} ; 0$. MVPA $<150 \mathrm{~min} / \mathrm{w}$. BMI: $1 .<25 \mathrm{~kg} / \mathrm{m}^{2} ; 0 . \geq 25 \mathrm{~kg} / \mathrm{m}^{2}$. Diet (questionnaire): $1 . \geq 2$ serves fruit and/or ≥ 3 serves vegetables per day; $0 .<2$ serves fruit and <3 serves vegetables per day. Psychological distress (Kessler-10 scale): $1 .<22$ points; $0 . \geq 22$ points.	5
$\begin{aligned} & \text { Zhang- } \\ & 2014^{54} \end{aligned}$	Kailuan Study	China	$\begin{aligned} & 2006-2011 \\ & (3.63) \end{aligned}$	75.27	NA (47.20)	Asian predominant	>9.64	general population	46147	Hypertension cases were diagnosed if the SBP/DBP	Smoking: 1. never smokers; 0 . ever smokers. PA: $1 . \geq 3$ episodes $/ \mathrm{w}$ and ≥ 30	7

* The percentage of ethnic groups may not sum to 100% since some participants belonged to the other ethnic groups or did not report the information.
${ }^{\dagger}$ Because of the attainments of coronary heart disease cases and hypertension cases were different, the NOS score for coronary heart disease was 8 , whereas the NOS score for hypertension was 7 . * The study was only used in stratified analysis.
\%E, percentage of total energy intake; ACS, American Cancer Society; AHA, American Heart Association; AHEI, Alternative Healthy Eating Index; AICR, American Institute for Cancer Research; AF, atrial fibrillation; ASCVD, atherosclerotic cardiovascular disease; BMI, body mass index; CBVD, cerebrovascular disease; CHD, coronary heart disease; CRF, cardiorespiratory fitness; CVD, cardiovascular disease; DASH, Dietary Approaches to Stop Hypertension; DBP, diastolic blood pressure; DF, dietary fiber; DHA, docosahexaenoic acid; DM, diabetes mellitus; ECG, electrocardiogram; EPA, eicosapentaenoic acid; FA, fatty acid; FBG, fasting blood glucose; FFQ, food frequency questionnaire; FPG, fasting plasm glucose; FSG, fasting serum glucose; HbA1c, glycosylated hemoglobin; HF, heart failure; ICD, International Classification of Diseases; IHD, ischemic heart disease; LTPA, leisure-time physical activity; M/F, for male and female respectively; MDS, Mediterranean diet score; MET, metabolic equivalent of task; MI, myocardial infarction; mMDS, modified Mediterranean diet score; MPA, moderate physical activity; MVPA, moderate to
vigorous physical activity; NA, not available; NOS, Newcastle-Ottawa Scale; PA, physical activity; PAD, peripheral artery disease; PUFA, polyunsaturated fatty acid; SBP, systolic blood pressure; SFA, saturated fatty acid; SSB, sugar-sweetened beverage; TC, total cholesterol; UK, the United Kingdom; US, the United States; VPA, vigorous physical activity; WC, waist circumference; WCRF, World Cancer Research Fund; WHO, World Health Organization; WHR, waist-to-hip ratio.

Table A8. Risk of bias within studies evaluated by the Newcastle-Ottawa Scale

Author-year	Selection of cohorts				Comparability of cohorts*			Assessment of outcome			$\begin{aligned} & \text { NOS } \\ & \text { score } \end{aligned}$
	REC	SNEC	AE	NO	Demographic characteristic	Complications	Other factors	AO	FULE ${ }^{\dagger}$	AFUC ${ }^{\text {* }}$	
Agha-2014 ${ }^{186}$	1	1	1	1	Adjusted	Not adjusted	Adjusted	1	1	0	8
Ahmed-2013 ${ }^{75}$	1	1	1	1	Adjusted	Adjusted	Adjusted	1	1	1	9
Akesson-2007 ${ }^{173}$	1	1	0	1	Adjusted	Adjusted	Adjusted	1	1	1	8
Akesson-2014 ${ }^{174}$	1	1	1	1	Adjusted	Not adjusted	Adjusted	1	1	1	9
Andriolo-2019 ${ }^{197}$	1	1	1	1	Adjusted	Not adjusted	Adjusted	1	1	1	9
Artero-2012 ${ }^{76}$	1	1	1	1	Adjusted	Not adjusted	Adjusted	1	1	1	9
Atkins-2018 ${ }^{77}$	1	1	1	1	Adjusted	Not adjusted	Adjusted	0	1	0	7
Banda-2010 ${ }^{198}$	1	1	1	1	Adjusted	Adjusted	Adjusted	0	1	1	8
Behrens-2013 ${ }^{56}$	1	1	0	1	Adjusted	Not adjusted	Adjusted	1	1	1	8
Berard-2017 ${ }^{78}$	1	1	1	1	Adjusted	Not adjusted	Adjusted	1	1	1	9
Bonaccio-2019 ${ }^{79}$	1	1	1	1	Adjusted	Adjusted	Adjusted	1	1	1	9
Booth-2014 ${ }^{80}$	1	1	1	1	Adjusted	Adjusted	Adjusted	1	0	1	8
Booth-2016 ${ }^{81}$	1	1	1	1	Adjusted	Adjusted	Adjusted	0	1	1	8
Breslow-1980 ${ }^{47}$	1	1	0	1	Adjusted	Not adjusted	Not adjusted	0	1	1	6
Britton-2008 ${ }^{172}$	1	1	1	1	Adjusted	Not adjusted	Not adjusted	1	1	1	8
Carlsson-2010 ${ }^{82}$	1	1	1	1	Adjusted	Not adjusted	Not adjusted	1	1	1	8
Carlsson-2013 ${ }^{83}$	1	1	1	1	Adjusted	Not adjusted	Adjusted	1	1	1	9
Cerhan-2004 ${ }^{84}$	1	1	0	1	Adjusted	Not adjusted	Not adjusted	1	1	1	7
Chakravarty-	1	1	0	1	Adjusted	Adjusted	Adjusted	1	1	1	8
$2012{ }^{85}$											
Cheng-2018 ${ }^{86}$	1	1	0	1	Adjusted	Adjusted	Adjusted	1	1	1	8
Chiuve-2006 ${ }^{175}$	1	1	0	1	Adjusted	Adjusted	Adjusted	0	1	1	7
Chiuve-2008 ${ }^{179}$	1	1	0	1	Adjusted	Not adjusted	Adjusted	0	1	1	7
Chiuve-2011 ${ }^{153}$	1	1	0	1	Adjusted	Adjusted	Adjusted	1	1	1	8
Chomistek-2015 ${ }^{49}$	1	1	0	1	Adjusted	Adjusted	Adjusted	1/0	1	1	$8 / 7{ }^{\text {8 }}$
Cloud-2015 ${ }^{87}$	1	1	0	1	Adjusted	Not adjusted	Not adjusted	1	1	1	7

Author-year	Selection of cohorts				Comparability of cohorts*			Assessment of outcome			$\begin{aligned} & \hline \text { NOS } \\ & \text { score } \end{aligned}$
	REC	SNEC	AE	NO	Demographic characteristic	Complications	Other factors	AO	FULE ${ }^{\dagger}$	AFUC ${ }^{\text {* }}$	
(2) ${ }^{194}$											
Larsson-2017 ${ }^{109}$	1	1	1	1	Adjusted	Adjusted	Adjusted	1	1	1	9
Lee-2009 ${ }^{110}$	1	1	1	1	Adjusted	Adjusted	Adjusted	0	1	0	7
Leger-2018 ${ }^{111}$	1	1	0	1	Adjusted	Not adjusted	Adjusted	0	0	1	6
Li-2018 ${ }^{1}$	1	1	0	1	Adjusted	Adjusted	Adjusted	1	1	1	8
Lin-2012 ${ }^{112}$	1	1	1	1	Adjusted	Adjusted	Adjusted	1	0	0	7
Lin-2015 ${ }^{113}$	1	1	1	1	Adjusted	Not adjusted	Not adjusted	1	1	1	8
Lingfors-2019 ${ }^{114}$	1	1	1	1	Adjusted	Not adjusted	Not adjusted	1	1	1	8
Liu-2014 ${ }^{115}$	1	1	1	1	Adjusted	Not adjusted	Adjusted	1	0	1	8
Liu-2018 ${ }^{159}$	1	1	1	1	Adjusted	Adjusted	Adjusted	1	1	1	9
Lohse-2016 ${ }^{116}$	1	1	1	1	Adjusted	Not adjusted	Adjusted	1	1	1	9
Long-2014 ${ }^{168}$	1	1	1	1	Adjusted	Not adjusted	Adjusted	1	1	1	9
Lopez-Laguna-	1	1	1	1	Adjusted	Adjusted	Adjusted	1	0	1	9
$2018{ }^{195}$											
Luoto-1998 ${ }^{160}$	1	1	1	1	Adjusted	Not adjusted	Adjusted	1	1	1	9
Lv-2017 ${ }^{177}$	1	1	1	1	Adjusted	Not adjusted	Adjusted	1	1	1	9
Maron-2018 ${ }^{60}$	1	1	1	1	Adjusted	Adjusted	Adjusted	1	1	1	9
Martin-Diener-	1	1	1	1	Adjusted	Not adjusted	Adjusted	1	1	1	8
$2014{ }^{117}$											
Martínez-	1	1	1	1	Adjusted	Adjusted	Adjusted	1	1	0	8
González-2013 ${ }^{118}$											
McCullough-	1	1	0	1	Adjusted	Not adjusted	Adjusted	1	1	0	7
2011^{119}											
Meng-1999 ${ }^{120}$	1	1	0	1	Adjusted	Not adjusted	Not adjusted	1	1	1	8
Miao-2015 ${ }^{\text {71 }}$	1	1	1	1	Adjusted	Adjusted	Adjusted	1	1	1	9
Minlikeeva-	1	1	1	1	Adjusted	Not adjusted	Adjusted	1	0	0	7

Author-year	Selection of cohorts				Comparability of cohorts*			Assessment of outcome			$\begin{aligned} & \text { NOS } \\ & \text { score } \\ & \hline \end{aligned}$	
	REC	SNEC	AE	NO	Demographic characteristic	Complications	Other factors	AO	FULE ${ }^{\dagger}$	AFUC ${ }^{\text {* }}$		
Mitchell-2010 ${ }^{161}$	1	1	1	1	Adjusted	Not adjusted	Adjusted	1	1	0	8	
Mok-2018 ${ }^{122} \\|$	1	1	1	1	Adjusted	Adjusted	Adjusted	1	0	0	7	
	1	1	1	1				0	0	0	6	
	1	1	1	1				1	1	0	7	
Muntner-2013 ${ }^{123}$	1	1	1	1	Adjusted	Adjusted	Adjusted	0	0	0	6	
Myint-2009 ${ }^{183}$	1	1	1	1	Adjusted	Adjusted	Adjusted	1	1	0	8	
Nayor-2016 ${ }^{189}$	1	1	1	1	Adjusted	Not adjusted	Adjusted	1	1	0	8	
Nechuta-2010 ${ }^{124}$	1	1	1	1	Adjusted	Not adjusted	Not adjusted	1	1	1	8	
Nguyen-2019200	1	1	0	1	Adjusted	Not adjusted	Adjusted	0	0	0	5	
Nöthlings-2010 ${ }^{28}$	1	1	1	1	Adjusted	Adjusted	Adjusted	1	1	0	8	
Odegaard-2011 ${ }^{126}$	1	1	0	1	Adjusted	Not adjusted	Adjusted	1	1	0	7	
Ogunmoroti-	1	1	1	1	Adjusted	Not adjusted	Adjusted	1	1	0	8	
$2017{ }^{190}$												
Ommerborn-	1	1	1	1	Adjusted	Not adjusted	Not adjusted	1	1	1	8	
$2016{ }^{169}$												
Patel-2018 ${ }^{127}$	1	1	0	1	Adjusted	Adjusted	Adjusted	1	1	0	7	
Paynter-2014 ${ }^{170}$	1	1	1	1	Adjusted	Adjusted	Adjusted	1	1	1	9	
Pelser-2014 ${ }^{128}$	1	1	0	1	Adjusted	Not adjusted	Adjusted	1	1	0	7	
Petersen-2015 ${ }^{129}$	1	1	1	1	Adjusted	Not adjusted	Not adjusted	1	1	1	8	
Prinelli-2015 ${ }^{130}$	1	1	1	1	Adjusted	Not adjusted	Adjusted	1	1	1	9	
Ricardo-2013 ${ }^{131}$	1	1	1	1	Adjusted	Adjusted	Adjusted	1	1	0	8	
Ricardo-2015 ${ }^{132}$	1	1	1	1	Adjusted	Adjusted	Adjusted	0	0	0	6	
Rist-2016 ${ }^{58}$	1	1	0	1	Adjusted	Adjusted	Adjusted	1	1	0	7	
Rizzuto-2016 ${ }^{133}$	1	1	1	1	Adjusted	Adjusted	Adjusted	1	1	1	9	
Romaguera-2015 ${ }^{3}$	1	1	0	1	Adjusted	Not adjusted	Adjusted	0	0	1	6	
Sovic-2012 ${ }^{134}$	1	1	1	1	Adjusted	Adjusted	Adjusted	0	0	1	7	
Spahillari-2017 ${ }^{191}$	1	1	1	1	Adjusted	Not adjusted	Not adjusted	1	1	1	8	

Author-year	Selection of cohorts				Comparability of cohorts*			Assessment of outcome			$\begin{aligned} & \text { NOS } \\ & \text { score } \end{aligned}$
	REC	SNEC	AE	NO	Demographic characteristic	Complications	Other factors	AO	FULE ${ }^{\dagger}$	AFUC ${ }^{\text {* }}$	
Struijk-2014 ${ }^{162}$	1	1	1	1	Adjusted	Not adjusted	Adjusted	1	1	1	9
$\begin{aligned} & \text { Tamakoshi- } \\ & 2009^{135} \end{aligned}$	1	1	0	1	Adjusted	Not adjusted	Adjusted	1	1	1	8
Tamakoshi- 2010^{136}	1	1	0	1	Adjusted	Not adjusted	Not adjusted	1	1	0	6
Tamosiunas- 2014^{137}	1	1	1	1	Adjusted	Not adjusted	Adjusted	1	1	0	8
Taubman-2009 ${ }^{178}$	1	1	0	1	Adjusted	Not adjusted	Adjusted	0	1	1	7
Thomson-2014 ${ }^{138}$	1	1	1	1	Adjusted	Not adjusted	Adjusted	1	1	0	8
Towfighi-2012 ${ }^{139}$	1	1	1	1	Adjusted	Adjusted	Not adjusted	1	1	0	8
Tsubono-1993 ${ }^{140}$	1	1	0	1	Adjusted	Not adjusted	Adjusted	1	0	1	7
Tsubono-2004 ${ }^{141}$	1	1	0	1	Adjusted	Adjusted	Adjusted	1	1	1	8
Unkart-2019 ${ }^{196}$	1	1	1	1	Adjusted	Not adjusted	Not adjusted	1	1	0	7
Van Blarigan- 2018^{142}	1	1	1	1	Adjusted	Adjusted	Adjusted	0	1	1	8
Van Dam-2008 ${ }^{67}$	1	1	0	1	Adjusted	Not adjusted	Adjusted	0	1	0	6
Van Den Brandt- 2011^{143}	1	1	0	1	Adjusted	Adjusted	Adjusted	1	1	1	8
$\text { van Lee-2016 }{ }^{144}$	1	1	1	1	Adjusted	Not adjusted	Adjusted	1	1	1	9
Vergnaud-2013 ${ }^{145}$	1	1	0	1	Adjusted	Not adjusted	Adjusted	0	1	1	7
Wang-2011 ${ }^{192}$	1	1	1	1	Adjusted	Adjusted	Adjusted	1	1	1	9
Warren Andersen- 2016^{163}	1	1	1	1	Adjusted	Not adjusted	Adjusted	1	0	0	7
Warren Andersen- 2018^{146}	1	1	1	1	Adjusted	Not adjusted	Adjusted	1	1	0	8
Wingard-1982 ${ }^{147}$	1	1	0	1	Adjusted	Not adjusted	Adjusted	1	0	1	7
Wu-2012 ${ }^{171}$	1	1	1	1	Adjusted	Not adjusted	Not adjusted	1	0	1	7

Author-year	Selection of cohorts				Comparability of cohorts*			Assessment of outcome			$\begin{aligned} & \text { NOS } \\ & \text { score } \\ & \hline \end{aligned}$
	REC	SNEC	AE	NO	Demographic characteristic	Complications	Other factors	AO	FULE ${ }^{\dagger}$	AFUC ${ }^{\text {* }}$	
Yang-2012 ${ }^{148}$	1	1	1	1	Adjusted	Not adjusted	Adjusted	1	1	0	8
Yates-2008 ${ }^{149}$	1	1	1	1	Not adjusted	Not adjusted	Not adjusted	1	1	0	6
Yun-2012 ${ }^{150}$	1	1	1	1	Adjusted	Not adjusted	Not adjusted	1	1	0	7
Zhang-2011 ${ }^{73}$	1	1	1	1	Adjusted	Adjusted	Adjusted	1	1	0	8
Zhang-2013 ${ }^{185}$	1	1	1	1	Adjusted	Not adjusted	Adjusted	1	0	0	7
Zhang-2014 ${ }^{54}$	1	1	1	1	Adjusted	Not adjusted	Adjusted	1	0	0	7
Zhang-2017 (1) ${ }^{151}$	1	1	1	1	Adjusted	Adjusted	Adjusted	1	1	0	8
Zhou-2018 ${ }^{152}$	1	1	1	1	Adjusted	Not adjusted	Adjusted	1	1	0	8

*To evaluate the comparability of the exposed cohort and non-exposed cohort, if the authors performed stratified analyses or adjustments for one of the following demographic characteristics, age, gender, race, marriage, education, occupation or income, then a point would be assigned to this study. If the authors performed stratified analyses or adjustments for participants' health status or other characteristics, another point would be assigned to this study.
${ }^{\dagger}$ The follow-up duration was not deemed as long enough for outcome to occur if the median or mean follow-up duration was less than five years. When the median or mean follow-up duration was not reported, the follow-up duration was not deemed as long enough for outcome to occur if the study duration was less than 10 years or not reported.
${ }^{\ddagger}$ The follow up of a cohort was deemed as inadequate if more than 20% of the participants failed to be followed up or the study failed to report this information.
${ }^{\S}$ Because of the attainments of coronary heart disease cases and hypertension cases were different, the NOS score for coronary heart disease was 8 , whereas the NOS score for hypertension was 7.
"Since the study investigated the relation of life's simple seven with various cardiovascular disease incidence and mortality in different population. The first line is the evaluation for cardiovascular disease incidence in patients with myocardial infarction, the second line is the evaluation for mortality in patients with myocardial infarction, and the third line is the evaluation for myocardial infarction incidence in the whole population.
AE, ascertainment of exposure; AFUC, adequacy of follow up of cohorts; AO, assessment of outcome; FULE, was follow-up long enough for outcome to occur; NO, demonstration that outcome of interest was not present at start of study; NOS, Newcastle-Ottawa Scale; REC, representativeness of the exposed cohort; SNEC, selection of the non-exposed cohort.

Table A9. Results of publication bias test	Classic fail-safe \mathbf{N}	\boldsymbol{P}-value for Begg and Mazumdar rank correlation	\boldsymbol{P}-value for Egger's regression intercept
All-cause mortality	119803	0.03	0.05
Cardiovascular disease mortality	17161	0.03	0.001
Coronary heart disease mortality	603	0.19	0.04
Stroke mortality	155	0.71	0.37
Incident cardiovascular disease	5615	0.21	0.06
Incident coronary heart disease	6550	0.32	0.04
Incident stroke	2423	0.90	0.08

Table A10. Results of subgroup analyses for incident coronary heart disease

Subgroup	Studies	Participants	Cases	HR (95\% CI)	\boldsymbol{P}	$I^{2}, \%$
All	22	1,492,174	62,126	0.31 (0.24 to 0.40)	<0.001	93.0
Continent					$P_{\text {between-group }}=0.43$	
America	11	308,901	13,452	0.29 (0.20 to 0.40)	<0.001	87.4
Asia	4	647,734	23,407	0.46 (0.31 to 0.70)	<0.001	82.0
Europe	7	535,539	25,267	0.28 (0.17 to 0.46)	<0.001	95.7
High-income country					$P_{\text {between-group }}=0.19$	
Yes	18	844,440	38,719	0.28 (0.21 to 0.39)	<0.001	93.9
No	4	647,734	23,407	0.46 (0.31 to 0.70)	<0.001	82.0
Ethnicity*					P between-group $=0.69$	
Asian	5	648,740	23,704	0.44 (0.30 to 0.65)	<0.001	77.6
African, American	0	0	0	NA	NA	NA
White	13	773,360	32,312	0.29 (0.20 to 0.41)	<0.001	94.7
Mixed	4	26,463	2,237	0.31 (0.14 to 0.69)	0.004	83.7
Missing	1	43,611	3,873	0.25 (0.15 to 0.44)	<0.001	81.8
Follow-up					$P_{\text {between-group }}=0.67$	
≥ 10 years	12	350,690	15,870	0.28 (0.18 to 0.44)	<0.001	94.2
<10 years	10	1,141,484	46,256	0.34 (0.26 to 0.45)	<0.001	88.3
Average age*					$P_{\text {between-group }}=0.24$	
≥ 60 years old	6	>446,322 ${ }^{\dagger}$	>23,059 ${ }^{\dagger}$	0.38 (0.29 to 0.50)	<0.001	72.6
<60 years old	17	>951,865 ${ }^{\dagger}$	>38,279 ${ }^{+}$	0.27 (0.19 to 0.38)	<0.001	93.8
Sex *					$P_{\text {between-group }}=0.73$	
Men	6	$>267,755^{\dagger}$	$>13,251{ }^{\dagger}$	0.30 (0.17 to 0.55)	<0.001	81.8
Women	7	>485,883 ${ }^{\dagger}$	$>16,701^{\dagger}$	0.26 (0.16 to 0.43)	<0.001	85.6
Both	13	644,549	31,386	0.33 (0.24 to 0.47)	<0.001	94.4
Proportion of high school graduates					$P_{\text {between-group }}=0.66$	
$\geq 80 \%$	7	225,471	8,049	0.33 (0.20 to 0.54)	<0.001	87.0
<80\%	10	704,558	29,088	0.25 (0.14 to 0.43)	<0.001	95.4
Missing	5	562,145	24,989	0.35 (0.26 to 0.48)	<0.001	86.9
Score *					$P_{\text {between-group }}=0.08$	
Simple score	14	457,242	15,133	0.31 (0.23 to 0.42)	<0.001	84.4
LS7 score	7	634,037	24,294	0.26 (0.18 to 0.37)	<0.001	86.7
Others	2	494,882	23,487	0.72 (0.36 to 1.44)	0.35	97.2
Factors included in score *					$P_{\text {between-group }}=0.07$	
All five factors	6	630,408	29,872	0.29 (0.18 to 0.48)	<0.001	90.7
Alcohol drinking excluded	13	737,059	29,673	0.31 (0.24 to 0.40)	<0.001	84.9
Body weight excluded	4	49,492	4,027	0.52 (0.31 to 0.86)	0.01	89.2
Diet excluded	2	445,068	20,737	0.35 (0.25 to 0.49)	<0.001	84.9
Physical activity excluded	1	88,940	456	0.08 (0.03 to 0.22)	<0.001	NA
Smoking excluded	1	33,671	1,630	1.02 (0.89 to 1.16)	<0.001	NA

* Studies from several cohorts conducted stratified analyses, and thusly the total number of the studies from different groups exceeded the number of studies used in the main analysis.
${ }^{\dagger}$ Several studies did not report the number of participants and cases in each subgroup.
CI, confidence interval; HR, hazard ratio; LS7, Life's Simple 7; NA, not available.

Table A11. Results of subgroup analyses for incident stroke

Subgroup	Studies	Participants	Cases	HR (95\% CI)	\boldsymbol{P}	$I^{2}, \%$
All	17	1,441,107	45,696	0.45 (0.37 to 0.54)	<0.001	80.0
Continent					$P_{\text {between-group }}=0.84$	
America	6	191,261	4,731	0.43 (0.32 to 0.57)	<0.001	46.7
Asia	4	647,734	24,701	0.40 (0.24 to 0.68)	0.001	94.6
Europe	7	602,112	16,264	0.49 (0.39 to 0.62)	<0.001	72.2
High-income country					$P_{\text {betwe }}$	oup $=0.73$
Yes	13	793,373	20,995	0.46 (0.38 to 0.55)	<0.001	64.1
No	4	647,734	24,701	0.40 (0.24 to 0.68)	<0.001	94.6
Ethnicity*					P between-group $=0.61$	
Asian	4	647,734	24,701	0.40 (0.24 to 0.68)	0.001	94.6
African, American	2	14,106	312	0.46 (0.15 to 1.43)	0.18	35.5
White	12	777,990	20,554	0.45 (0.38 to 0.54)	<0.001	62.8
Mixed	1	1,277	129	1.03 (0.36 to 2.95)	0.96	NA
Missing	0	0	0	NA	NA	NA
Follow-up					$P_{\text {between }}$	oup $=0.32$
≥ 10 years	9	290,101	8,384	0.40 (0.29 to 0.55)	<0.001	76.7
<10 years	8	1,151,006	37,312	0.49 (0.39 to 0.63)	<0.001	84.7
Average age *					$P_{\text {betwee }}$	$\mathrm{p}=0.13$
≥ 60 years old	8	$>517,711^{\dagger}$	>13,616 ${ }^{\dagger}$	0.49 (0.44 to 0.56)	<0.001	5.6
<60 years old	12	>829,509 ${ }^{\dagger}$	>28,269 ${ }^{\dagger}$	0.33 (0.24 to 0.45)	<0.001	82.3
Sex*					$P{ }_{\text {between-group }}=0.006$	
Men	8	$>313,584^{\dagger}$	$>13,538^{\dagger}$	0.33 (0.26 to 0.41)	<0.001	9.0
Women	9	>516,402 ${ }^{\dagger}$	$>16,580^{\dagger}$	0.33 (0.24 to 0.45)	<0.001	63.4
Both	7	516,934	11,767	0.57 (0.47 to 0.69)	<0.001	54.5
Proportion of high school graduates					$P_{\text {between }}$	oup $=0.39$
$\geq 80 \%$	4	186,055	4,961	0.36 (0.26 to 0.50)	<0.001	55.3
<80\%	10	738,716	28,227	0.47 (0.36 to 0.63)	<0.001	77.1
Missing	3	516,336	12,508	0.51 (0.37 to 0.70)	<0.001	87.6
Score*					$P_{\text {betwee }}$	oup $=0.26$
Simple score	9	405,106	12,639	0.42 (0.31 to 0.56)	<0.001	76.9
LS7 score	7	635,106	15,900	0.39 (0.30 to 0.52)	<0.001	80.8
Others	2	494,882	19,875	0.65 (0.39 to 1.06)	0.08	89.2
Factors included in score *					P between-group $=0.28$	
All five factors	7	729,137	28,475	0.39 (0.31 to 0.48)	<0.001	43.7
Alcohol drinking excluded	8	658,259	16,095	0.47 (0.36 to 0.62)	<0.001	86.0
Body weight excluded	3	65,238	1,624	0.50 (0.27 to 0.95)	0.04	87.2
Diet excluded	1	421,411	9,734	0.51 (0.45 to 0.58)	<0.001	NA
Physical activity excluded	0	0	0	NA	NA	NA
Smoking excluded	1	33,671	527	0.83 (0.66 to 1.04)	0.11	NA

* Studies from several cohorts conducted stratified analyses, and thusly the total number of the studies from different groups exceeded the number of studies used in the main analysis.
${ }^{\dagger}$ Several studies did not report the number of participants and cases in each subgroup.
CI, confidence interval; HR, hazard ratio; LS7, Life's Simple 7; NA, not available.

Figure A1. Hazard ratios ($95 \% \mathrm{CI}$) comparing individuals with the healthiest versus the least healthy lifestyles for all-cause mortality.

Figure A2. Hazard ratios ($95 \% \mathrm{CI}$) comparing individuals with the healthiest versus the least healthy lifestyles for cardiovascular disease mortality.

Study ID	$\begin{aligned} & \text { Hazard } \\ & \text { Ratio (} 95 \% \mathrm{Cl} \text {) } \end{aligned}$	\% Weight
Berard-2017	0.29 (0.11, 0.79)	0.85
Bonaccio-2019	0.54 (0.32, 0.91)	1.91 2.85
Brestow-1980	0.76 (0.55, 1.06)	2.65 3.50
Cheng-2018	$0.53(0.49,0.57)$ $0.48(0.27,0.85)$	3.50 1.74 1.7
Dong-2012	0.48 (0.29, 0.80)	1.96
Eguchi-2017 (Higher Education)	0.37 (0.27, 0.50)	2.74
Eguchi-2017 (Lower Education)	0.32 (0.23, 0.44)	2.67
Eriksen-2015 (European)	0.31 (0.11, 0.88)	0.80
Eriksen-2015 (South Asian)	0.11 (0.01, 1.07)	0.20
Fazel-Tabar Malekshah-2016	0.53 (0.37, 0.78)	2.50
Ford-2011	0.35 (0.24, 0.51)	2.49
Ford-2012 (1)	0.12 (0.03, 0.52)	0.45
Foster-2018	0.45 (0.37, 0.55)	3.17
Gopinath-2010	0.22 (0.10, 0.50)	1.13
Greenlee-2017	0.60 (0.44, 0.82)	2.72
Hamer-2011	0.80 (0.35, 1.03)	1.85
Han-2018	0.84 (0.88, 1.04)	3.12
Inoue-Choi-2013	0.92 (0.57, 1.48)	2.08
Jin-2017	0.61 (0.38, 0.97)	2.10
Khaw-2008	0.27 (0.12, 0.59)	1.22
Kim-2013	0.10 (0.03, 0.31)	0.70
Knoops-2004	0.33 (0.23, 0.48)	2.44
Kvaavik-2010	0.32 (0.16, 0.84)	1.41
$\mathrm{Li}_{\text {Lin-2018 }}$	$0.18(0.12,0.28)$ $0.24(0.07,0.83)$	2.41 0.61
Lin-2012	$0.24(0.07,0.83)$ $0.61(0.41,0.90)$	0.61 2.41
Liu-2018	0.32 (0.20, 0.52)	2.06
Luoto-1998 (Men)	0.53 (0.40, 0.71)	2.81
Luoto-1998 (Women)	0.25 (0.12, 0.53)	1.27
Martin-Diener-2014	0.51 (0.38, 0.68)	2.84
McCullough-2011 (Men)	0.52 (0.45, 0.60)	3.37
MoCullough-2011 (Women)	0.42 (0.35, 0.51)	3.20
Mitchell-2010	0.33 (0.23, 0.48)	2.44
Mok-2018	0.28 (0.13, 0.61)	1.23
Nechuta-2010	0.29 (0.16, 0.53)	1.64
Odegaard-2011	0.28(0.13, 0.52)	1.41 2.51
$\begin{aligned} & \text { Petersen-2015 (Men) } \\ & \text { Petersen-2015 (Women) } \end{aligned}$	$\begin{aligned} & 0.20(0.14,0.29) \\ & 0.21(0.11,0.41) \end{aligned}$	$\begin{aligned} & 2.51 \\ & 1.50 \end{aligned}$
Tamosiunas-2014 (Men)	0.45 (0.16, 1.26)	0.81
Tamosiunas-2014 (Women)	0.70 (0.23, 2.14)	0.72
van Lee-2016	0.74 (0.55, 1.00)	2.75
Vergnaud-2013 Warren Andersen-2016 (Black Men)	0.58 (0.46, 0.69)	3.15 2.14
Warren Andersen-2016 (Black Men)	0.68 (0.42, 1.04)	2.14
Warren Andersen-2016 (Black Women) Warren Andersen-2016 (White Men)	0.41 (0.25, 0.87)	2.04
Warren Andersen-2016 (White Men) Warren Andersen-2016 (White Women)	$0.38(0.17,0.77)$ $0.29(0.11,0.75)$	1.27 0.92
Wingard-1982 (Men with Ischemic Heart Disease)	0.42 (0.23, 0.76)	1.67
Wingard-1982 (Men with Other Cardiovascular Diseases)	0.21 (0.07, 0.62)	0.74
Wingard-1982 (Women with Ischemic Heart Disease)	0.18 (0.07, 0.37)	1.11
Wingard-1982 (Women with Other Cardiovascular Diseases)	$0.45(0.15,1.32)$	0.78
Zhang-2017 Zhou-2018	$\begin{aligned} & 0.32(0.25,0.41) \\ & 0.43(0.16,1.16) \end{aligned}$	$\begin{aligned} & 2.98 \\ & 0.88 \end{aligned}$
Overall (1 -squared $=73.9 \%, \mathrm{p}=0.000$)	0.42 (0.37, 0.46)	100.00
NOTE: Weights are from random effects analysis		

Figure A3. Hazard ratios ($95 \% \mathrm{CI}$) comparing individuals with the healthiest versus the least healthy lifestyles for coronary heart disease mortality.

Figure A4. Hazard ratios $(95 \% \mathrm{CI})$ comparing individuals with the healthiest versus the least healthy lifestyles for stroke mortality.

Figure A5. Hazard ratios ($95 \% \mathrm{CI}$) comparing individuals with the healthiest versus the least healthy lifestyles for the risk of total cardiovascular disease.

Figure A6. Hazard ratios ($95 \% \mathrm{CI}$) comparing individuals with the healthiest versus the least healthy lifestyles for the risk of coronary heart disease.

Figure A7. Hazard ratios ($95 \% \mathrm{CI}$) comparing individuals with the healthiest versus the least healthy lifestyles for the risk of stroke.

| Study |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| ID |

Figure A8. Hazard ratios ($95 \% \mathrm{CI}$) comparing individuals with the healthiest versus the least healthy lifestyles for the risk of heart failure.

Study ID		Hazard Ratio (95\% CI)	\%
			Weight
Agha-2014 \longrightarrow		0.23 (0.17, 0.31)	9.59
Atkins-2018 (CPRD) \longrightarrow		0.20 (0.14, 0.28)	8.80
Atkins-2018 (UK Biobank)		0.27 (0.23, 0.31)	11.07
Del Gobbo-2015 \longrightarrow		0.55 (0.41, 0.73)	9.60
Folsom-2015		0.19 (0.16, 0.22)	10.98
Larsson-2016 (Men)		0.38 (0.28, 0.52)	9.15
Larsson-2016 (Women)		0.28 (0.19, 0.41)	8.32
Nayor-2016		0.34 (0.22, 0.52)	7.87
Ogunmoroti-2017		0.31 (0.19, 0.50)	7.22
Spahillari-2017		0.39 (0.24, 0.64)	7.03
Wang-2011 (Men)		0.30 (0.16, 0.55)	5.78
Wang-2011 (Women)		0.19 (0.09, 0.40)	4.60
Overall (l-squared $=80.3 \%, \mathrm{p}=0.000$)		0.29 (0.23, 0.35)	100.00
NOTE: Weights are from random effects analysis			
1 . 5	1.5		

Figure A9. Hazard ratios ($95 \% \mathrm{CI}$) comparing individuals with the healthiest versus the least healthy lifestyles for the risk of hypertension.

Study		Hazard	\%
ID		Ratio (95\% CI)	Weight
Banda-2010 \rightarrow		0.53 (0.44, 0.64)	16.56
Chomistek-2015 -		0.24 (0.20, 0.28)	16.88
Zhang-2014		0.37 (0.35, 0.39)	18.21
Andriolo-2019 (Men)		0.17 (0.08, 0.37)	6.50
Andriolo-2019 (Women)		0.11 (0.06, 0.21)	8.27
Diaz-Gutierrez-2019		0.54 (0.42, 0.69)	15.56
Nguyen-2019 ${ }^{\text {a }}$		0.51 (0.47, 0.55)	18.03
Overall (l-squared $=94.8 \%, p=0.000$)		0.35 (0.28, 0.45)	100.00
NOTE: Weights are from random effects analysis			
. $1 \times$	1.5		

Figure A10. Hazard ratios ($95 \% \mathrm{CI}$) comparing individuals with the healthiest versus the least healthy lifestyles for the risk of atrial fibrillation.

Figure A11. Hazard ratios ($95 \% \mathrm{CI}$) comparing individuals with the healthiest versus the least healthy lifestyles for the risk of peripheral artery disease.

References

1. Li Y, Pan A, Wang DD, et al. Impact of healthy lifestyle factors on life expectancies in the US population. Circulation 2018;138:345-55.
2. Folsom AR, Shah AM, Lutsey PL, et al. American Heart Association's Life's Simple 7: avoiding heart failure and preserving cardiac structure and function. Am J Med 2015;128:970-76.e2.
3. Romaguera D, Ward H, Wark PA, et al. Pre-diagnostic concordance with the WCRF/AICR guidelines and survival in European colorectal cancer patients: a cohort study. BMC Med 2015;13:107.
4. Abdullah Said M, Verweij N, Van Der Harst P. Associations of combined genetic and lifestyle risks with incident cardiovascular disease and diabetes in the UK biobank study. JAMA Cardiol 2018;3:693-702.
5. Avanzini F, Marzona I, Baviera M, et al. Improving cardiovascular prevention in general practice: results of a comprehensive personalized strategy in subjects at high risk. Eur J Prev Cardiol 2016;23:947-55.
6. Bai G, Zhang J, Zhao C, et al. Adherence to a healthy lifestyle and a DASH-style diet and risk of hypertension in Chinese individuals. Hypertens Res 2017;40:196-202.
7. Berstad P, Botteri E, Larsen IK, et al. Lifestyle changes at middle age and mortality: a population-based prospective cohort study. J Epidemiol Community Health 2017;71:59-66.
8. Byun W, Sieverdes JC, Sui X, et al. Effect of positive health factors and all-cause mortality in men. Med Sci Sports Exerc 2010;42:1632-38.
9. Chyou PH, Burchfiel CM, Yano K, et al. Obesity, alcohol consumption, smoking, and mortality. Ann Epidemiol 1997;7:311-7.
10. Dagenais GR, Jung H, Lonn E, et al. Effects of lipid-lowering and antihypertensive treatments in addition to healthy lifestyles in primary prevention: an analysis of the HOPE-3 trial. J Am Heart Assoc 2018;7: 0008918.
11. Djousse L, Driver JA, Gaziano JM. Relation between modifiable lifestyle factors and lifetime risk of heart failure. JAMA 2009;302:394-400.
12. Dobson A, McLaughlin D, Almeida O, et al. Impact of behavioural risk factors on death within 10 years for women and men in their 70s: absolute risk charts. BMC Public Health 2012;12:669.
13. Foraker RE, Greiner M, Sims M, et al. Comparison of risk scores for the prediction of stroke in African Americans: findings from the Jackson Heart Study. Am Heart J 2016;177:25-32.
14. Hardoon SL, Whincup PH, Lennon LT, et al. How much of the recent decline in the incidence of myocardial infarction in British men can be explained by changes in cardiovascular risk factors? Evidence from a prospective population-based study. Circulation 2008;117:598-604.
15. Haveman-Nies A, de Groot L, Burema J, et al. Dietary quality and lifestyle factors in relation to 10-year mortality in older Europeans: the SENECA study. Am J Epidemiol 2002;156:962-8.
16. Heidemann C, Boeing H, Pischon T, et al. Association of a diabetes risk score with risk of
myocardial infarction, stroke, specific types of cancer, and mortality: a prospective study in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam cohort. Eur J Epidemiol 2009;24:281-88.
17. Iestra J, Knoops K, Kromhout D, et al. Lifestyle, Mediterranean diet and survival in European post-myocardial infarction patients. Eur J Cardiovasc Prev Rehabil 2006;13:894900.
18. Khawaja O, Kotler G, Gaziano JM, et al. Usefulness of desirable lifestyle factors to attenuate the risk of heart failure among offspring whose parents had myocardial infarction before age 55 years. Am J Cardiol 2012;110:326-30.
19. Kim LG, Adamson J, Ebrahim S. Influence of life-style choices on locomotor disability, arthritis and cardiovascular disease in older women: Prospective cohort study. Age Ageing 2013;42:696-701.
20. Li K, Monni S, Husing A, et al. Primary preventive potential of major lifestyle risk factors for acute myocardial infarction in men: an analysis of the EPIC-Heidelberg cohort. Eur J Epidemiol 2014;29:27-34.
21. Li Y, Ley SH, VanderWeele TJ, et al. Joint association between birth weight at term and later life adherence to a healthy lifestyle with risk of hypertension: a prospective cohort study. BMC Med 2015;13:175.
22. Manuel DG, Tuna M, Perez R, et al. Predicting stroke risk based on health behaviours: development of the Stroke Population Risk Tool (SPoRT). PLoS One 2015;10:e0143342.
23. Manuel DG, Perez R, Sanmartin C, et al. Measuring burden of unhealthy behaviours using a multivariable predictive approach: life expectancy lost in Canada attributable to smoking, alcohol, physical inactivity, and diet. PLoS Med 2016;13:e1002082.
24. Menotti A, Puddu PE, Lanti M, et al. Lifestyle habits and mortality from all and specific causes of death: 40-year follow-up in the Italian rural areas of the seven countries study. J Nutr Health Aging 2014;18:314-21.
25. Menotti A, Puddu PE, Maiani G, et al. Cardiovascular and other causes of death as a function of lifestyle habits in a quasi extinct middle-aged male population. A 50-year follow-up study. Int J Cardiol 2016;210:173-78.
26. Metzner HL, Carman WJ, House J. Health practices, risk factors, and chronic disease in Tecumseh. Prev Med 1983;12:491-507.
27. Nakano K, Yabe J, Yasumura S. Health practice and total mortality among middle-aged and elderly residents in Sukagawa, Japan. Nihon Koshu Eisei Zasshi 2006;53:329-37.
28. O'Doherty MG, Cairns K, O'Neill V, et al. Effect of major lifestyle risk factors, independent and jointly, on life expectancy with and without cardiovascular disease: results from the Consortium on Health and Ageing Network of Cohorts in Europe and the United States (CHANCES). Eur J Epidemiol 2016;31:455-68.
29. Pronk NP, Lowry M, Kottke TE, et al. The association between optimal lifestyle adherence and short-term incidence of chronic conditions among employees. Popul Health Manag 2010;13:289-95.
30. Rhee CW, Kim JY, Park BJ, et al. Impact of individual and combined health behaviors on all
causes of premature mortality among middle aged men in Korea: the Seoul male cohort study. J Prev Med Public Health 2012;45:14-20.
31. Rotevatn S, Akslen LA, Bjelke E. Lifestyle and mortality among Norwegian men. Prev Med 1989;18:433-43.
32. Shaw BA, Agahi N. A prospective cohort study of health behavior profiles after age 50 and mortality risk. BMC Public Health 2012;12:803.
33. Spencer CA, Jamrozik K, Lawrence-Brown M, et al. Lifestyle still predicts mortality in older men with established vascular disease. Prev Med 2005;41:583-88.
34. Spencer CA, Jamrozik K, Norman PE, et al. A simple lifestyle score predicts survival in healthy elderly men. Prev Med 2005;40:712-17.
35. Stampfer MJ, Hu FB, Manson JE, et al. Primary prevention of coronary heart disease in women through diet and lifestyle. N Engl J Med 2000;343:16-22.
36. Takeshita T, Morimoto K. Effects of lifestyle on health status. Rinsho Byori 1995;43:108794.
37. Tikk K, Sookthai D, Monni S, et al. Primary preventive potential for stroke by avoidance of major lifestyle risk factors: the European Prospective Investigation into Cancer and Nutrition-Heidelberg cohort. Stroke 2014;45:2041-46.
38. Whitley E, Batty GD, Hunt K, et al. The role of health behaviours across the life course in the socioeconomic patterning of all-cause mortality: the west of Scotland twenty-07 prospective cohort study. Ann Behav Med 2014;47:148-57.
39. Xanthakis V, Enserro DM, Murabito JM, et al. Ideal cardiovascular health: associations with biomarkers and subclinical disease and impact on incidence of cardiovascular disease in the Framingham Offspring Study. Circulation 2014;130:1676-83.
40. Yokoyama A, Katada C, Yokoyama T, et al. Alcohol abstinence and risk assessment for second esophageal cancer in Japanese men after mucosectomy for early esophageal cancer. PLoS One 2017;12: 0 0175182.
41. Enserro DM, Vasan RS, Xanthakis V. Twenty-year trends in the American Heart Association cardiovascular health score and impact on subclinical and clinical cardiovascular disease: the Framingham Offspring study. J Am Heart Assoc 2018;7:e008741.
42. King DE, Mainous AG, 3rd, Geesey ME. Turning back the clock: adopting a healthy lifestyle in middle age. Am J Med 2007;120:598-603.
43. Shah AM, Claggett B, Folsom AR, et al. Ideal cardiovascular health during adult life and cardiovascular structure and function among the elderly. Circulation 2015;132:1979-89.
44. Ahmad MI, Chevli PA, Barot H, et al. Interrelationships Between American Heart Association's Life's Simple 7, ECG Silent Myocardial Infarction, and Cardiovascular Mortality. J Am Heart Assoc 2019;8: 011648.
45. Ford ES, Zhao G, Tsai J, et al. Low-risk lifestyle behaviors and all-cause mortality: findings from the National Health and Nutrition Examination Survey III Mortality Study. Am J Public Health 2011;101:1922-9.
46. Belloc NB. Relationship of health practices and mortality. Prev Med 1973;2:67-81.
47. Breslow L, Enstrom JE. Persistence of health habits and their relationship to mortality. Prev

Med 1980;9:469-83.
48. Cohen L, Curhan GC, Forman JP. Influence of age on the association between lifestyle factors and risk of hypertension. J Am Soc Hypertens 2012;6:284-90.
49. Chomistek AK, Chiuve SE, Eliassen AH, et al. Healthy lifestyle in the primordial prevention of cardiovascular disease among young women. J Am Coll Cardiol 2015;65:43-51.
50. Eguchi E, Iso Prof H, Wada Y, et al. Parental history and lifestyle behaviors in relation to mortality from stroke among Japanese men and women: the Japan Collaborative Cohort Study. J Epidemiol 2012;22:331-39.
51. Eguchi E, Iso H, Honjo K, et al. No modifying effect of education level on the association between lifestyle behaviors and cardiovascular mortality: the Japan Collaborative Cohort Study. Sci Rep 2017;7:39820.
52. Forman JP, Stampfer MJ, Curhan GC. Diet and lifestyle risk factors associated with incident hypertension in women. JAMA 2009;302:401-11.
53. Gao J, Sun H, Liang X, et al. Ideal cardiovascular health behaviors and factors prevent the development of hypertension in prehypertensive subjects. Clin Exp Hypertens 2015;37:65055.
54. Zhang C, Shi J, Huang Z, et al. Relationship between 'ideal' cardiovascular behaviors and factors and the incidence of hypertension. Zhonghua liu xing bing xue za zhi 2014;35:49499.
55. Kabat GC, Matthews CE, Kamensky V, et al. Adherence to cancer prevention guidelines and cancer incidence, cancer mortality, and total mortality: a prospective cohort study. Am J Clin Nutr 2015;101:558-69.
56. Behrens G, Fischer B, Kohler S, et al. Healthy lifestyle behaviors and decreased risk of mortality in a large prospective study of U.S. women and men. Eur J Epidemiol 2013;28:361-72.
57. Kurth T, Moore SC, Gaziano JM, et al. Healthy lifestyle and the risk of stroke in women. Arch Intern Med 2006;166:1403-09.
58. Rist PM, Buring JE, Kase CS, et al. Healthy lifestyle and functional outcomes from stroke in women. Am J Med 2016;129:715-24.e2.
59. Mancini GBJ, Maron DJ, Hartigan PM, et al. Lifestyle, Glycosylated Hemoglobin A1c, and Survival Among Patients With Stable Ischemic Heart Disease and Diabetes. J Am Coll Cardiol 2019;73:2049-58.
60. Maron DJ, Mancini GBJ, Hartigan PM, et al. Healthy Behavior, Risk Factor Control, and Survival in the COURAGE Trial. J Am Coll Cardiol 2018;72:2297-305.
61. Matheson EM, King DE, Everett CJ. Healthy lifestyle habits and mortality in overweight and obese individuals. J Am Board Fam Med 2012;25:9-15.
62. Myint PK, Smith RD, Luben RN, et al. Lifestyle behaviours and quality-adjusted life years in middle and older age. Age Ageing 2011;40:589-95.
63. Khaw KT, Wareham N, Bingham S, et al. Combined impact of health behaviours and mortality in men and women: the EPIC-Norfolk prospective population study. PLoS Med 2008;5:0039-47.
64. Perrot N, Verbeek R, Sandhu M, et al. Ideal cardiovascular health influences cardiovascular disease risk associated with high lipoprotein(a) levels and genotype: the EPIC-Norfolk prospective population study. Atherosclerosis 2017;256:47-52.
65. Lachman S, Peters RJ, Lentjes MA, et al. Ideal cardiovascular health and risk of cardiovascular events in the EPIC-Norfolk prospective population study. Eur J Prev Cardiol 2016;23:986-94.
66. Veronese N, Li Y, Manson JE, et al. Combined associations of body weight and lifestyle factors with all cause and cause specific mortality in men and women: prospective cohort study. BMJ 2016;355:i5855.
67. Van Dam RM, Li T, Spiegelman D, et al. Combined impact of lifestyle factors on mortality: prospective cohort study in US women. BMJ 2008;337:742-45.
68. Weikert C, Berger K, Heidemann C, et al. Joint effects of risk factors for stroke and transient ischemic attack in a German population: the EPIC Potsdam Study. J Neurol 2007;254:31521.
69. Ford ES, Bergmann MM, Kroger J, et al. Healthy living is the best revenge: findings from the European Prospective Investigation Into Cancer and Nutrition-Potsdam study. Arch Intern Med 2009;169:1355-62.
70. Yang X, Wang A, Liu X, et al. Positive changes in ideal CVH metrics reduce the incidence of stroke. Sci Rep 2016;6:19673.
71. Miao C, Bao M, Xing A, et al. Cardiovascular Health Score and the risk of cardiovascular diseases. PLoS One 2015;10:e0131537.
72. Zhang Y, Tuomilehto J, Jousilahti P, et al. Lifestyle factors and antihypertensive treatment on the risks of ischemic and hemorrhagic stroke. Hypertension 2012;60:906-12.
73. Zhang Y, Tuomilehto J, Jousilahti P, et al. Lifestyle factors on the risks of ischemic and hemorrhagic stroke. Arch Intern Med 2011;171:1811-18.
74. Zhao HY, Liu XX, Wang AX, et al. Ideal cardiovascular health and incident hypertension: the longitudinal community-based Kailuan study. Medicine (Baltimore) 2016;95:e5415.
75. Ahmed HM, Blaha MJ, Nasir K, et al. Low-risk lifestyle, coronary calcium, cardiovascular events, and mortality: results from MESA. Am J Epidemiol 2013;178:12-21.
76. Artero EG, España-Romero V, Lee DC, et al. Ideal cardiovascular health and mortality: Aerobics Center Longitudinal Study. Mayo Clin Proc 2012;87:944-52.
77. Atkins JL, Delgado J, Pilling LC, et al. Impact of low cardiovascular risk profiles on geriatric outcomes: evidence from 421,000 participants in two cohorts. J Gerontol A Biol Sci Med Sci 2018.
78. Berard E, Bongard V, Haas B, et al. Score of adherence to 2016 European Cardiovascular Prevention Guidelines predicts cardiovascular and all-cause mortality in the general population. Can J Cardiol 2017;33:1298-304.
79. Bonaccio M, Di Castelnuovo A, Costanzo S, et al. Impact of combined healthy lifestyle factors on survival in an adult general population and in high-risk groups: prospective results from the Moli-sani Study. J Intern Med 2019;286:207-20.
80. Booth JN, 3rd, Levitan EB, Brown TM, et al. Effect of sustaining lifestyle modifications
(nonsmoking, weight reduction, physical activity, and mediterranean diet) after healing of myocardial infarction, percutaneous intervention, or coronary bypass (from the REasons for Geographic and Racial Differences in Stroke Study). Am J Cardiol 2014;113:1933-40.
81. Booth JN, 3rd, Colantonio LD, Howard G, et al. Healthy lifestyle factors and incident heart disease and mortality in candidates for primary prevention with statin therapy. Int J Cardiol 2016;207:196-202.
82. Carlsson AC, Theobald H, Wandell PE. Health factors and longevity in men and women: a 26-year follow-up study. Eur J Epidemiol 2010;25:547-51.
83. Carlsson AC, Wandell PE, Gigante B, et al. Seven modifiable lifestyle factors predict reduced risk for ischemic cardiovascular disease and all-cause mortality regardless of body mass index: a cohort study. Int J Cardiol 2013;168:946-52.
84. Cerhan JR, Potter JD, Gilmore JM, et al. Adherence to the AICR cancer prevention recommendations and subsequent morbidity and mortality in the Iowa Women's Health Study cohort. Cancer Epidemiol Biomarkers Prev 2004;13:1114-20.
85. Chakravarty EF, Hubert HB, Krishnan E, et al. Lifestyle risk factors predict disability and death in healthy aging adults. Am J Med 2012;125:190-97.
86. Cheng E, Um CY, Prizment A, et al. Associations of evolutionary-concordance diet, Mediterranean diet and evolutionary-concordance lifestyle pattern scores with all-cause and cause-specific mortality. Br J Nutr 2018:1-10.
87. Cloud AJ, Thai A, Liao Y, et al. The impact of cancer prevention guideline adherence on overall mortality in a high-risk cohort of women from the New York site of the Breast Cancer Family Registry. Breast Cancer Res Treat 2015;149:537-46.
88. Diaz KM, Booth IJN, Calhoun DA, et al. Healthy lifestyle factors and risk of cardiovascular events and mortality in treatment-resistant hypertension: the Reasons for Geographic and Racial Differences in Stroke study. Hypertension 2014;64:465-71.
89. Ding D, Rogers K, van der Ploeg H, et al. Traditional and emerging lifestyle risk behaviors and all-cause mortality in middle-aged and older adults: evidence from a large populationbased Australian cohort. PLoS Med 2015;12:e1001917.
90. Dong C, Rundek T, Wright CB, et al. Ideal cardiovascular health predicts lower risks of myocardial infarction, stroke, and vascular death across whites, blacks, and hispanics: the northern Manhattan study. Circulation 2012;125:2975-84.
91. Dunkler D, Kohl M, Teo KK, et al. Population-attributable fractions of modifiable lifestyle factors for CKD and mortality in individuals with type 2 diabetes: a cohort study. Am J Kidney Dis 2016;68:29-40.
92. Emberson JR, Whincup PH, Morris RW, et al. Lifestyle and cardiovascular disease in middle-aged British men: the effect of adjusting for within-person variation. Eur Heart J 2005;26:1774-82.
93. Fazel-Tabar Malekshah A, Zaroudi M, Etemadi A, et al. The combined effects of healthy lifestyle behaviors on all-cause mortality: the Golestan Cohort Study. Arch Iran Med 2016;19:752-61.
94. Ford ES, Greenlund KJ, Hong Y. Ideal cardiovascular health and mortality from all causes
and diseases of the circulatory system among adults in the United States. Circulation 2012;125:987-95.
95. Ford ES, Bergmann MM, Boeing H, et al. Healthy lifestyle behaviors and all-cause mortality among adults in the United States. Prev Med 2012;55:23-7.
96. Foster HME, Celis-Morales CA, Nicholl BI, et al. The effect of socioeconomic deprivation on the association between an extended measurement of unhealthy lifestyle factors and health outcomes: a prospective analysis of the UK Biobank cohort. The Lancet Public health 2018;3:e576-e85.
97. Gopinath B, Flood VM, Burlutsky G, et al. Combined influence of health behaviors on total and cause-specific mortality. Arch Intern Med 2010;170:1605-7.
98. Greenlee H, Strizich G, Lovasi GS, et al. Concordance with prevention guidelines and subsequent cancer, cardiovascular disease, and mortality: a longitudinal study of older adults. Am J Epidemiol 2017;186:1168-79.
99. Hamer M, Bates CJ, Mishra GD. Multiple health behaviors and mortality risk in older adults. J Am Geriatr Soc 2011;59:370-2.
100. Heitz AE, Baumgartner RN, Baumgartner KB, et al. Healthy lifestyle impact on breast cancer-specific and all-cause mortality. Breast Cancer Res Treat 2018;167:171-81.
101. Inoue-Choi M, Robien K, Lazovich D. Adherence to the WCRF/AICR guidelines for cancer prevention is associated with lower mortality among older female cancer survivors. Cancer Epidemiol Biomarkers Prev 2013;22:792-802.
102. Iversen L, Hannaford PC, Lee AJ, et al. Impact of lifestyle in middle-aged women on mortality: evidence from the Royal College of general practitioners' oral contraception study. Br J Gen Pract 2010;60:563-69.
103. Jin Y, Tanaka T, Bandinelli S, et al. Overall cardiovascular health is associated with allcause and cardiovascular disease mortality among older community-dwelling men and women. J Aging Health 2017;29:437-53.
104. Kim JY, Ko YJ, Rhee CW, et al. Cardiovascular health metrics and all-cause and cardiovascular disease mortality among middle-aged men in Korea: the Seoul male cohort study. J Prev Med Public Health 2013;46:319-28.
105. King DE, Mainous AG, Matheson EM, et al. Impact of healthy lifestyle on mortality in people with normal blood pressure, LDL cholesterol, and C-reactive protein. Eur J Prev Cardiol 2013;20:73-79.
106. Knoops KT, de Groot LC, Kromhout D, et al. Mediterranean diet, lifestyle factors, and 10year mortality in elderly European men and women: the HALE project. JAMA 2004;292:1433-9.
107. Krokstad S, Ding D, Grunseit AC, et al. Multiple lifestyle behaviours and mortality, findings from a large population-based Norwegian cohort study - The HUNT Study. BMC Public Health 2017;17:58.
108. Kvaavik E, Batty GD, Ursin G, et al. Influence of individual and combined health behaviors on total and cause-specific mortality in men and women: The United Kingdom Health and Lifestyle Survey. Arch Intern Med 2010;170:711-18.
109. Larsson SC, Kaluza J, Wolk A. Combined impact of healthy lifestyle factors on lifespan: two prospective cohorts. J Intern Med 2017;282:209-19.
110. Lee CD, Sui X, Blair SN. Combined effects of cardiorespiratory fitness, not smoking, and normal waist girth on morbidity and mortality in men. Arch Intern Med 2009;169:2096-101.
111. Leger KJ, Baker KS, Cushing-Haugen KL, et al. Lifestyle factors and subsequent ischemic heart disease risk after hematopoietic cell transplantation. Cancer 2018;124:1507-15.
112. Lin CC, Li CI, Liu CS, et al. Impact of lifestyle-related factors on all-cause and causespecific mortality in patients with type 2 diabetes: the Taichung Diabetes Study. Diabetes Care 2012;35:105-12.
113. Lin MP, Ovbiagele B, Markovic D, et al. "Life's Simple 7" and long-term mortality after stroke. J Am Heart Assoc 2015;4.
114. Lingfors H, Persson LG. All-cause mortality among young men 24-26 years after a lifestyle health dialogue in a Swedish primary care setting: a longitudinal follow-up register study. BMJ open 2019;9: 022474.
115. Liu Y, Chi HJ, Cui LF, et al. The ideal cardiovascular health metrics associated inversely with mortality from all causes and from cardiovascular diseases among adults in a Northern Chinese industrial city. PLoS One 2014;9:e89161.
116. Lohse T, Faeh D, Bopp M, et al. Adherence to the cancer prevention recommendations of the World Cancer Research Fund/American Institute for Cancer Research and mortality: a census-linked cohort. Am J Clin Nutr 2016;104:678-85.
117. Martin-Diener E, Meyer J, Braun J, et al. The combined effect on survival of four main behavioural risk factors for non-communicable diseases. Prev Med 2014;65:148-52.
118. Martinez-Gomez D, Guallar-Castillon P, Leon-Munoz LM, et al. Combined impact of traditional and non-traditional health behaviors on mortality: a national prospective cohort study in Spanish older adults. BMC Med 2013;11:47.
119. McCullough ML, Patel AV, Kushi LH, et al. Following cancer prevention guidelines reduces risk of cancer, cardiovascular disease, and all-cause mortality. Cancer Epidemiol Biomarkers Prev 2011;20:1089-97.
120. Meng L, Maskarinec G, Lee J, et al. Lifestyle factors and chronic diseases: application of a composite risk index. Prev Med 1999;29:296-304.
121. Minlikeeva AN, Cannioto R, Jensen A, et al. Joint exposure to smoking, excessive weight, and physical inactivity and survival of ovarian cancer patients, evidence from the Ovarian Cancer Association Consortium. Cancer Causes Control 2019;30:537-47.
122. Mok Y, Sang Y, Ballew SH, et al. American Heart Association's Life's Simple 7 at middle age and prognosis after myocardial infarction in later life. J Am Heart Assoc 2018;7:e007658.
123. Muntner P, Judd SE, Gao L, et al. Cardiovascular risk factors in CKD associate with both ESRD and mortality. J Am Soc Nephrol 2013;24:1159-65.
124. Nechuta SJ, Shu XO, Li HL, et al. Combined impact of lifestyle-related factors on total and cause-specific mortality among Chinese women: prospective cohort study. PLoS Med 2010;7:e1000339.
125. Nöthlings U, Ford ES, Kroger J, et al. Lifestyle factors and mortality among adults with diabetes: findings from the European Prospective Investigation into Cancer and NutritionPotsdam study. J Diabetes 2010;2:112-7.
126. Odegaard AO, Koh WP, Gross MD, et al. Combined lifestyle factors and cardiovascular disease mortality in Chinese men and women: the Singapore Chinese health study. Circulation 2011;124:2847-54.
127. Patel YR, Gadiraju TV, Gaziano JM, et al. Adherence to healthy lifestyle factors and risk of death in men with diabetes mellitus: The Physicians' Health Study. Clin Nutr 2018;37:13943.
128. Pelser C, Arem H, Pfeiffer RM, et al. Prediagnostic lifestyle factors and survival after colon and rectal cancer diagnosis in the National Institutes of Health (NIH)-AARP Diet and Health Study. Cancer 2014;120:1540-47.
129. Petersen KE, Johnsen NF, Olsen A, et al. The combined impact of adherence to five lifestyle factors on all-cause, cancer and cardiovascular mortality: a prospective cohort study among Danish men and women. Br J Nutr 2015;113:849-58.
130. Prinelli F, Yannakoulia M, Anastasiou CA, et al. Mediterranean diet and other lifestyle factors in relation to 20-year all-cause mortality: a cohort study in an Italian population. Br J Nutr 2015;113:1003-11.
131. Ricardo AC, Madero M, Yang W, et al. Adherence to a healthy lifestyle and all-cause mortality in CKD. Clin J Am Soc Nephrol 2013;8:602-09.
132. Ricardo AC, Anderson CA, Yang W, et al. Healthy lifestyle and risk of kidney disease progression, atherosclerotic events, and death in CKD: findings from the Chronic Renal Insufficiency Cohort (CRIC) study. Am J Kidney Dis 2015;65:412-24.
133. Rizzuto D, Keller L, Orsini N, et al. Effect of the interplay between genetic and behavioral risks on survival after age 75. J Am Geriatr Soc 2016;64:2440-47.
134. Sovic S, Vitale K, Brborovic O, et al. Association of behavioral cardiovascular risk factors with mortality in Croatian adult population: the CroHort study. Coll Antropol 2012;36 Suppl 1:177-82.
135. Tamakoshi A, Tamakoshi K, Lin Y, et al. Healthy lifestyle and preventable death: findings from the Japan Collaborative Cohort (JACC) Study. Prev Med 2009;48:486-92.
136. Tamakoshi A, Kawado M, Ozasa K, et al. Impact of smoking and other lifestyle factors on life expectancy among Japanese: findings from the Japan Collaborative Cohort (JACC) Study. J Epidemiol 2010;20:370-76.
137. Tamosiunas A, Luksiene D, Baceviciene M, et al. Health factors and risk of all-cause, cardiovascular, and coronary heart disease mortality: findings from the MONICA and HAPIEE studies in Lithuania. PLoS One 2014;9:e114283.
138. Thomson CA, Van Horn L, Caan BJ, et al. Cancer incidence and mortality during the intervention and postintervention periods of the women's health initiative dietary modification trial. Cancer Epidemiol Biomarkers Prev 2014;23:2924-35.
139. Towfighi A, Markovic D, Ovbiagele B. Impact of a healthy lifestyle on all-cause and cardiovascular mortality after stroke in the USA. J Neurol Neurosurg Psychiatry

2012;83:146-51.
140. Tsubono Y, Fukao A, Hisamichi S. Health practices and mortality in a rural Japanese population. Tohoku J Exp Med 1993;171:339-48.
141. Tsubono Y, Koizumi Y, Nakaya N, et al. Health practices and mortality in Japan: combined effects of smoking, drinking, walking and body mass index in the Miyagi Cohort Study. J Epidemiol 2004;14 Suppl 1:S39-45.
142. Van Blarigan EL, Fuchs CS, Niedzwiecki D, et al. Association of survival with adherence to the American Cancer Society Nutrition and Physical Activity Guidelines for Cancer Survivors after colon cancer diagnosis: the CALGB 89803/Alliance Trial. JAMA oncology 2018;4:783-90.
143. Van Den Brandt PA. The impact of a Mediterranean diet and healthy lifestyle on premature mortality in men and women. Am J Clin Nutr 2011;94:913-20.
144. van Lee L, Geelen A, Kiefte-de Jong JC, et al. Adherence to the Dutch dietary guidelines is inversely associated with 20-year mortality in a large prospective cohort study. Eur J Clin Nutr 2016;70:262-8.
145. Vergnaud AC, Romaguera D, Peeters PH, et al. Adherence to the World Cancer Research Fund/American Institute for Cancer Research guidelines and risk of death in Europe: results from the European Prospective Investigation into Nutrition and Cancer cohort study. Am J Clin Nutr 2013;97:1107-20.
146. Warren Andersen S, Blot WJ, Shu XO, et al. Associations between neighborhood environment, health behaviors, and mortality. Am J Prev Med 2018;54:87-95.
147. Wingard DL, Berkman LF, Brand RJ. A multivariate analysis of health-related practices: a nine-year mortality follow-up of the Alameda County Study. Am J Epidemiol 1982;116:76575.
148. Yang Q, Cogswell ME, Flanders WD, et al. Trends in cardiovascular health metrics and associations with all-cause and CVD mortality among US adults. JAMA 2012;307:1273-83.
149. Yates LB, Djousse L, Kurth T, et al. Exceptional longevity in men: modifiable factors associated with survival and function to age 90 years. Arch Intern Med 2008;168:284-90.
150. Yun JE, Won S, Kimm H, et al. Effects of a combined lifestyle score on 10-year mortality in Korean men and women: a prospective cohort study. BMC Public Health 2012;12:673.
151. Zhang QL, Zhao LG, Zhang W, et al. Combined impact of known lifestyle factors on total and cause-specific mortality among Chinese men: a prospective cohort study. Sci Rep 2017;7:5293.
152. Zhou L, Zhao L, Wu Y, et al. Ideal cardiovascular health metrics and its association with 20-year cardiovascular morbidity and mortality in a Chinese population. J Epidemiol Community Health 2018;72:752-58.
153. Chiuve SE, Fung TT, Rexrode KM, et al. Adherence to a low-risk, healthy lifestyle and risk of sudden cardiac death among women. JAMA 2011;306:62-69.
154. Eguchi E, Iso H, Tanabe N, et al. Healthy lifestyle behaviours and cardiovascular mortality among Japanese men and women: the Japan Collaborative Cohort Study. Eur Heart J 2012;33:467-77.
155. Eguchi E, Iso H, Tanabe N, et al. Is the association between healthy lifestyle behaviors and cardiovascular mortality modified by overweight status? The Japan Collaborative Cohort Study. Prev Med 2014;62:142-47.
156. Eriksen A, Tillin T, Connor LO, et al. The impact of health behaviours on incident cardiovascular disease in Europeans and South Asians - a prospective analysis in the UK SABRE study. PLoS One 2015;10: 0117364.
157. Han C, Liu F, Yang X, et al. Ideal cardiovascular health and incidence of atherosclerotic cardiovascular disease among Chinese adults: the China-PAR project. Sci China Life Sci 2018;61:504-14.
158. Hoevenaar-Blom MP, Spijkerman AM, Kromhout D, et al. Sufficient sleep duration contributes to lower cardiovascular disease risk in addition to four traditional lifestyle factors: the MORGEN study. Eur J Prev Cardiol 2014;21:1367-75.
159. Liu G, Li Y, Hu Y, et al. Influence of lifestyle on incident cardiovascular disease and mortality in patients with diabetes mellitus. J Am Coll Cardiol 2018;71:2867-76.
160. Luoto R, Prattala R, Uutela A, et al. Impact of unhealthy behaviors on cardiovascular mortality in Finland, 1978-1993. Prev Med 1998;27:93-100.
161. Mitchell JA, Bornstein DB, Sui X, et al. The impact of combined health factors on cardiovascular disease mortality. Am Heart J 2010;160:102-08.
162. Struijk EA, May AM, Wezenbeek NL, et al. Adherence to dietary guidelines and cardiovascular disease risk in the EPIC-NL cohort. Int J Cardiol 2014;176:354-9.
163. Warren Andersen S, Zheng W, Sonderman J, et al. Combined impact of health behaviors on mortality in low-income Americans. Am J Prev Med 2016;51:344-55.
164. Diaz-Gutierrez J, Ruiz-Canela M, Gea A, et al. Association between a healthy lifestyle score and the risk of cardiovascular disease in the SUN cohort. Rev Esp Cardiol 2018;71:1001-09.
165. Folsom AR, Yatsuya H, Nettleton JA, et al. Community prevalence of ideal cardiovascular health, by the American Heart Association definition, and relationship with cardiovascular disease incidence. J Am Coll Cardiol 2011;57:1690-6.
166. Foraker RE, Abdel-Rasoul M, Kuller LH, et al. Cardiovascular health and incident cardiovascular disease and cancer: the Women's Health Initiative. Am J Prev Med 2016;50:236-40.
167. Hulsegge G, Looman M, Smit HA, et al. Lifestyle changes in young adulthood and middle age and risk of cardiovascular disease and all-cause mortality: the Doetinchem Cohort Study. J Am Heart Assoc 2016;5: 0002432.
168. Long GH, Cooper AJ, Wareham NJ, et al. Healthy behavior change and cardiovascular outcomes in newly diagnosed type 2 diabetic patients: a cohort analysis of the ADDITIONCambridge study. Diabetes Care 2014;37:1712-20.
169. Ommerborn MJ, Blackshear CT, Hickson DA, et al. Ideal cardiovascular health and incident cardiovascular events: the Jackson Heart Study. Am J Prev Med 2016;51:502-6.
170. Paynter NP, La Monte MJ, Manson JE, et al. Comparison of lifestyle-based and traditional cardiovascular disease prediction in a multiethnic cohort of nonsmoking Women.

Circulation 2014;130:1466-73.
171. Wu S, Huang Z, Yang X, et al. Prevalence of ideal cardiovascular health and its relationship with the 4-year cardiovascular events in a Northern Chinese industrial city. Circ Cardiovasc Qual Outcomes 2012;5:487-93.
172. Britton A, Marmot MG, Shipley M. Who benefits most from the cardioprotective properties of alcohol consumption--health freaks or couch potatoes? J Epidemiol Community Health 2008;62:905-8.
173. Akesson A, Weismayer C, Newby PK, et al. Combined effect of low-risk dietary and lifestyle behaviors in primary prevention of myocardial infarction in women. Arch Intern Med 2007;167:2122-7.
174. Akesson A, Larsson SC, Discacciati A, et al. Low-risk diet and lifestyle habits in the primary prevention of myocardial infarction in men: a population-based prospective cohort study. J Am Coll Cardiol 2014;64:1299-306.
175. Chiuve SE, McCullough ML, Sacks FM, et al. Healthy lifestyle factors in the primary prevention of coronary heart disease among men: benefits among users and nonusers of lipid-lowering and antihypertensive medications. Circulation 2006;114:160-67.
176. Khera AV, Emdin CA, Drake I, et al. Genetic risk, adherence to a healthy lifestyle, and coronary disease. N Engl J Med 2016;375:2349-58.
177. Lv J, Yu C, Guo Y, et al. Adherence to healthy lifestyle and cardiovascular diseases in the Chinese population. J Am Coll Cardiol 2017;69:1116-25.
178. Taubman SL, Robins JM, Mittleman MA, et al. Intervening on risk factors for coronary heart disease: an application of the parametric g-formula. Int J Epidemiol 2009;38:1599611.
179. Chiuve SE, Rexrode KM, Spiegelman D, et al. Primary prevention of stroke by healthy lifestyle. Circulation 2008;118:947-54.
180. Kulshreshtha A, Vaccarino V, Judd SE, et al. Life's Simple 7 and risk of incident stroke: the reasons for geographic and racial differences in stroke study. Stroke 2013;44:1909-14.
181. Larsson SC, Akesson A, Wolk A. Healthy diet and lifestyle and risk of stroke in a prospective cohort of women. Neurology 2014;83:1699-704.
182. Larsson SC, Akesson A, Wolk A. Primary prevention of stroke by a healthy lifestyle in a high-risk group. Neurology 2015;84:2224-8.
183. Myint PK, Luben RN, Wareham NJ, et al. Combined effect of health behaviours and risk of first ever stroke in 20,040 men and women over 11 years' follow-up in Norfolk cohort of European Prospective Investigation of Cancer (EPIC Norfolk): prospective population study. BMJ 2009;338:b349.
184. Pase MP, Beiser A, Enserro D, et al. Association of ideal cardiovascular health with vascular brain injury and incident dementia. Stroke 2016;47:1201-6.
185. Zhang Q, Zhou Y, Gao X, et al. Ideal cardiovascular health metrics and the risks of ischemic and intracerebral hemorrhagic stroke. Stroke 2013;44:2451-56.
186. Agha G, Loucks EB, Tinker LF, et al. Healthy lifestyle and decreasing risk of heart failure in women: the Women's Health Initiative observational study. J Am Coll Cardiol

2014;64:1777-85.
187. Del Gobbo LC, Kalantarian S, Imamura F, et al. Contribution of major lifestyle risk factors for incident heart failure in older adults. the Cardiovascular Health Study. JACC Heart Fail 2015;3:520-28.
188. Larsson SC, Tektonidis TG, Gigante B, et al. Healthy lifestyle and risk of heart failure: results from 2 prospective cohort studies. Circ Heart Fail 2016;9:e002855.
189. Nayor M, Enserro DM, Vasan RS, et al. Cardiovascular health status and incidence of heart failure in the Framingham Offspring Study. Circ Heart Fail 2016;9:e002416.
190. Ogunmoroti O, Oni E, Michos ED, et al. Life's Simple 7 and incident heart failure: the Multi-Ethnic Study of Atherosclerosis. J Am Heart Assoc 2017;6:e005180.
191. Spahillari A, Talegawkar S, Correa A, et al. Ideal cardiovascular health, cardiovascular remodeling, and heart failure in blacks: the Jackson Heart Study. Circ Heart Fail 2017;10.
192. Wang Y, Tuomilehto J, Jousilahti P, et al. Lifestyle factors in relation to heart failure among Finnish men and women. Circ Heart Fail 2011;4:607-12.
193. Di Benedetto L, Michels G, Luben R, et al. Individual and combined impact of lifestyle factors on atrial fibrillation in apparently healthy men and women: the EPIC-Norfolk prospective population study. Eur J Prev Cardiol 2018;25:1374-83.
194. Larsson SC, Drca N, Jensen-Urstad M, et al. Combined impact of healthy lifestyle factors on risk of atrial fibrillation: prospective study in men and women. Int J Cardiol 2016;203:46-49.
195. Lopez-Laguna N, Martinez-Gonzalez MA, Toledo E, et al. Risk of peripheral artery disease according to a healthy lifestyle score: the PREDIMED study. Atherosclerosis 2018;275:13340.
196. Unkart JT, Allison MA, Criqui MH, et al. Life's Simple 7 and Peripheral Artery Disease: The Multi-Ethnic Study of Atherosclerosis. Am J Prev Med 2019;56:262-70.
197. Andriolo V, Dietrich S, Knuppel S, et al. Traditional risk factors for essential hypertension: analysis of their specific combinations in the EPIC-Potsdam cohort. Sci Rep 2019;9:1501.
198. Banda JA, Clouston K, Sui X, et al. Protective health factors and incident hypertension in men. Am J Hypertens 2010;23:599-605.
199. Diaz-Gutierrez J, Ruiz-Estigarribia L, Bes-Rastrollo M, et al. The role of lifestyle behaviour on the risk of hypertension in the SUN cohort: The hypertension preventive score. Prev Med 2019;123:171-78.
200. Nguyen B, Bauman A, Ding D. Association between lifestyle risk factors and incident hypertension among middle-aged and older Australians. Prev Med 2019;118:73-80.

