did not significantly improve depression (SMD=-0.23 [95%CI-0.59,0.13], p-value=0.21), distress (SMD=0.00 [95%CI-0.15,0.16], p-value=0.96) or wellbeing (SMD=0.00 [95%CI-0.01,0.02], p-value=0.50) (no data for anxiety). Trials’ risk of bias is generally high.

Conclusion Preliminary results suggest that implementing MBPs for non-clinical populations improve wellbeing; other effects depend on contextual factors to be explored further. We found evidence of MBPs’ specific effects on depression only, and no indication of MBPs’ superiority to similar interventions. Low trial quality limits evidence strength.

Thursday 10 September

Tobacco: Behaviours

OP63 ‘I DON’T DO IT IN FRONT OF THE CHILDREN; IT’S THE WORST KEPT SECRET IN THE FAMILY’: SECONDARY QUALITATIVE ANALYSIS OF ELECTRONIC CIGARETTE USERS’ VIEWS AND REPORTED EXPERIENCES OF VAPING AROUND CHILDREN

1E Ward*, 2L Dawkins, 3R Holland, 1C Notley. 1Norwich Medical School, University of East Anglia, Norwich, UK; 2Centre for Addictive Behaviours Research, London South Bank University, London, UK; 3Centre for Medicine, George Davis Centre, University of Leicester, Leicester, UK

Background There is widespread concern about youth uptake of electronic cigarettes. Regulation and education campaigns exist which aim to protect children from initiating use, yet it is likely that children will be primarily influenced by the vaping/smoking behaviour of people in their immediate environment. This is the first known study exploring e-cigarette users’ views and reported experiences of vaping around children.

Methods Following informed consent, semi-structured qualitative interviews with adults recruited from England, who had attempted to give up smoking by vaping, were conducted as part of a wider study into e-cigarette use trajectories and smoking relapse (ECtrea study). Data relating to vaping around children were extracted from 28 interviews and thematically analysed taking a secondary data analysis approach.

Results Analysis indicated that vaping behaviour in the presence of children in public appeared to be governed by replicating smoking norms, whilst vaping in the home appeared to be determined by caregivers’ need to reconcile vaping behaviour so that it was congruent with parental identity as responsible caregiver. Participant perspectives reflected existing diametrically opposed moral discourses applied to e-cigarette use of ‘harm reduction for smokers’ and ‘potential for youth harm’.

Conclusion Vaping is being role modelled within the community and home, despite attempts to hide the behaviour by many e-cigarette users. The ambivalent contextualisation of e-cigarettes means that e-cigarette users may lack a clear narrative to draw on when discussing vaping with children. Public Health guidance for vaping around children, including discussing vaping in the context of smoking cessation, could be helpful.

OP64 CHANGE IN MATERNAL SMOKING BEHAVIOUR BETWEEN TWO PREGNANCIES AND SMALL FOR GESTATIONAL AGE BIRTH: ANALYSIS OF A UK POPULATION-BASED COHORT

1EJ Taylor*, 2N Ziauddin, 3K Godfrey, 4A Berrington, 1NA Alwan. 1School of Primary Care, Population Sciences and Medical Education, University of Southampton, Southampton, UK; 2NIHR Southampton Biomedical Research Centre, University of Southampton and UHS NHS Foundation Trust, Southampton, UK; 3MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK; 4Department of Social Statistics and Demography, University of Southampton, Southampton, UK

Background Maternal smoking during pregnancy is linked to small for gestational age (SGA) birth (< 10th percentile). We examined inter-pregnancy changes in maternal smoking and the odds of SGA in the second child.

Methods A population-based cohort of prospectively collected anonymised antenatal and birth healthcare data (2003–2018) recorded by University Hospital Southampton, Hampshire, UK (SLOPE study) was used. The first two singleton pregnancies resulting in live births were analysed (n=15,525 women) using logistic regression to examine changes in self-reported maternal smoking in relation to whether the second child was SGA. We adjusted for maternal age, ethnicity, body mass index, educational attainment, employment status, partnership status, folic acid supplementation, infertility treatment, gestational diabetes and gestational hypertension at the first pregnancy (P1), length of the interpregnancy interval and previous SGA birth.

Results SGA occurred in 15.7% of all pregnancy 2 (P2) births in mothers smoking at both pregnancies, compared to 5.7% in never-smokers (reference group). Smoking at the start of both pregnancies was associated with higher odds of 2nd child SGA (adjusted Odds Ratio (aOR) 2.88 [95% CI 2.32, 3.56]). The aOR of 2nd child SGA were also higher in women who smoked only at the start of either P2 (2.02 [1.41, 2.89]) or P1 (1.52 [1.10, 2.09]). The aOR of 2nd child SGA were similar to never-smokers in those who quit when each pregnancy was confirmed (1.23 [0.81, 1.85]), smoked between pregnancies but quit up to P2 confirmation (0.82 [0.59, 1.15]), or quit by P1 confirmation and maintained cessation (0.91 [0.74, 1.11]). The odds of SGA birth for women with no previous SGA followed a similar pattern. Among women whose 1st baby was SGA (n=1,903), the aOR of recurrent SGA were higher in those smoking at the start of both pregnancies (2.62 [1.84, 3.72]), or at P2 only (1.82 [1.00, 3.30]). However, those who were P1 smokers and stopped by P2 were not more likely to have recurrent SGA (aOR 1.08 [0.62, 1.88]).

Conclusion Mothers who smoked at the start of either one or both of their first two pregnancies had increased odds of SGA birth compared to never-smokers. However, the odds of recurrent SGA with smoking in the first pregnancy and quitting at any point up to confirmation of the second pregnancy were similar to never-smokers. The time between pregnancies is an opportunity to intervene on modifiable risk factors such as smoking, particularly in those with previous history of SGA babies.

Funding Supported by an NIHR Southampton Biomedical Research Centre and University of Southampton Primary Care and Population Sciences PhD studentship (to EJT) and an Academy of Medical Sciences and Wellcome Trust grant; Grant number AMS_HOP001:1060 (to NAA).