Lines 9-67 cover the creation of the dataset

If preferred you can go directly to line 70

You will, however, need to install synth (see line 19), synth_runner (see line 22) and grclleg (see line 33)

Data sources: Life expectancy: Human Mortality Database. University of California, Berkeley (USA), and Max Planck Institute for Demographic Research (Germany). Available at www.mortality.org or www.humanmortality.de (data downloaded on 29/03/2017).

*Combining datasets

*First import txt files from HMD into stata, keep years 1960 to 2003. The countries included (as per Comparative Politics and the Synthetic Control Method are Australia

Austria, Belgium, Denmark, France, Greece, Italy, Japan, Netherlands, New Zealand, Norway, Portugal, Spain, Switzerland, UK, USA, West Germany. Greece only starts 1981 in HMD so we exclude)

*If not already installed you will need to install the following

`scc install synth, replace all`

`net install synth_runner, from("https://raw.github.com/bquistorff/synth_runner/master/") replace`

`dsconcat - Roger Newson, Imperial College London, UK.
ssc install dsconcat, replace`

ssc install kountry, replace`

`grclleg Program by Vince Wiggins, StataCorp <vwiggins@stata.com>,
net install grclleg.pkg, replace`

*assumes hmd files (for year on year life expectancy for above countries) in a directory on their own
cd E0per

*imports text files and saves them as stata files
local list : dir "." files ".txt", respectcase
foreach file of local list {
import delimited 'file', varnames(3) delimiters(" ", collapse) clear
gen filename="file"
gen country=substr(filename,1,3)
levelsof country
keep year country total male female
drop if year < 1960
drop if year > 2003
save `r(levels)', replace
}
*combines the imported stata files from the last step (uses user written programme dsconcat so if you don't have this use the * out command to install from ssc).
local list2 : dir "." files ".dta", respectcase
dsconcat `list2`

*next merge the files using a user written programme - kountry- again download this if haven't already

kountry country, from(iso3c)
save "germany\le", replace
cd "germany"
use repgermany, clear
kountry country, from(other)
drop if country=="Greece"
merge 1:1 NAMES_STD year using le
drop _merge male female
encode country, gen(country2)
label var total "Life expectancy"
save analysis, replace

* Analysis - start here

use analysis, clear
Step 1 - requires no syntax as it concerns theoretical understanding
*Step 2 - Identification of potential control units - remaining blinded to data
post implementation*
keep if year < 1991
*exclusions - keep Austria, Japan, Netherlands, Switzerland and USA as well as West
Germany as these used in GDP study.
*compares West German trend to the mean of the rest of the 15
egen m_total = mean(total) if country2!=16, by(year)
egen m_gdp = mean(gdp) if country2!=16, by(year)
*pooled after exclusions
egen m_total_ex = mean(total) if inlist(country2,2,7,8,13,15), by(year)
egen m_gdp_ex = mean(gdp) if inlist(country2,2,7,8,13,15), by(year)
*Comparison of average GDP and Life Expectancy trends between West Germany and 5
country/15 country pools*
line m_total year if country2==2, lpattern(dash) lcolor(black) ||
line m_total_ex year if country2==2, lpattern(dash_dot) lcolor(black) ||
line total year if country2==16, name(match_le, replace)
*title("Life expectancy") xline(1990, lcolor(gs8)) ///
legend(label(1 "15 country pool") label(2 "5 country pool") label(3 "West Germany"))
lcolor(black)
line m_gdp year if country2==2, lpattern(dash) lcolor(black) ||
line m_gdp_ex year if country2==2, lpattern(dash_dot) lcolor(black) ||
line gdp year if country2==16 &
year, name(match_gdp, replace)
*title("GDP per capita") xline(1990, lcolor(gs8)) ///
legend(label(1 "15 country pool") label(2 "5 country pool") label(3 "West Germany"))
lcolor(black)
graph leg match_le match_gdp, xcommon
*Figure generated by line 98 (not shown in article) shows better GDP fit for 5
country pool so that is used in the rest of the analysis*
keep if inlist(country2,2,7,8,13,15,16)
*Step 3 - Develop the synthetic control country - a synthetic control West Germany
tsset country2 year
**This approach uses the final gdp observation in the pre-implementation period as
predictor variable**
Lines 112-124 create the top half of Figure 1
sort year country2
matrix W = e(W_weights)
svmat W
bysort country2: egen weight = max(W2)
egen m_gdp_temp = total(gdp*weight) if country2!=16 & weight > 0, by(year)
egen m_total_temp = total(total*weight) if country2!=16 & weight > 0, by(year)
This approach uses averages of GDP over five-year periods in the pre-implementation period as predictor variables

*Figures 126-142 create the bottom half of Figure 1**

Line 145 creates Figure 1

grclegend match_le_1 match_gdp_1 match_le_2 match_gdp_2, xcommon

Step 4 - Run outcome analysis

use analysis, clear

set more off

keep if inlist(country2,2,7,8,13,15,16)

Lines 156-172 create Figure 2

tset country2 year

drop W weight m_gdp_temp m_total_temp
Step 6 - Run robustness checks

Lines 176-186 create Figure 3

tempfile keepfile

```
, trunit(16) trperiod(1990) keep('keepfile')

merge 1:1 country2 year using "`keepfile'", nogenenerate

gen double total_synth = total-effect

line effect year if country2 == 2, lcolor(gs8) || ///
line effect year if country2 == 7, lcolor(gs8) || ///
line effect year if country2 == 8, lcolor(gs8) || ///
line effect year if country2 == 13, lcolor(gs8) || ///
line effect year if country2 == 15, lcolor(gs8) || ///
line effect year if country2 == 16, lcolor(gs8) legend(off) linewidth(thick) xline(1990, lcolor(gs8)) yline(0, lcolor(gs8)) ytitle(Life expectancy difference)
```

*RMSPE

Lines 190-191 generate the data for Table 4

gen ratio_rmspe = post_rmspe / pre_rmspe
tabstat pre_rmspe post_rmspe ratio_rmspe, by(country2) nototal

Further sensitivity analysis - not discussed in article

*Do exclusions matter?

use analysis, clear

drop more off

tset country2 year

sort year country2

matrix W = e(W_weights)

svmat W

degen weight = max(W2)

degen m_gdp_temp = total(gdp*weight) if country2!=16 & weight > 0, by(year)
degen m temp = total(total*weight) if country2!=16 & weight > 0, by(year)
sort country2 year

legend(label(1 "Synthetic West Germany") label(2 "West Germany") name(match_gdp, replace) ytitle("GDP per capita") xline(1990, lcolor(gs8)) lcolor(black)

matrix list e(V_matrix)

tempfile keepfile

```
, trunit(16) trperiod(1990) keep('keepfile')

merge 1:1 country2 year using "`keepfile'", nogenenerate

gen double total_synth = total-effect

line effect year if country2 == 1, lcolor(gs8) || ///
line effect year if country2 == 2, lcolor(gs8) || ///
line effect year if country2 == 3, lcolor(gs8) || ///
line effect year if country2 == 4, lcolor(gs8) || ///
line effect year if country2 == 5, lcolor(gs8) || ///
line effect year if country2 == 6, lcolor(gs8) || ///
line effect year if country2 == 7, lcolor(gs8) || ///
line effect year if country2 == 8, lcolor(gs8) || ///
line effect year if country2 == 9, lcolor(gs8) || ///
line effect year if country2 == 10, lcolor(gs8) || ///
line effect year if country2 == 11, lcolor(gs8) || ///
line effect year if country2 == 12, lcolor(gs8) || ///
line effect year if country2 == 13, lcolor(gs8) || ///
line effect year if country2 == 14, lcolor(gs8) || ///
line effect year if country2 == 15, lcolor(gs8) || ///
line effect year if country2 == 16, lcolor(gs8) legend(off) linewidth(thick) xline(1990) yline(0) ytitle(Effe
*RMPSE

``` stata
238 gen ratio_rmspe = post_rmspe / pre_rmspe
239 tabstat pre_rmspe post_rmspe ratio_rmspe, by(country2) nototal
241
242
243
244
245```
