Abstracts

P05

MULTIPLE RISK BEHAVIOUR IN ADOLESCENCE AND ADVERSE HEALTH AND SOCIAL OUTCOMES IN EARLY ADULTHOOD: FINDINGS FROM A PROSPECTIVE BIRTH COHORT STUDY

1R Campbell*, 1M Hickman, 1R Kipping, 1M Smith, 1T Poulou, 1J Heron. 1School for Social and Community Medicine, University of Bristol, Bristol, UK; 2School for Clinical Medicine, University of Bristol, Bristol, UK; 3Administrative Data Research Wales, Swansea University, Swansea, UK

10.1136/jech-2017-SSMAbstracts.108

Background Adolescents engage in new and changed behaviours such as substance use or reduced physical activity. Evidence is accruing that these health risk behaviours co-occur at a population level and cluster within individuals. There has, however, been less focus on what the cumulative impact of engagement in multiple risk behaviours might be even in the short term. We sought to assess if engagement in multiple risk behaviours in mid-adolescence is associated with deleterious health and social outcomes in early adulthood.

Methods 5591 young people enrolled in the Avon Longitudinal Study of Parents and Children provided data on 13 risk behaviours from the domains of physical inactivity, substance use, self-harm, sexual health, vehicle-related risk behaviour, and antisocial behaviour when aged 15 to 16. Logistic regression was used to examine any association between the total number of behaviours engaged in and rates of obesity, harmful alcohol use, problem gambling, anxiety, depression, trouble with the police and unemployment and lack of training at age 18.

Results There was a strong association between multiple risk behaviour and all seven adverse outcomes. For each additional risk behaviour engaged in, the odds of having anxiety or being a problem gambler were 1.18 [1.12, 1.24] and 1.20 [1.13, 1.27] respectively, the odds for depression were 1.24 [1.17, 1.31], and the odds of getting into trouble with the police or of harmful drinking were 1.49 [1.42, 1.57] and 1.58 [1.48, 1.69] respectively. Adjustment for gender, parental socio-economic position, and maternal risk behaviours did little to alter the odds of these adverse outcomes. Confining analyses to adolescents not having experienced the adverse outcomes before age 15, to exclude reverse causality, also produced little change in odds.

Conclusion Improvements in adolescent health are lagging behind those seen in child health. Investment in interventions and environments that effectively prevent multiple risk behaviour is likely to produce better adolescent health and wellbeing.

P06

CORRELATES OF LEVEL AND LOSS OF GRIP STRENGTH IN LATER LIFE: FINDINGS FROM THE ENGLISH LONGITUDINAL STUDY OF AGEING AND THE HERTFORDSHIRE COHORT STUDY

1LD Westbury*, 2HC Syddall, 1EM Dennison, 1AC Cooper, 1CR Gale, 1ARC LifeCourse Epidemiology Unit, University of Southampton, Southampton, UK; 2Victoria University of Wellington, Wellington, New Zealand; 3NHRR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK; 4NIHR Musculoskeletal Biomedical Research Unit, University of Oxford, Oxford, UK; 5Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, Edinburgh, UK

10.1136/jech-2017-SSMAbstracts.109

Background Low grip strength in later life is a risk factor for subsequent disability and mortality and a key component of sarcopenia. Established determinants of low grip strength level include: older age; shorter stature; poor nutrition; low physical activity; socio-economic disadvantage and multimorbidity. However, little is known about risk factors for accelerated loss of grip strength in later life.

Methods We examined socio-demographic, lifestyle and clinical predictors of baseline level and 8 year loss of grip strength in 3703 men and women (aged 52–82 years at baseline) in the English Longitudinal Study of Ageing (ELSA). Data on 441 men and women (aged 59–71 years at baseline) who participated in a 10 year follow-up of the Hertfordshire Cohort Study (HCS) were used for replication. Change in grip strength from baseline to the end of follow-up was characterised using linear mixed-effects models in ELSA as grip strength was measured at three time-points. A residual change method was used in HCS to obtain a measure of change in grip strength between two time-points which was independent of baseline level. Linear regression models adjusted for age and gender, as well as mutually-adjusted models, were used to examine the relationship between baseline predictors and level and change in grip strength in both cohorts.

Results Men in ELSA and HCS had higher average levels of grip strength at baseline, and accelerated rates of loss, compared with women. In ELSA, older age, shorter stature, and increased morbidity were associated with lower level, and accelerated rate of loss, of grip strength in both sexes. For example, accelerated loss of 0.04 (95%CI: 0.00, 0.08) standard deviation (SD) scores per additional morbidity were estimated from mutually-adjusted models; corresponding SD scores per SD decrease in height were 0.06 (95%CI: 0.03, 0.09). In mutually-adjusted analyses, socioeconomic disadvantage, low level of physical activity and poorer self-reported health were also associated with low grip strength level, but not with rate of loss. Analysis in HCS yielded similar results.

Conclusion Our results identify multimorbidity as a modifiable determinant of both level and loss of muscle strength in later life. The association between shorter stature and accelerated loss of grip strength suggests that developmental influences may also impact on rate of loss, as well as on level, of muscle strength in older age. This research will inform the development of lifecourse interventions to promote maintenance, and reduce loss, of muscle strength in later life.

P07

SENSORY IMPAIRMENTS AND COGNITIVE AGING: FINDINGS FROM 11 EUROPEAN COUNTRIES

A Maharani*, N Pendleton, G Tampubolon, J Nazroo, P Dawes. SENSE-Cog project, University of Manchester, Manchester, UK

10.1136/jech-2017-SSMAbstracts.108

Background Sensory impairment (hearing and/or visual) and cognitive decline commonly occur in the elderly. Whether they are in fact associated, and whether sensory impairment might contribute to intellectual decline, has been a subject of a number of investigations during the past three decades. The purpose of this study was to assess in an older European population: (1) any independent association between single and dual sensory impairment (hearing and/or vision) and cognitive decline; (2) cognitive trajectories according to the pattern of sensory impairment.
PO9 AFFECTIVE PROBLEMS AND MEMORY DECLINE: A SYSTEMATIC REVIEW AND META-ANALYSIS

A John*, 1U Patel, 2M Richards, 3J Rusted, 4D Gaynor. 1Psychology, University of Sussex, Brighton, UK; 2MRC Unit for Lifelong Health and Ageing, UCL, London, UK.

Background Previous evidence suggests that the presence of affective problems, such as depression and anxiety, may confer an increased risk for late-life dementia. However, the extent to which affective symptoms may influence memory decline in particular, even many years prior to the clinical threshold for a diagnosis of dementia, is not clear. The present study systematically reviews and synthesises the current evidence surrounding the association between depression and memory decline across the life course.

Methods An electronic search of PubMed, PsycINFO and ScienceDirect was conducted to identify studies on the association between depression and subsequent memory decline. Key inclusion criteria were prospective, longitudinal studies with a minimum follow-up period of one year. Cross-sectional, incidence rates of dementia were calculated for 5131 individuals aged 65 and older at study entry. Dementia incidence over time was examined by comparing age-specific incidence rates between two age-period-cohorts derived in ELSA using a median split in birth-year range (ELSA I: 1900–1925 and ELSA II: 1926–1950). The predictive value of education, wealth, geographical area, the index of multiple deprivations and the degree of urbanisation for dementia incidence were examined using Poisson regression.

Dementia was determined by doctor-diagnosis and the Informant Questionnaire on Cognitive Decline in the Elderly (score >3.38 indicative of dementia). Age- and sex-specific incidence rates of dementia were calculated for 5131 individuals aged 65 and older at study entry. Dementia incidence over time was examined by comparing age-specific incidence rates between two age-period-cohorts derived in ELSA using a median split in birth-year range (ELSA I: 1900–1925 and ELSA II: 1926–1950).

The predictive value of education, wealth, geographical area, the index of multiple deprivations and the degree of urbanisation for dementia incidence were examined using Poisson regression.

Results The average duration of follow-up was 7.7 years. As anticipated, there was a significant increase in the rates of dementia incidence with age, from 5.90 per 1000 person years at ages 65–69 to 31.59 at ages 85+.

We observed an age-period-cohort effect on dementia incidence, with nearly 30% reduction in the incidence rates for participants of the same initial age group (75–79) at the study entry from ELSA I and II.

Higher rates of dementia incidence were observed for London (Rate=15.52, Incidence rate ratio (IRR)=1.43 95% confidence intervals (CI) 1.01–2.03) compared with Northern England, and for those in the lowest wealth quintiles (Rate=14.61, IRR=2.18, 95% CI 1.53–3.06) compared with the highest.

Conclusion In a nationally representative sample, we observed a reduction in the age-specific dementia incidence over time. This incidence appeared to be patterned by group- and individual-level characteristics.

PO8 INCIDENCE OF DIAGNOSED DEMENTIA IN THE ENGLISH LONGITUDINAL STUDY OF AGEING IN ENGLAND: A 12-YEAR FOLLOW-UP

D Cadar*, 1H Davies, 2D Llewellyn, 1G0 Batty, 1A Steptoe. 1Department of Behavioural Science and Health, University College London, London, UK; 2Mental Health Research Group, University of Exeter Medical School, University of Exeter, Exeter, UK; 3Department of Epidemiology and Public Health, University College London, London, UK.

Background There has been a suggestion that the incidence of dementia in England has recently declined. Crucially, however, these estimates have not been based on nationally representative samples. Accordingly, we calculated dementia incidence, the temporal trends and, additionally, examined various socioeconomic and geographical predictors of its occurrence.

Methods Data from the English Longitudinal Study of Ageing (ELSA), a prospective cohort study at baseline known to be representative of the English population, were used to investigate the rates of dementia incidence over seven waves between 2002 and 2014.

Dementia was determined by doctor-diagnosis and the Informant Questionnaire on Cognitive Decline in the Elderly (score >3.38 indicative of dementia). Age- and sex-specific incidence rates of dementia were calculated for 5131 individuals aged 65 and older at study entry. Dementia incidence over time was examined by comparing age-specific incidence rates between two age-period-cohorts derived in ELSA using a median split in birth-year range (ELSA I: 1900–1925 and ELSA II: 1926–1950). The predictive value of education, wealth, geographical area, the index of multiple deprivations and the degree of urbanisation for dementia incidence were examined using Poisson regression.

Dementia was determined by doctor-diagnosis and the Informant Questionnaire on Cognitive Decline in the Elderly (score >3.38 indicative of dementia). Age- and sex-specific incidence rates of dementia were calculated for 5131 individuals aged 65 and older at study entry. Dementia incidence over time was examined by comparing age-specific incidence rates between two age-period-cohorts derived in ELSA using a median split in birth-year range (ELSA I: 1900–1925 and ELSA II: 1926–1950). The predictive value of education, wealth, geographical area, the index of multiple deprivations and the degree of urbanisation for dementia incidence were examined using Poisson regression.

Results The average duration of follow-up was 7.7 years. As anticipated, there was a significant increase in the rates of dementia incidence with age, from 5.90 per 1000 person years at ages 65–69 to 31.59 at ages 85+.

We observed an age-period-cohort effect on dementia incidence, with nearly 30% reduction in the incidence rates for participants of the same initial age group (75–79) at the study entry from ELSA I and II.

Higher rates of dementia incidence were observed for London (Rate=15.52, Incidence rate ratio (IRR)=1.43 95% confidence intervals (CI) 1.01–2.03) compared with Northern England, and for those in the lowest wealth quintiles (Rate=14.61, IRR=2.18, 95% CI 1.53–3.06) compared with the highest.

Conclusion In a nationally representative sample, we observed a reduction in the age-specific dementia incidence over time. This incidence appeared to be patterned by group- and individual-level characteristics.