Appendix

Sex differences in the relationship between socioeconomic status and cardiovascular disease: a systematic review and meta-analysis

Appendix methods: Search terms used

"female", "women", "male", "men", "sex", "cardiovascular disease", "coronary heart disease", "myocardial infarction", "stroke", "cerebrovascular disease", "socioeconomic factors", "social class", "income", "education*", "occupation", "socio*", "inequit*", "inequal*", "disparit*", "disadvantage", ", "cohort*", "prospective*", "longitudinal*", "population-based", "ecologic study", "registries", "census".

Use of an asterisk denotes an open ended search term. No limits were placed on the basis of language, country or publication date.

Appendix figure legends

Appendix figure 1: Multiple-adjusted pooled relative risk of cardiovascular disease outcomes associated with lowest versus highest socioeconomic status in men and women. SES: Socioeconomic status.

Appendix figure 2: Funnel plot with pseudo 95% confidence limits for the age-adjusted data comparing lowest to highest level of education. a) For data in Figure 3 (CHD) ; b) For data in Figure 4 stroke; c) For data in Figure 5 (CVD).

Appendix figure 3: Age-adjusted and multiple-adjusted women-to-men ratio of relative risks of coronary heart disease, highest compared to lowest area level disadvantage.

Appendix figure 4: Age-adjusted and multiple-adjusted women-to-men ratio of relative risks of coronary heart disease, lowest compared to highest income level.

Appendix figure 5: Age-adjusted and multiple-adjusted women-to-men ratio of relative risks of coronary heart disease, manual compared to non-manual occupations.

Appendix figure 6: Age-adjusted and multiple-adjusted women-to-men ratio of relative risks of stroke, highest compared to lowest area level disadvantage.

Appendix figure 7: Age-adjusted and multiple-adjusted women-to-men ratio of relative risks of stroke, lowest compared to highest income level.

Appendix figure 8: Age-adjusted and multiple-adjusted women-to-men ratio of relative risks of stroke, manual compared to non-manual occupations.

Appendix figure 9: Age-adjusted and multiple-adjusted women-to-men ratio of relative risks of cardiovascular disease, highest compared to lowest area level disadvantage.

Appendix figure 10: Age-adjusted and multiple-adjusted women-to-men ratio of relative risks of cardiovascular disease, manual compared to non-manual occupation.

Appendix figure 11: Age-adjusted women-to-men ratio of relative risks of cardiovascular disease outcomes by subgroup, lowest compared to highest educational attainment *analysis are conducted using individual participant data (the Asia Pacific Cohort Studies Collaboration, the Atherosclerosis Risk in Communities Study, the National Health and Nutrition Examination Survey III, and the Scottish Heart Health Extended Cohort Study).

Appendix figure 12: Age-adjusted women-to-men ratio of relative risks of cardiovascular disease outcomes by primary compared to secondary or compared to tertiary educational attainment. Analysis were conducted using individual participant data (the Asia Pacific Cohort Studies Collaboration, the Atherosclerosis Risk in Communities Study, the National Health and Nutrition Examination Survey III, and the Scottish Heart Health Extended Cohort Study).

Appendix table 1: Quality assessment of the included studies

Study	S1	S2	S3	S4	C1	01	02	03	Sum
ARIC (1)	1	1	1	1	2	1	1	1	9
APCSC-ANZ (2, 3)	1	1	1	1	2	1	1	1	9
APCSC-Asia (2, 3)	1	1	1	1	2	1	1	1	9
ARIC (4)	1	1	1	1	2	1	1	1	9
Bas Rhin registry (5)	1	1	1	0	2	1	1	1	8
BASIC (6)	1	1	1	1	2	1	1	1	9
CALIBER (7)	1	1	1	1	2	1	1	1	9
CCHS; GPS (8)	1	1	1	1	2	1	1	1	9
CCM follow-up Study (9)	1	1	1	1	2	0	1	1	8
CPSII Nutrition Cohort (44)	1	1	1	1	2	0	1	1	8
CVDNOR (45)	1	1	1	1	2	1	1	1	9
Dutch National Register (10)	1	1	1	1	2	0	1	0	7
Dutch National Register (11)	1	1	1	1	2	1	1	0	8
Entire Swedish population (12)	1	1	1	0	2	1	1	0	7
EPIC (13)	1	1	1	1	2	1	1	1	9
EPIC Norfolk (14)	1	1	1	1	2	0	1	1	8
EPIC Norfolk (15)	1	1	1	1	2	1	1	1	9
FINAMI (16)	1	1	1	1	2	1	1	0	8
FINMONICA stroke register (17)	1	1	1	1	2	1	1	1	9
FINRISK (18)	1	1	1	1	2	1	1	1	9
French National Institute of									
Statistics (INSEE) (19)	1	1	1	1	2	0	1	0	7
HUNT-2 (20)	1	1	1	1	2	0	1	0	7
ILMS (21)	1	1	1	1	2	0	1	1	8
JACC (22)	1	1	1	1	2	0	1	0	7
JMS (23)	1	1	1	1	2	1	1	1	9
JPHC I (24)	1	1	1	1	2	1	1	1	9
MATISS (25)	1	1	1	1	2	0	1	1	8
MONICA Glasgow (26)	1	1	1	1	2	1	1	0	8
MONICA Novobirsk (27)	1	1	1	1	2	0	1	1	8
MONICA; PAMELA (28)	1	1	1	1	2	1	1	1	9
MORGAM (29)	1	1	1	1	2	0	1	1	8
Mumbai Cohort Study (30)	1	1	1	1	2	0	1	1	8
Muncipality of Barcelona (31)	1	1	1	1	2	0	1	1	8
NHANES I (32)	1	1	1	1	2	1	1	1	9
NHANES III (33)	1	1	1	1	2	1	1	1	9
NHANES I (34)	1	1	1	1	2	1	1	1	9
NIH-AARP Diet and Health Study									
(35)	1	1	1	1	2	0	1	0	7
NSW-ISC (36)	1	1	1	0	2	0	1	0	6
PCCS; NEMESIS; ARCOS (37)	1	1	1	1	2	1	1	0	8

Population and Housing census	4	4	4	4	2		4	4	0
(38)	1	1	1	1	2	1	1	1	9
Population census Malmö (39)		1	1	1	2	1	1	0	7
Population registry of Central and									
Capital Region (40)	1	1	1	1	2	1	1	0	8
Renfrew/Parsley (41)	1	1	1	1	2	1	1	0	8
Renfrew/Parsley (42)	1	1	1	1	2	1	1	0	8
SHHEC (43)	1	1	1	1	2	1	1	1	9
Swedish Work and Mortality									
Database (44)	1	1	1	1	2	0	1	1	8
Three Norwegian counties (45)	1	1	1	1	2	0	1	0	7
TLS (46)	1	1	1	1	2	1	1	0	8
Whitehall (47)	1	1	0	1	2	1	1	0	7

Citation number in parentheses. See appendix table 2 for full study names

Studies were rated on quality assessment criteria according to a modified version of the Newcastle-Ottawa Quality assessment scale listed on the next page (*studies received one point for the achievement of these criteria):

Quality assessment criteria

Selection

S1) Representativeness of the exposed cohort

a) truly representative of the general population*

b) somewhat representative of the general population

c) selected group e.g. patient groups

d) no description of the derivation of the cohort

S2) Selection of the non exposed cohort

a) drawn from the same community as the exposed cohort *

b) drawn from a different source

c) no description of the derivation of the non exposed cohort

S3) Ascertainment of exposure

a) secure record (validated events) *

b) structured interview

c) written self report

d) no description

S4) Demonstration that outcome of interest was not present at start of study

a) yes *

b) no

<u>C</u>omparability

C1) Comparability of cohorts on the basis of the design or analysis

a) study controls for age*

b) study does not control for additional factors in baseline model adjusted for age (cohort or year ok)*

<u>O</u>utcome

O1) Assessment of outcome

a) independent blind assessment or record linkage of fatal and non-fatal events*

b) independent blind assessment or record linkage of fatal events

c) self report

d) no description

O2) Was follow-up long enough for outcomes to occur

a) yes (at least 3 years) *

b) no

O3) Adequacy of follow up of cohorts

a) complete follow up - all subjects accounted for *

b) subjects lost to follow up unlikely to introduce bias - > 10% follow up, or description provided of those lost *

c) follow up rate < 90% and no description of those lost

d) no statement

Appendix table 2: Characteristics of included studies

Study name	Baseline study years	Country	Follow-	n (% women)	Age	CHD, n (% women)	Stroke, n	CVD, n	Fatal (F),	SEPSES	Maximum adjustment
(citation number)	study years		(years)	(78 Women)	Tange	(78 Women)	(/owomen)	(/owomen)	(NF)	(no categories)	
APCSC-ANZ (2, 3)	1989-96	ANZ	8	91743 (55)	20-104	2156 (21)	725 (30)	3232 (24)	F & NF	Education (3)	Age, DM, smoking, SBP, TC, HDL-C
APCSC-Asia (2, 3)	1961-93	Asia	7	227123 (29)	20-107	583 (34)	1263 (34)	2726 (35)	F &NF	Education (3)	Age, DM, smoking, SBP, TC, HDL-C
ARIC (1, 4)	1987-89	USA	10	15732 (55)	45-64	1616 (42)	930 (52)	2339 (45)	F & NF	Education (3) Area Deprivation (3)	Age, DM, smoking, SBP, TC, HDL-C
Bas Rhin registry (5)	2000-03	France	4	450000 (NA)	35-74	1193 (24)	NA	NA	F & NF	Area Deprivation (5)	age
BASIC (6)	2000	USA	3	Population of Nueces, Texas (NA)	73	NA	1247 (NA)	NA	N	Area Deprivation (2)	age, ethnicity
CALIBER (7)	1997-10	UK	6	1937360 (51)	30+	33769 (42)	17641 (56)	78618 (47)	F & NF	Area Deprivation (5)	Age, ethnicity, smoking, DM, SBP, TC, HDL-C, BMI
CCHS; GPS (8)	1976 -94	Denmark	32	22782 (54)	20+	3061 (41)	NA	NA	F & NF	Income (4)	age, smoking, alcohol, SBP, TC, BMI, PA, DM
CCM follow-up Study (9)	1991	Canada	10	1091800 (39)	35-64	NA	NA	NA	F	Education (4) Occupation (5)	age
CPSII Nutrition Cohort (48)	1992	USA	8	179383 (47)	50-75	3451 (23)	944 (38)	NA	F	Education (5) Area Deprivation (6)	age
CVDNOR (49)	2001-09	Norway	8	Norwegian population	35-94	141332 (40)	NA	NA	F	Education (3)	age
Dutch National Register (10)	1995-00	The Netherla nds	5	11381474 (45)	0-59	NA	NA	NA	F	Area Deprivation (2)	age
Dutch National Register (11)	1997-07	The Netherla nds	10	Dutch population	35-95	317563 (37)	NA	NA	F & NF	Area Deprivation (5)	age

Entire Swedish	1995	Sweden	4	2637628	40-64	52360 (27)	NA	NA	Ν	Income (5)	age
population (12)				(50)						Area	
										Deprivation (10)	
EPIC (13)	1992-96	Spain	10	41438 (62)	30-65	538 (20)	NA	NA	F & NF	Education (5)	age, paternal occupation, smoking, DM, hypertension, hyperlipidemia, CVD drugs use, and OCT use, HRT, postmenopausal status
EPIC Norfolk (14)	1993-97	UK	13	22486 (55)	39-79	NA	NA	683 (39)	F	Occupation (6)	Age, smoking, BMI
EPIC Norfolk (15)	1993-97	UK	10	22486 (55)	39-79	NA	683 (52)	NA	F & NF	Occupation (6)	Age, BMI, smoking, DM, SBP, TC
FINAMI (16)	1988	Finland	15	233287 (55)	35-99	15374 (47)	NA	NA	F & NF	Income (5) Education (2) Occupation (3)	Age
FINMONICA stroke register (17)	1982-83	Finland	10	390564 (NA)	25-74	NA	6903 (43)	NA	F & NF	Income (3) Education (3)	Age
FINRISK (18)	1982-97	Finland	5	19272 (53)	35-64	1137 (31)	NA	NA	F & NF	Occupation (6)	Age, smoking, alcohol, PA, TC, BP, BMI
French National Institute of Statistics (INSEE) (19)	1990-99	France	9	213874 (51)	30-64	NA	NA	11724 (31)	F	Education (5) Occupation (10)	Age
HUNT-2 (20)	1995-97	Norway	9	44128 (53)	30-99	551 (40)	NA	NA	F	Education (3)	Age, chronic illness, smoking, PA, alcohol
ILMS (21)	1983	Israel	10	152150 (52)	45-89	7529 (59)	NA	14732 (45)	F	Education (3)	Age
JACC (22)	1988-90	Japan	11	39999 (58)	40-79	439 (42)	NA	NA	F	Education (3)	Age
JMS (23)	1992-95	Japan	12	10640 (61)	57	84 (32)	367 (46)	NA	F & NF	Education (3) Occupation (3)	Age, TC, PA, alcohol, marital status, smoking, obesity, hypertension, DM
JPHC I (24)	1990	Japan	13	39228 (52)	40-59	NA	NA	1799 (35)	F & NF	Education (3)	Age, smoking, alcohol, PA, BMI, dietary intake, screening tests
MATISS (25)	1983	Italy	17	8512 (53)	20-75	NA	NA	288 (NA)	F	Education (4)	Age, smoking, SBP, BMI, HDL-C

MONICA Glasgow (26)	1985	UK	6	195831 (51)	25-64	5542 (28)	NA	NA	F & NF	Area Deprivation (4)	Age
MONICA Novobirsk (27)	1984-95	Russia	10	11404 (43)	25-64	293 (20)	146 (30)	524 (25)	F	Education (4)	Age, smoking, TC, SBP, alcohol, BMI
MONICA; PAMELA (28)	1986-92	Italy	12	5084 (51)	35-74	319 (24)	229 (21)	NA	F & NF	Education (2)	Age, SBP, DM, smoking, TC, HDL-C, BMI (women only)
MORGAM (29)*	1982-97	Europe	10	68455 (43)	40-64	NA	NA	2878 (21)	F	Education (3)	Age, SBP, TC, smoking
Mumbai Cohort Study (30)	1991-97	India	6	148173 (40)	30+	2460 (31)	765 (40)	4451 (39)	F	Education (5)	Age, smoking, BMI, religion, mother tongue
Municipality of Barcelona (31)	1984	Spain	9	20648 (44)	15+	NA	NA	207 (14)	F	Occupation (6)	Age
NHANES I (32)	1971-75	USA	15	6025 (54)	25-74	1096 (44)	NA	NA	F & NF	Education (4)	Age, SBP, DBP, hypertension, TC, BMI, DM, smoking, alcohol, PA, marital status, race/ethnicity
NHANES I (34)	1971-75	USA	20	4710 (53)	45-74	NA	652 (51)	NA	F & NF	Education (4) Income (4)	Age, smoking, DM, history CHD, alcohol, PA, BP medication, SBP
NHANES III (33)	1988	USA	13	18603 (46)	18-90	973 (51)	329 (58)	1337 (53)	F	Education (3)	Age, DM, smoking, SBP, TC, HDL-C
NIH-AARP Diet and Health Study (35)	1995-96	USA	10	409775 (43)	50-71	NA	NA	8952 (NA)	F	Area Deprivation (5)	Age
NSW-ISC (36)	1991-92	Australia	4	Inhabitants of NSW	35-74	58506 (29)	NA	NA	F & NF	Area (4)	Age
PCCS; NEMESIS; ARCOS (37)	1995-02	ANZ	1-3	relevant population data from census (NA)	15+	NA	3077 (54)	NA	F	Area Deprivation (5)	Age
Population and Housing census (38)	1987	Sweden	23	2939771 (48)	30-69	121496 (22)	61421 (34)	NA	F & NF	Occupation (5)	Age
Population census Malmö (39)	1990	Sweden	10	69625 (51)	40-65	NA	1648 (38)	NA	F & NF	Income (4) Occupation (7)	Age
Population registry of Central and Capital Region (40)	2001	Denmark	4	1727938 (55)	30-66	NA	NA	126045 (48)	F & NF	Income (2)	Age, marital status

Renfrew/ Parsley (41)	1972	UK	20	14947 (47)	45-64	NA	1271 (53)	NA	F & NF	Area Deprivation (7)	Age, smoking, SBP, DBP, height, FEV, BMI, TC, DM, history CHD
Renfrew/ Parsley (42)	1972	UK	15	14952 (53)	45-64	NA	NA	1869 (39)	F	Occupation (4) Area Deprivation (3)	Age, DBP, TC, BMI, FEV, smoking, angina, ECG ischaemia, bronchitis
SHHEC (43)	1984-87	UK	16	13287 (51)	30-74	2592 (39)	1084 (43)	3796 (41)	F & NF	Education (3) Occupation (6) Area Deprivation (5)	Age, DM, smoking, SBP, TC, HDL-C
Swedish Work and Mortality Database (44)	1990	Sweden	12	2825117 (49)	30-64	NA	4886 (33)	NA	F	Income (4)	Age
Three Norwegian counties (45)	1974-76	Norway	24	44684 (49)	35-49	1601 (21)	NA	2335 (22)	F	Education (2)	Age, smoking, PA, marital status, BMI, SBP, DBP, cholesterol
TLS (46)	1997	Italy	5	523755 (52)	35-74	15114 (27)	NA	NA	F & NF	Education (3)	Age
Whitehall (47)	1985-88	UK	5	10308 (33)	35-55	417 (36)	NA	NA	N	Occupation (6)	Age

ANZ, Australia and New Zealand; APCSC-ANZ, Asia-Pacific Cohort Study Collaboration-Australia/New Zealand; APCSC-Asia, Asia-Pacific Cohort Study Collaboration-Asia; ARCOS, Auckland Regional Community Stroke Study; ARIC, Atherosclerosis Risk in Communities Study; BASIC, Brain Attack Surveillance in Corpus Christi Project; BMI, body mass index; BP, blood pressure; CALIBER, Cardiovascular disease research using LInked Bespoke studies and Electronic health Records; CCHS, Copenhagen City Heart Studies; CCM Follow-up Study, Canadian Census Mortality Follow-up Study; CHD, coronary heart disease; CPS II Nutrition Cohort, American Cancer Society Nutrition Cohort; CVD, cardiovascular disease; CVDNOR, Cardiovascular Disease in Norway Project; DBP, diastolic blood pressure; EPIC, European Prospective Investigation into Cancer and Nutrition; FEV, forced expiratory volume; GPS, Glostrup Population Studies; HDL-C, high density lipoprotein cholesterol; HRT, hormonal replacement therapy; HUNT, Nord-Trøndelag Health Study; ILMS, Israel Longitudinal Mortality Study; JACC, Japan Collaborative Cohort Study for the Evaluation of Cancer Risk; JMS, Jichi Medial School Cohort Study; JPHC, Japan Public Health Center-based Prospective Study; MATISS, Malattie Aterosclerotische Istituto Superiore di Sanita; MONICA, Multinational MONItoring of trends and determinants in CArdiovascular disease; MORGAM, MOnica Risk, Genetics, Archiving and Monograph; NA, not available; NEMESIS, Northeast Melbourne Stroke Incidence Study; NHANES, National Health And Nutrition Examination Survey; NHEFS, NHANES I Epidemiologic Follow-up Study; NIH-AARP, National Health Institute-American Association of Retired Persons; NSW-ISC, New South Wales Inpatient Statistics Collection; OCT, oral contraceptive therapy; PA, physical activity; PAMELA, pressioni Arteriose Monitorate E Loro Associazioni; PCS, Perth Community Stroke Study; SBP, systolic blood pressure; SHHEC, Scottish Heart Health Extended Cohort; TC, total cholesterol; TLS, Turin Longitudinal Study; UK, United

* When pooling estimates across countries within the MOnica Risk, Genetics, Archiving and Monograph (MORGAM) project, (29) we excluded estimates from the UK due to overlap with the SHHEC study, which had a longer follow-up and a greater number of events. Study references are provided in the appendix reference list Appendix table 3: Categorisation of educational attainment across included studies

Studies	Number of categories	Category thresholds
APCSC - ANZ	3	None or primary, secondary, tertiary
APCSC - Asia	3	None or primary, secondary, tertiary
ARIC	3	<high and="" college,="" graduate,="" high="" school="" school,="" some=""> college graduate</high>
CCM follow-up		<secondary diploma,<="" graduation,="" post-secondary="" secondary="" td=""></secondary>
Study	4	university degree
CPSII Nutrition		<high college,="" college,<="" high="" or="" school="" school,="" some="" td="" vocational=""></high>
Cohort	5	graduate school
CVDNOR	3	Basic education (compulsory education), upper secondary education (high school or vocational school) and tertiary education (college or university)
EPIC	5	No formal education, primary school, technical training, secondary school, and > university degree
FINAMI	2	Basic (<9 years of full-time education), secondary or higher
FINMONICA stroke register	2	Basic, corresponding to ≤9 years of full-time education, and secondary or higher, corresponding to >9 years of full-time education
French Institute of National Statistics (INSEE)	5	No diploma, primary, technical, secondary, university
HUNT-2	3	Primary, secondary, tertiary
ILMS	3	0 to 8 years (elementary), 9 to 12, and 13 years and over (high education)
JACC	3	Followed education up to 15 years of age, up to 16-17 years of age, up to or over 18 years of age
JMS	3	Followed education up to 15 years of age, up to 16-17 years of age, \geq 18 years of age
JPHC I	3	Primary, secondary, tertiary
MATISS	4	None, primary, secondary, high
MONICA Novobirsk	4	Primary (less than 8 years in total), secondary (9-12 years in total), higher secondary (more than 12 years in total), university (university degree)
MONICA; PAMELA	2	High, low
MORGAM	3	Derived from cohort-specific, gender-specific and age-specific tertiles of the distribution of years of schooling
Mumbai Cohort		
Study	5	Illiterate, primary school, middle school, secondary school, college
NHANES I	4	Less than high school, high school, some college, college
NHANES III	3	< high school, high school graduate, some college, > college graduate
NHEFS	4	< 8 years in total, 8-11 years in total, 12 years in total, > 12 years in total
SHHEC	3	None or primary, secondary, tertiary
Three Norwegian		
counties	2	Low, high
TLS	3	Low, medium, high

Appendix table 4: Age- and multiple CVD risk factor-adjusted ratios of women:men relative risks (95% confidence intervals) of CHD, stroke, and CVD, lowest compared to highest educational attainment (n=366,488).

	Age-adjusted RRR	Multiple-adjusted RRR
CHD	1.35 (1.02, 1.79)	1.32 (1.07, 1.63)
Stroke	1.00 (0.77, 1.32)	1.00 (0.77, 1.31)
CVD	1.19 (0.94, 1.50)	1.22 (0.93, 1.59)

Ratios of relative risks were obtained from ARIC, APCSC, NHANES III, and SHHEC and pooled using random effects meta-analysis inverse variance weighting. Multiple-adjusted estimates are adjusted for age, total and HDL cholesterol, systolic blood pressure, smoking, and diabetes

Appendix table 5: Ratios of women:men relative risks (95% confidence intervals) before and after adjustment for diabetes and smoking. Data pooled over the 4 IPD studies using random effects meta-analysis inverse variance weighting.

	Diabetes	Smoking
CHD		
Basic adjustment ¹	1.32 (1.07, 1.63)	1.27 (0.99, 1.62)
Additional adjustment ²	1.37 (1.03, 1.83)	1.32 (1.07, 1.63)
Stroke		
Basic adjustment ¹	1.00 (0.77, 1.31)	0.90 (0.67, 1.22)
Additional adjustment ²	1.00 (0.77, 1.32)	1.00 (0.77, 1.31)
CVD		
Basic adjustment ¹	1.22 (0.93, 1.59)	1.21 (0.84, 1.76)
Additional adjustment ²	1.23 (0.91, 1,67)	1.22 (0.93, 1.59)

¹ Adjusted for age, total and HDL cholesterol and systolic blood pressure and either smoking (for column 1) or diabetes (for column 2)

² Additionally adjusted for diabetes (for column 1) or smoking (for column 2)

Outcome/SES Measure/Sex	no studies	I-squared			RR (95% CI)
CHD Education Men Women	13 13	32 41	→		1.16 (1.05, 1.28) 1.61 (1.30, 1.98)
CHD Area Men Women	2 2	0 82	+		1.27 (1.21, 1.33) 1.55 (1.20, 2.01)
CHD Occupation Men Women	3 3	78 0	 •		1.26 (0.80, 1.97) 1.23 (0.82, 1.84)
CHD Income Men Women	1 1	n/a n/a			1.55 (1.25, 1.92) 1.59 (1.25, 2.03)
Stroke Education Men Women	9 9	61 17	_		1.68 (1.26, 2.24) 1.30 (1.01, 1.67)
Stroke Area Men Women	3 3	77 84			1.48 (1.09, 2.01) 1.57 (1.05, 2.34)
Stroke Occupation Men Women	2 2	86 63	 •		1.61 (0.70, 3.70) 1.47 (0.72, 3.00)
Stroke Income Men Women	1 1	n/a n/a	 •••		1.25 (0.89, 1.75) 1.35 (0.95, 1.92)
CVD Education Men Women	10 10	59 14			1.22 (1.07, 1.39) 1.49 (1.30, 1.72)
CVD Area Men Women	3 3	25 85	-		1.33 (1.25, 1.41) 1.45 (1.16, 1.80)
CVD Occupation Men Women	3 3	82 0			1.61 (1.08, 2.39) 1.32 (1.07, 1.63)
		l .5	 1 2	Т З	4

Appendix figure 10 - Age-adjusted and CVD risk factor-adjusted women-to-men ratio of relative risks of cardiovascular disease, white collar compared to blue collar (or manual) occupation.

Subgroup/Outcome	No of cohorts			Ratio of RRs (95% CI)	P-value interacti
Age CHD*					
<60	27		_	1.54 (1.32, 1.77)	0.35
60+	27			1.25 (1.05, 1.46)	
Age Stroke*					
<60	27		•	1.00 (0.70, 1.29)	0.79
60+	27		•	1.07 (0.78, 1.35)	
Age CVD*					
<60 <	27		_	1.30 (1.13, 1.49)	0.49
60+	27	-	• •	1.13 (0.97, 1.30)	
Region CHD					
Asia	21			1.27 (1.11, 1.47)	0.99
Non-Asia	21			1.24 (1.06, 1.46)	
Region Stroke					
Asia	19 🗲 🗕			0.75 (0.48, 1.18)	0.42
Non-Asia	15	•	<u> </u>	0.97 (0.72, 1.31)	
Region CVD					
Asia	20		⊷	1.34 (1.21, 1.49)	0.48
Non-Asia	62	_	•	1.13 (0.93, 1.38)	
Period CHD					
Pre 1990	15		•	1.15 (0.92, 1.43)	0.40
Post 1990	27		·•	1.30 (1.12, 1.52)	
Period Stroke					
Pre 1990	11		•	1.06 (0.76, 1.48)	0.58
Post 1990	23	•	<u></u>	0.84 (0.58, 1.21)	
Period CVD					
Pre 1990	12		•	1.19 (0.90, 1.57)	0.97
Post 1990	70		•	1.18 (1.00, 1.40)	
Event type CHD					
Fatal only	8			1.17 (0.98, 1.40)	0.99
Fatal and non-fatal	34		│ —— → —	1.28 (1.06, 1.55)	5.00
Event type Stroke					
Fatal only	5			0.92 (0.65, 1.32)	0.76
Fatal and non-fatal	29		<u> </u>	0.92 (0.63, 1.33)	
Event type CVD					
Fatal only	55		•	1.08 (0.86, 1.35)	0.34
Fatal and non-fatal	27		── ◆──	1.33 (1.14, 1.54)	-
	1		l I		
	.5		1 1.5	2	
	High	ner relative risk in men	Higher relative risk in women		

Appendix references

1. Diez Roux AV, Merkin SS, Arnett D, Chambless L, Massing M, Nieto FJ, et al. Neighborhood of residence and incidence of coronary heart disease. N Engl J Med 2001;345(2):99-106.

2. Woodward M, Barzi F, Martiniuk A, Fang X, Gu DF, Imai Y, et al. Cohort profile: the Asia Pacific Cohort Studies Collaboration. Int J Epidemiol 2006;35(6):1412-6.

3. Woodward M, Peters SA, Batty GD, Ueshima H, Woo J, Giles GG, et al. Socioeconomic status in relation to cardiovascular disease and cause-specific mortality: a comparison of Asian and Australasian populations in a pooled analysis. BMJ Open 2015;5(3):e006408.

4. The Atherosclerosis Risk in Communities (ARIC) Study: design and objectives. The ARIC investigators. Am J Epidemiol 1989;129(4):687-702.

5. Deguen S, Lalloue B, Bard D, Havard S, Arveiler D, Zmirou-Navier D. A small-area ecologic study of myocardial infarction, neighborhood deprivation, and sex: a Bayesian modeling approach. Epidemiology 2010;21(4):459-66.

6. Lisabeth LD, Diez Roux AV, Escobar JD, Smith MA, Morgenstern LB. Neighborhood environment and risk of ischemic stroke: the brain attack surveillance in Corpus Christi (BASIC) Project. Am J Epidemiol 2007;165(3):279-87.

7. Pujades-Rodriguez M, Timmis A, Stogiannis D, Rapsomaniki E, Denaxas S, Shah A, et al. Socioeconomic deprivation and the incidence of 12 cardiovascular diseases in 1.9 million women and men: implications for risk prediction and prevention. PLoS One 2014;9(8):e104671.

8. Andersen I, Osler M, Petersen L, Gronbaek M, Prescott E. Income and risk of ischaemic heart disease in men and women in a Nordic welfare country. International Journal of Epidemiology 2003;32(3):367-374.

9. Smith BT, Smith PM, Etches J, Mustard CA. Overqualification and risk of all-cause and cardiovascular mortality: evidence from the Canadian Census Mortality Follow-up Study (1991-2001). Can J Public Health 2012;103(4):e297-302.

10. Bos V, Kunst AE, Keij-Deerenberg IM, Garssen J, Mackenbach JP. Ethnic inequalities in ageand cause-specific mortality in The Netherlands. International Journal of Epidemiology 2004;33(5):1112-1119.

11. Koopman C, van Oeffelen AA, Bots ML, Engelfriet PM, Verschuren WM, van Rossem L, et al. Neighbourhood socioeconomic inequalities in incidence of acute myocardial infarction: a cohort study quantifying age- and gender-specific differences in relative and absolute terms. BMC Public Health 2012;12:617.

12. Sundquist K, Malmstrom M, Johansson SE. Neighbourhood deprivation and incidence of coronary heart disease: A multilevel study of 2.6 million women and men in Sweden. Journal of Epidemiology and Community Health 2004;58(1):71-77.

13. Cirera L, Huerta JM, Chirlaque MD, Buckland G, Larranaga N, Sanchez MJ, et al. Unfavourable life-course social gradient of coronary heart disease within Spain: a low-incidence welfare-state country. Int J Public Health 2013;58(1):65-77.

14. McFadden E, Luben R, Wareham N, Bingham S, Khaw KT. Occupational social class, risk factors and cardiovascular disease incidence in men and women: a prospective study in the European Prospective Investigation of Cancer and Nutrition in Norfolk (EPIC-Norfolk) cohort. Eur J Epidemiol 2008;23(7):449-58.

15. McFadden E, Luben R, Wareham N, Bingham S, Khaw KT. Social class, risk factors, and stroke incidence in men and women: a prospective study in the European prospective investigation into cancer in Norfolk cohort. Stroke 2009;40(4):1070-7.

16. Lammintausta A, Immonen-Raiha P, Airaksinen JK, Torppa J, Harald K, Ketonen M, et al. Socioeconomic inequalities in the morbidity and mortality of acute coronary events in Finland: 1988 to 2002. Ann Epidemiol 2012;22(2):87-93.

17. Jakovljevic D, Sarti C, Sivenius J, Torppa J, Mahonen M, Immonen-Raiha P, et al. Socioeconomic status and ischemic stroke: The FINMONICA Stroke Register. Stroke 2001;32(7):1492-8.

18. Harald K, Pajunen P, Jousilahti P, Koskinen S, Vartiainen E, Salomaa V. Modifiable risk factors have an impact on socio-economic differences in coronary heart disease events. Scand Cardiovasc J 2006;40(2):87-95.

19. Saurel-Cubizolles MJ, Chastang JF, Menvielle G, Leclerc A, Luce D. Social inequalities in mortality by cause among men and women in France. J Epidemiol Community Health 2009;63(3):197-202.

20. Ernstsen L, Bjerkeset O, Krokstad S. Educational inequalities in ischaemic heart disease mortality in 44,000 Norwegian women and men: the influence of psychosocial and behavioural factors. The HUNT Study. Scand J Public Health 2010;38(7):678-85.

21. Manor O, Eisenbach Z, Friedlander Y, Kark JD. Educational differentials in mortality from cardiovascular disease among men and women: The Israel Longitudinal Mortality Study. Annals of Epidemiology 2004;14(7):453-460.

22. Fujino Y, Tamakoshi A, Iso H, Inaba Y, Kubo T, Ide R, et al. A nationwide cohort study of educational background and major causes of death among the elderly population in Japan. Prev Med 2005;40(4):444-51.

23. Honjo K, Tsutsumi A, Kayaba K, Jichi Medical School Cohort Study G. Socioeconomic indicators and cardiovascular disease incidence among Japanese community residents: the Jichi Medical School Cohort Study. Int J Behav Med 2010;17(1):58-66.

24. Ito S, Takachi R, Inoue M, Kurahashi N, Iwasaki M, Sasazuki S, et al. Education in relation to incidence of and mortality from cancer and cardiovascular disease in Japan. Eur J Public Health 2008;18(5):466-72.

25. Vescio MF, Smith GD, Giampaoli S. Socio-economic-position overall and cause-specific mortality in an Italian rural population. Eur J Epidemiol 2003;18(11):1051-8.

26. Morrison C, Woodward M, Leslie W, Tunstall-Pedoe H. Effect of socioeconomic group on incidence of, management of, and survival after myocardial infarction and coronary death: analysis of community coronary event register. BMJ 1997;314(7080):541-6.

27. Malyutina S, Bobak M, Simonova G, Gafarov V, Nikitin Y, Marmot M. Education, marital status, and total and cardiovascular mortality in Novosibirsk, Russia: a prospective cohort study. Ann Epidemiol 2004;14(4):244-9.

28. Veronesi G, Ferrario MM, Chambless LE, Sega R, Mancia G, Corrao G, et al. Gender differences in the association between education and the incidence of cardiovascular events in Northern Italy. Eur J Public Health 2011;21(6):762-7.

29. Ferrario MM, Veronesi G, Chambless LE, Tunstall-Pedoe H, Kuulasmaa K, Salomaa V, et al. The contribution of educational class in improving accuracy of cardiovascular risk prediction across European regions: The MORGAM Project Cohort Component. Heart 2014;100(15):1179-87.

30. Pednekar MS, Gupta R, Gupta PC. Illiteracy, low educational status, and cardiovascular mortality in India. BMC Public Health 2011;11:567.

31. Borrell C, Cortes I, Artazcoz L, Molinero E, Moncada S. Social inequalities in mortality in a retrospective cohort of civil servants in Barcelona. Int J Epidemiol 2003;32(3):386-9.

32. Thurston RC, Kubzansky LD, Kawachi I, Berkman LF. Is the association between socioeconomic position and coronary heart disease stronger in women than in men? Am LEnix

socioeconomic position and coronary heart disease stronger in women than in men? Am J Epidemiol 2005;162(1):57-65.

33. Plan and operation of the Third National Health and Nutrition Examination Survey, 1988-94. Series 1: programs and collection procedures. Vital Health Stat 1 1994(32):1-407.

34. Gillum RF, Mussolino ME. Education, poverty, and stroke incidence in whites and blacks: the NHANES I Epidemiologic Follow-up Study. J Clin Epidemiol 2003;56(2):188-95.

35. Major JM, Doubeni CA, Freedman ND, Park Y, Lian M, Hollenbeck AR, et al. Neighborhood socioeconomic deprivation and mortality: NIH-AARP diet and health study. PLoS One 2010;5(11):e15538.

36. Taylor R, Chey T, Bauman A, Webster I. Socio-economic, migrant and geographic differentials in coronary heart disease occurrence in New South Wales. Aust N Z J Public Health 1999;23(1):20-6.

37. Heeley EL, Wei JW, Carter K, Islam MS, Thrift AG, Hankey GJ, et al. Socioeconomic disparities in stroke rates and outcome: pooled analysis of stroke incidence studies in Australia and New Zealand. Med J Aust 2011;195(1):10-4.

38. Malki N, Koupil I, Eloranta S, Weibull CE, Tiikkaja S, Ingelsson E, et al. Temporal trends in incidence of myocardial infarction and ischemic stroke by socioeconomic position in Sweden 1987-2010. PLoS One 2014;9(8):e105279.

39. Li C, Hedblad B, Rosvall M, Buchwald F, Khan FA, Engstrom G. Stroke incidence, recurrence, and case-fatality in relation to socioeconomic position: a population-based study of middle-aged Swedish men and women. Stroke 2008;39(8):2191-6.

40. Hempler NF, Larsen FB, Nielsen SS, Diderichsen F, Andreasen AH, Jorgensen T. A registrybased follow-up study, comparing the incidence of cardiovascular disease in native Danes and immigrants born in Turkey, Pakistan and the former Yugoslavia: do social inequalities play a role? BMC public health 2011;11:662.

41. Hart CL, Hole DJ, Smith GD. The contribution of risk factors to stroke differentials, by socioeconomic position in adulthood: the Renfrew/Paisley Study. Am J Public Health 2000;90(11):1788-91.

42. Smith GD, Hart C, Watt G, Hole D, Hawthorne V. Individual social class, area-based deprivation, cardiovascular disease risk factors, and mortality: the Renfrew and Paisley Study. J Epidemiol Community Health 1998;52(6):399-405.

43. Woodward M, Brindle P, Tunstall-Pedoe H. Adding social deprivation and family history to cardiovascular risk assessment: the ASSIGN score from the Scottish Heart Health Extended Cohort (SHHEC). Heart 2007;93(2):172-6.

44. Toivanen S. Income differences in stroke mortality: a 12-year follow-up study of the Swedish working population. Scand J Public Health 2011;39(8):797-804.

45. Strand BH, Tverdal A. Can cardiovascular risk factors and lifestyle explain the educational inequalities in mortality from ischaemic heart disease and from other heart diseases? 26 year follow up of 50,000 Norwegian men and women. J Epidemiol Community Health 2004;58(8):705-9.

46. Petrelli A, Gnavi R, Marinacci C, Costa G. Socioeconomic inequalities in coronary heart disease in Italy: a multilevel population-based study. Soc Sci Med 2006;63(2):446-56.

47. Marmot M, Shipley M, Brunner E, Hemingway H. Relative contribution of early life and adult socioeconomic factors to adult morbidity in the Whitehall II study. J Epidemiol Community Health 2001;55(5):301-7.

48. Steenland K, Henley J, Calle E, Thun M. Individual- and area-level socioeconomic status variables as predictors of mortality in a cohort of 179,383 persons. Am J Epidemiol 2004;159(11):1047-56.

49. Igland J, Vollset SE, Nygard OK, Sulo G, Ebbing M, Tell GS. Educational inequalities in acute myocardial infarction incidence in Norway: a nationwide cohort study. PLoS One 2014;9(9):e106898.