A systematic review of measurement tools of health and well-being for evaluating community-based interventions

Mithilesh Dronavalli, Sandra C Thompson

ABSTRACT

Background Those interested in evaluating the effectiveness of community interventions on health and well-being need information about what tools are available and best suited to measure improvements that could be attributed to the intervention. This study evaluated published measurement tools of health and well-being that have the potential to be used before and after an intervention.

Methods A literature search of health and sociological databases was undertaken for articles that utilised measurement tools in community settings to measure overall health, well-being or quality of life. Articles were considered potentially relevant because they included use of measurement tools related to general health or well-being. These tools were evaluated by further searching of the literature to assess each tool’s properties including: reliability, validity; responsiveness; length; use in cross-cultural settings; global health or well-being assessment; use of subjective measures; clarity and cost. A composite score was made based on the average rating of all fields.

Results Of 958 abstracts that were screened, 123 articles were extracted for review. From those articles, 27 measurement tools were selected and assessed. Based on the composite score assessing across all domains, five tools were rated as excellent.

Conclusions While tools may need to be selected for particular aims and interventions, a range of potential well-described tools already exist and should be considered for use in preference to ad hoc or bespoke tools. Any of the five tools rated as excellent are recommended to assess the impact of a community intervention.

AIM

To systematically review and evaluate the characteristics of measurement tools that measure community health and well-being.

BACKGROUND

Often in public health, interventions are proposed or implemented with a community or group of individuals to improve their health and well-being. Those with an interest in evaluation want information about what tools are available and those that are best suited to measure improvements that could be attributed to the intervention. There are obvious benefits from using efficient and standardised tools of measurement and for which population norms are available.

This study evaluates standardised instruments (tools) that measure community health and well-being, and could potentially be used before and after an intervention. Characteristics of the tools such as reliability, validity, responsiveness and other key features were assessed.

METHODS

The methods for this article involved a two-stage process.

The first stage was identifying articles that reported on health and/or well-being in the general population and which used or reported on a measurement tool as a part of assessing health and well-being. In this study, the term general population refers to adults over the age of 18. This definition also excludes studies that focused only on the elderly (eg, only adults >70 years of age).

A literature search was undertaken on or before 9 December 2014 on the following health and sociological databases—ERIC, JSTOR, Proquest, Soc Index, Web of Science, Psych Info, EMBASE, Wiley Online Library, Medline, Cochrane, Informit, Cinahl Plus and Project Muse. While search terms were slightly modified for each database, the generic search terminology was based on the following terms: 1. Community AND 2. ‘Overall Health’ AND 3. (Wellbeing or ‘Quality of Life’) AND 4. (assessment* or questionnaire* or interview* or rating* or scale* or measure* or test* or survey* or instrument*).

The search identified 958 abstracts, which were initially screened by review of the title and abstract. Articles were considered potentially relevant if published in or after 1990 and if they included the use of measurement tools related to physical health or well-being (emotional, mental, social, etc) in the general population. Tools published before 1990 and not subsequently reported on were not included.

From the 123 articles, 81 potential tools used to assess health and/or well-being were identified. An additional 13 tools were located through a Google search. Of the total 96 potential tools, the following criteria were applied. All tools had to:

- Be named and used in multiple studies (23 tools excluded);
- Be focused on health or well-being (17 tools excluded; eg, not focused on crime, poverty, environment, etc);
- Have a subjective component (9 tools excluded);
- Have psychometric data (7 tools excluded);
- Be globally relevant, that is, not just about one country, culture or locality (6 tools excluded);
- Have data on well-being (4 tools excluded);
- Have more than one question (3 tools excluded).
The second stage was an in-depth evaluation of the 27 tools. The name of each tool was pasted into Google and into One Search, the single point search tool by the library of the University of Western Australia. Tools were evaluated based on a hierarchy of evidence. This was undertaken sequentially, starting with systematic reviews of tools, then with information from the tool’s own website, followed by psychometric articles of the tools reported in journal articles, summary sites of tools (eg Rehab Measures and Par-qol) and finally with original articles using the tool. Additional searching was undertaken to collect information on costs of using each tool. Most of the information extracted for each tool came from systematic reviews or the tool’s own website or main psychometric articles making the data accurate. Manual searching was not used to obtain further references due to the large number of articles located.

For each tool, the reliability, validity, responsiveness, the availability of population norms, length, clarity of questions, cross-cultural use, cost and domains measured were assessed. Also assessed was whether the tool measured health and well-being, used subjective measures or whether the tool included a global assessment of either health or well-being. All of these tools were suitable for the general population and therefore relevant to community interventions.

Reliability of each identified instrument was assessed through test–retest measures, and a measure of internal consistency (Cronbach’s α). Validity was assessed based on standard definitions for various types of validity (see table 1). Responsiveness was assessed based on the timeframe of inquiry listed in a tool, that is, whether it referred to the present or near past, so that re-testing allowed the potential for change in health and well-being to be assessed.

Since it is desirable for a tool to be used in a population that is often culturally heterogeneous, information on the tool in terms of its assessment and use in cross-cultural settings was also assessed.

The number of items within the tool and in some cases the time to assess participants was documented, as well as the domains it covered.

The tool was assessed as to whether it included a global measure of health or well-being (eg, “How do you feel about your current general health?” and “Do you feel happy?”). Global questions of health and well-being are required as they are a summary measure of the person’s state of well-being and enable the tool’s overall score to be compared with the response to the global question. This comparison can be used to gauge construct and divergent validity. Discriminant validity can also be tested using this mechanism, as a high global question score should reflect a high overall score and vice-versa.

The clarity of the questions was also assessed. All the questionnaires were read by the first author and each tool’s questionnaires were classified as being either ‘easy’, ‘moderate’ or ‘complex’ to understand. The clarity of the top five tools was then re-evaluated by the second author. For a tool to have better clarity, a lay person should be able to read, understand and respond to the questions with ease. There should be minimal ambiguity or use of idioms or phrases not understood by the general population (especially people from linguistically diverse groups). There should not be too many conditions in the statement as this would require complicated thought processes to answer accurately. Also, tools were classified as ‘complex’ if the tool documentation or reviews of the tool stated that the tool required extensive interviewer training.

An example of a question from an easy tool is “How satisfied are you with your standard of living?” (from the Personal Wellbeing Index). An example of a question from a tool rated as of medium clarity is from the LSIA when testing resolution and fortitude. The description of the question is: “The extent to which R accepts personal responsibility for his life; the opposite of feeling resigned, or of merely condoning or passively accepting that which life has brought him”. The description of an answer with a 5 rating (the highest score) is: “Try and try again attitude. Bloody but unbowed. Fights back; withstand, not giving up. Active personal responsibility—take the bad and the good and make the most of it. Wouldn’t change the past”.

An example of a question from a tool rated as complex is from Health Utilities Index–3. The question related to hearing. Here is the answer for 2 out of 6 points on the Likert scale: “able to hear what is said in a conversation with one other person in a quiet room without a hearing aid, but requires a hearing aid to hear what is said in a group conversation with at least three other people.”

Documented data about each tool was referenced.

Finally, the standardised tools were evaluated for likely costs associated with their use. This is an important matter for any community study where costs associated with purchase of standardised tools may make of an otherwise excellent tool unaffordable.

Of the 27 measurement tools identified, a search of the relevant literature was conducted for each tool, separately yielding 51 articles or entries on the web.

I. Four systematic review articles of tools.

II. Three tools had information from the tool’s own website.

III. Twenty-four articles assessing the psychometric properties of the tool(s).

IV. Three tools had entries on summary references of tools (eg Rehab Measures, Par-qol, Corsini Encyclopaedia of Psychology).

V. Two original articles using the tool.

VI. Fourteen entries were related to cost.

Scoring of each criterion was used in conjunction with colour-coding (green for ‘high quality’, yellow for ‘average quality’ or red for ‘low quality’), to assist with an overall assessment of each tool, and ready identification of any weaknesses and strengths on the selected tool properties. Table 2 contains the key to the colour classifications for the relevant variables.

<table>
<thead>
<tr>
<th>Type of validity</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Face validity</td>
<td>Tool measures content according to the lay-person</td>
</tr>
<tr>
<td>Content validity</td>
<td>Tool measures content according to an expert based on theory</td>
</tr>
<tr>
<td>Criterion validity</td>
<td>The criteria of the tool match other tools</td>
</tr>
<tr>
<td>Concurrent or Convergent validity</td>
<td>Tool gives similar scores as other tools on the same subjects</td>
</tr>
<tr>
<td>Discriminant validity</td>
<td>Tool gives high scores for well people and low scores for sick people</td>
</tr>
<tr>
<td>Predictive validity</td>
<td>Tool predicts significant differences among different groups</td>
</tr>
<tr>
<td>Construct validity</td>
<td>Tool measures what it is supposed to</td>
</tr>
<tr>
<td>Internal validity</td>
<td>Measurement results warrant a causal conclusion, that is, observed changes can be attributed to the programme or intervention</td>
</tr>
<tr>
<td>External validity</td>
<td>The measurement results of a tool can be generalisable to the whole population</td>
</tr>
<tr>
<td>Multidimensionality</td>
<td>Subfactors of the tool have low intercorrelations</td>
</tr>
<tr>
<td>Divergent validity</td>
<td>The tool asks questions only related to the construct</td>
</tr>
</tbody>
</table>
From scoring of individual properties, tools were colour coded and a composite score was determined. A green entry meant the criteria for each domain scored 1 point, a yellow entry scored 0.5 points and a red entry was penalised 1 point. Missing entries were not counted and also not included in the denominator.

The composite scores were displayed graphically and summarised into four categories based on the respective cut-offs of the composite score (Poor ≤0.5; Mediocre 0.5–0.75; Good >0.75–0.85; Excellent >0.85). By definition, the score could have a maximum of 1 and minimum of −1.

RESULTS

From reviewing 123 articles that described measurement tools of health and well-being, and searching Google, we identified 96 tools. After applying our selection criteria, 27 instruments measuring health and/or well-being were identified for closer analysis of their psychometric and other properties. All 27 tools identified by the search criteria (figure 1) were scored and all were suitable for the general population, although three tools were primarily aimed at assessing patients with a particular disease state and two tools had been used for studies in the elderly. Six of the tools were assessed as not measuring health but, rather, measuring well-being. Although there is a simpler self-administered version, it has not yet been fully reviewed.

Table 3 lists all the tools in rank order based on their composite score with respective colour coded data. For most of the instruments assessed, there were data on most of the properties. However, for seven tools there was no assessment of test–retest reliability. For one tool, there was no English version of the instrument, precluding assessment of the clarity of the questions. Four tools did not have a reported Cronbach α to assess internal consistency; for a further three tools the Cronbach α was not mathematically relevant due to the way these tools are constructed. The Cronbach α is designed in such a way that it assumes items in a measurement tool have equal SDs and are equally correlated. While this is not a requirement for measuring reliability, it is a requirement for the Cronbach α. Alternative measures such as the Tarikken ρ have been presented but are not widely used.

There was no information available on the cost of use for one tool. Overall, complete scoring on the predetermined criteria was possible for most instruments, so table 3 is substantially populated and largely complete.

Of the 27 tools, 25 can be self-administered. The Behavioural Risk Factor Surveillance System (BRFSS) is a telephone survey administered nationally in the USA and is not self-administered. The Quality of Wellbeing (QWB) scale currently requires extensive training of the interviewer. Although there is a simpler self-administered version, it has not yet been fully reviewed.

The composite score was classified into four classes. Five tools with a composite score above 0.85 were classified as excellent. Nine tools were classified as good based on a composite score between 0.75 and 0.85 inclusive. Seven tools were classified as mediocre with a composite score between 0.5 and 0.75. Six tools were classified as poor and they had a composite score below 0.5. The median composite score was 0.77.

The five tools that were rated as excellent are the Quality of Life Scale (QOLS), Personal Wellbeing Index (PWI), Community Wellbeing Index (CWI), the WHO Quality of Life—Brief (WHOQOL-BREF) and the Health Related Quality of Life from the Dartmouth Co-operative Information Project/World Organisation of National Colleges, Academies and Academic Associations of General Practices/Family Physicians Charts (HRQOL from COOP/WONCA Charts).

DISCUSSION

Those with a desire to evaluate their community interventions are presented with a selection of measurement tools of health and well-being. Some of these tools are excellent for this purpose.

Of the top five tools classified as excellent, four are known to be free; the HRQOL from the COOP/WONCA chart requires a

<table>
<thead>
<tr>
<th>Table 2</th>
<th>Key to colour coding/scoring of tool properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable</td>
<td>Green (+1 point)</td>
</tr>
<tr>
<td>Test–retest (use middle of interval)</td>
<td>ICC or correlation >0.8, κ>0.7</td>
</tr>
<tr>
<td>Validity</td>
<td>Good validity on a number of factors</td>
</tr>
<tr>
<td>Responsiveness</td>
<td>Set in the present or past few weeks, known to be responsive</td>
</tr>
<tr>
<td>Measure of health</td>
<td>Yes</td>
</tr>
<tr>
<td>Measure of wellbeing or quality of life</td>
<td>Yes</td>
</tr>
<tr>
<td>Clarity</td>
<td>Easy</td>
</tr>
<tr>
<td>Use of subjective measures</td>
<td>Yes</td>
</tr>
<tr>
<td>Global assessment of health or wellbeing made</td>
<td>Yes</td>
</tr>
<tr>
<td>Used cross-culturally</td>
<td>Many languages</td>
</tr>
<tr>
<td>Length</td>
<td>≤10 min or ≤15 items (either)</td>
</tr>
<tr>
<td>Cronbach’s α (use middle of interval)</td>
<td>≥0.8</td>
</tr>
<tr>
<td>Cost</td>
<td>Free to use for research purposes</td>
</tr>
</tbody>
</table>

ICC, intraclass correlation coefficient.
A one-time payment of $15. This means that all five of these tools are affordable to use in community studies. Note that the CWI only had a Spanish version. Most of the top tools are quite short and are easy to administer with good clarity. By definition, the top tools have been used in cross-cultural settings, have good reliability and validity and are based in the present for good responsiveness. Furthermore, all tools in table 3 have a list of domains they cover and this will be useful for investigators who have an interest in certain domains when planning studies.

There are many benefit of using standardised tools to measure the effectiveness of community interventions. There seems little justification for developing new (unvalidated) tools when assessing an intervention, as there are excellent standardised tools that are either free or low cost to use.

All of the top five tools rated as excellent come from internationally recognised sources. The PWI and CWI groups are affiliated with The International Wellbeing Group and present a large body of literature regarding the Quality of Life and Wellbeing subject. WHOQOL-BREF is the brief version of the WHOQOL, which has 100 items. The WHOQOL-BREF has 26 items and is psychometrically representative of the larger WHOQOL instrument, and although there is some loss in internal consistency it ranks higher because of its reduced administrative burden. The HRQOL is derived from assessing the health and well-being sections of the COOP/WONCA charts. HRQOL is exciting as it uses pictures to assess health and well-being, which makes it appropriate for use with participants with low literacy levels.
Table 3 Measurement tools and their properties

<table>
<thead>
<tr>
<th>Measurement tool</th>
<th>Cronbach’s α</th>
<th>Test-retest</th>
<th>Population norms</th>
<th>Responsiveness</th>
<th>Measure of health</th>
<th>Measure of well-being</th>
<th>Subjective measure used</th>
<th>Global assessment made</th>
<th>Length</th>
<th>Clarity of questions</th>
<th>Cross-cultural use</th>
<th>Cost</th>
<th>Domains</th>
</tr>
</thead>
<tbody>
<tr>
<td>QOLS-Quality of Life Scale<sup>1</sup></td>
<td>0.82–0.92</td>
<td>0.78–0.84</td>
<td>Good convergent and discriminant validity</td>
<td>Yes</td>
<td>Responsive to intervention, for example, treatment in chronic disease</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>16 items, 5 min</td>
<td>Easy</td>
<td>Many languages</td>
<td>Free for research and clinical use</td>
</tr>
<tr>
<td>PW-Personal Wellbeing Index<sup>2</sup></td>
<td>0.7–0.85</td>
<td>ICC=0.84</td>
<td>Good construct and convergent validity</td>
<td>Yes</td>
<td>Set in present</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>7 items</td>
<td>Easy</td>
<td>Many languages</td>
<td>Free for research use. (From email to author)</td>
</tr>
<tr>
<td>CW-Community Wellbeing Index<sup>3</sup></td>
<td>0.8–0.82</td>
<td>ICC=0.84</td>
<td>Good construct and convergent validity</td>
<td>Yes</td>
<td>Set in present</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>10 items</td>
<td>Questionnaire in Spanish</td>
<td>Used in Spain</td>
<td>Free (From email to author)</td>
</tr>
<tr>
<td>WHQOL-BREF<sup>4, 5</sup></td>
<td>0.68–0.82 all domains</td>
<td>ICC=0.85–0.95</td>
<td>Good criterion validity with WHOQOL, convergent validity, content, construct and divergent validity</td>
<td>Yes</td>
<td>Set in present</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>26 items</td>
<td>Easy</td>
<td>Many languages</td>
<td>Free for research use</td>
</tr>
<tr>
<td>HRQOL from COOP/WONCA charts<sup>7</sup></td>
<td>0.766</td>
<td>>0.75</td>
<td>Good predictive validity with age and physical fitness</td>
<td>Yes</td>
<td>Past 2 weeks</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td><5 min</td>
<td>Easy</td>
<td>uses pictures</td>
<td>Many languages</td>
</tr>
<tr>
<td>WHOQOL-100<sup>8, 9</sup></td>
<td>0.967</td>
<td>Highly correlated over 2–8 weeks</td>
<td>Good discriminant validity between sick and healthy</td>
<td>Yes</td>
<td>Past 2 weeks</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>100 items</td>
<td>Easy</td>
<td>Many languages</td>
<td>Free unless Pharma or commercially funded, then it is 350 pounds</td>
</tr>
<tr>
<td>SIP-Sickness Impact Profile<sup>10</sup></td>
<td>0.9–0.92</td>
<td>0.88</td>
<td>Good criterion validity with SIP, Good content validity</td>
<td>Yes</td>
<td>Can detect change, Responsiveness index: SIP68=0.62, SIP136=0.84</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>SIP: 136 items, 30 min</td>
<td>SIP68: 68 items, 15–20 min</td>
<td>Easy</td>
<td>Many languages</td>
</tr>
<tr>
<td>SF12-Short Form 12<sup>11</sup></td>
<td>Not listed</td>
<td>0.89–0.96</td>
<td>Good criterion validity with SF36, discriminant validity (slightly lower than SF36)</td>
<td>Yes</td>
<td>Past 4 weeks</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2 min or 12 questions</td>
<td>Easy</td>
<td>Many languages</td>
<td>Cost proportional to size of study</td>
</tr>
</tbody>
</table>

Review on May 10, 2022 by guest. Protected by copyright. http://jech.bmj.com/ J Epidemiol Community Health: first published as 10.1136/jech-2015-205491 on 3 June 2015. Downloaded from
<table>
<thead>
<tr>
<th>Measurement tool</th>
<th>Cronbach’s α</th>
<th>Test-retest</th>
<th>Validity</th>
<th>Population norms</th>
<th>Responsiveness</th>
<th>Measure of health</th>
<th>Measure of well-being</th>
<th>Subjective measure used</th>
<th>Global assessment made</th>
<th>Length</th>
<th>Clarity of questions</th>
<th>Cross-cultural use</th>
<th>Cost</th>
<th>Domains</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRFSS-Behavioural Risk Factor Surveillance System(^\text{15})</td>
<td>Not listed</td>
<td>High for Health and Wellbeing domains</td>
<td>Good convergent validity</td>
<td>Yes</td>
<td>Used as a longitudinal measure</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Not all domains necessary</td>
<td>Easy: Telephone Survey</td>
<td>Not much data</td>
<td>Free to use from email to author</td>
<td>1</td>
</tr>
<tr>
<td>SOC13-Sense of Coherence(^\text{16})</td>
<td>0.91 (8 published studies)</td>
<td>0.91 over 2 weeks</td>
<td>Good construct, convergent and discriminant validity. Good criterion validity to a number of studies</td>
<td>Yes</td>
<td>Set in present</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>10–15 min</td>
<td>13 items</td>
<td>Easy</td>
<td>Many languages</td>
<td>Free for academic and non-commercial purposes (^\text{16})</td>
</tr>
<tr>
<td>SOC29-Sense of Coherence(^\text{16})</td>
<td>0.82 (5 published studies)</td>
<td>0.91 over 2 weeks</td>
<td>Good construct, convergent and discriminant validity. Good criterion validity to a number of studies</td>
<td>Yes</td>
<td>Set in present</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>15–20 min</td>
<td>29 items</td>
<td>Easy</td>
<td>Many languages</td>
<td>Free for academic and non-commercial purposes (^\text{16})</td>
</tr>
<tr>
<td>WBS-Wellness Belief Scale(^\text{18})</td>
<td>0.88-0.94</td>
<td>Unknown</td>
<td>Good discriminant and predictive validity</td>
<td>Healthy women <25</td>
<td>Set in present</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>20 items or equivalent 9 items</td>
<td>Easy</td>
<td>Not documented</td>
<td>Requested</td>
<td>Health behaviours, Health beliefs and Response to illness</td>
</tr>
<tr>
<td>RAND12(^\text{19–21})</td>
<td>Not measured</td>
<td>Unknown</td>
<td>Good construct validity. Better discriminant validity than SF12</td>
<td>Yes</td>
<td>Not as responsive as disease specific scales for heart failure</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2 min or 12 questions</td>
<td>Easy</td>
<td>Many languages</td>
<td>Cost proportional to size of study</td>
<td>Physical and Mental dimensions</td>
</tr>
<tr>
<td>SF36-Short Form 36(^\text{22})</td>
<td>0.9</td>
<td>ICC=0.81 General Health ICC=0.52 Mental Health</td>
<td>Good content, concurrent, criterion, construct and predictive validity</td>
<td>Yes</td>
<td>Based on the past 1 week or 4 weeks</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>36 Items</td>
<td>Easy</td>
<td>Many languages</td>
<td>Cost of use proportional to size of study (^\text{22})</td>
<td>Physical, social, role physical, role emotional, mental health, energy and pain</td>
</tr>
<tr>
<td>SWLS-Satisfaction With Life Survey(^\text{24})</td>
<td>0.87</td>
<td>0.82</td>
<td>Good discriminant validity and construct validity</td>
<td>Yes</td>
<td>Speaks of life in general, does not refer to immediate past. Poor responsiveness</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5 Items</td>
<td>Easy</td>
<td>Many languages</td>
<td>Free to use (^\text{24})</td>
<td>Life in general</td>
</tr>
<tr>
<td>HPLP-II-Health-Promoting Lifestyle Profile(^\text{26})</td>
<td>0.94</td>
<td>Unknown</td>
<td>Good construct validity</td>
<td>Yes</td>
<td>Set in Present</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>52 items</td>
<td>Easy</td>
<td>Many languages</td>
<td>Free for non-profit. Needs permission to use in a study</td>
</tr>
<tr>
<td>EQSD-EuroQol(^\text{28})</td>
<td>Not mentioned</td>
<td>ICC 0.85 3-week retest</td>
<td>Moderate convergent validity with SF 12. Good predictive validity for recent illness</td>
<td>Yes</td>
<td>Set in the present. Poor sensitivity due to ceiling effect</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1 min</td>
<td>Easy</td>
<td>Many languages</td>
<td>Cost is proportional to size of study (^\text{28})</td>
<td>Mobility, Self-care, Usual activity pain/discomfort and anxiety/depression</td>
</tr>
<tr>
<td>Measurement tool</td>
<td>Cronbach’s α</td>
<td>Test–retest</td>
<td>Validity</td>
<td>Population norms</td>
<td>Responsiveness</td>
<td>Measure of health</td>
<td>Measure of well-being</td>
<td>Subjective measure used</td>
<td>Global assessment made</td>
<td>Length</td>
<td>Clarity of questions</td>
<td>Cross-cultural use</td>
<td>Cost</td>
<td>Domains</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------</td>
<td>-------------</td>
<td>----------</td>
<td>------------------</td>
<td>----------------</td>
<td>-------------------</td>
<td>---------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>--------</td>
<td>---------------------</td>
<td>-------------------</td>
<td>------</td>
<td>----------</td>
</tr>
<tr>
<td>QWB-Quality of Wellbeing Scale</td>
<td>Not appropriate</td>
<td>0.9 over a few days</td>
<td>Good convergent validity with SF 20 and COOP. Good construct and predictive validity</td>
<td>Yes</td>
<td>Used the past 3 days. Responsive to treatment interventions</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>10–30 min</td>
<td>Complex</td>
<td>10 different languages</td>
<td>Free for research and not for profit</td>
<td>Mobility, Physical activity, Social activity and symptoms/problems</td>
</tr>
<tr>
<td>WEL-Wellness Evaluation of Lifestyle</td>
<td>0.61–0.89</td>
<td>0.88</td>
<td>Good convergent validity with Testwell and other scales. Good face validity</td>
<td>Yes</td>
<td>Responsive to intervention in a 4-week RCT</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>138 items; 12 subscales</td>
<td>Moderate</td>
<td>Culturally adapted to Korean, Hebrew and Turkish and different age groups</td>
<td>$360 for 500 patients</td>
<td>Spirituality, Self-regulation, Work and leisure, Friendship, Love, Total self-regulation, Perceived wellness and Total wellness</td>
</tr>
<tr>
<td>SEQOL-Self-evaluation of Quality of Life</td>
<td>0.75</td>
<td>>0.8</td>
<td>Good concurrent validity with NHP and SCREENQOL. Acceptable construct validity; external reliability</td>
<td>Yes</td>
<td>111 respondents needed to detect a 3% difference</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>317 item; subscales</td>
<td>Easy</td>
<td>Not determined</td>
<td>Free for research purposes. (From email to author)</td>
<td></td>
</tr>
<tr>
<td>SCL-90-R-Symptom Checklist 90</td>
<td>0.97</td>
<td>Unknown</td>
<td>Good concurrent, construct validity and convergence validity</td>
<td>Yes</td>
<td>Set in present</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>90 items; 12 subscales; 15 items</td>
<td>6th Grade Level</td>
<td>Many languages</td>
<td>$50 patients</td>
<td>Well-being, satisfaction, Happiness, Family work and Leisure, Fulfilment of needs, Satisfaction with relationships, Realising life potential, Objective factors and Overall QOL</td>
</tr>
<tr>
<td>FS-Friendship Scale</td>
<td>0.81</td>
<td>Unknown</td>
<td>Good concurrent validity with WHOQOL Bref, AQOL, SF-12, MCS and PCS. Good discriminant validity</td>
<td>Older Adults</td>
<td>Set in the present</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>6 items</td>
<td>Easy</td>
<td>Not documented</td>
<td>Author passed away, likely free of charge</td>
<td></td>
</tr>
<tr>
<td>HUI-3-Health utilities index</td>
<td>Not appropriate</td>
<td>Moderate or better α for ≥10/10 questions</td>
<td>Good face and predictive validity</td>
<td>Yes</td>
<td>Set in the present</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>5–10 min</td>
<td>Complex</td>
<td>Many languages</td>
<td>$500 for HUI3</td>
<td>Vision, Hearing, Speech, Ambulation, Dexterity, Emotion, Cognition and Pain</td>
</tr>
<tr>
<td>NHP-Nottingham Health Profile</td>
<td>0.72</td>
<td>0.93</td>
<td>Poor discriminant validity, 50% answered no to ≥10/38 questions. Poor multidimensionality (high-factor intercorrelation)</td>
<td>Yes</td>
<td>Set in the present, but mode is zero so likely has poor responsiveness</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>38 items, 5–10 min</td>
<td>Easy</td>
<td>Many languages</td>
<td>Not Free</td>
<td>Emotional, Social and Physical needs</td>
</tr>
</tbody>
</table>
Table 3 Continued

<table>
<thead>
<tr>
<th>Measurement tool</th>
<th>Cronbach’s α</th>
<th>Test-retest</th>
<th>Validity</th>
<th>Population norms</th>
<th>Responsiveness</th>
<th>Measure of health</th>
<th>Measure of well-being</th>
<th>Subjective measure used</th>
<th>Global assessment made</th>
<th>Length</th>
<th>Clarity of questions</th>
<th>Cross-cultural use</th>
<th>Cost</th>
<th>Domains</th>
</tr>
</thead>
<tbody>
<tr>
<td>mHAQ-Modified Health Assessment Questionnaire<sup>40</sup></td>
<td>0.87</td>
<td>Unknown</td>
<td>Moderate validity</td>
<td>Poor discriminant validity. Good construct validity. Good convergent validity with HRQOL.</td>
<td>No.</td>
<td>Mainly used in arthritis patients.</td>
<td>Set in present 1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>8 items</td>
<td>Easy</td>
<td>Many languages</td>
<td>Free to use<sup>26</sup></td>
</tr>
<tr>
<td>LS/A Life Satisfaction Inventory<sup>38</sup></td>
<td>0.76</td>
<td>ICC=0.87</td>
<td>Good Concurrent validity. Poor discriminant validity for well-being, moderate to poor discriminant validity for health.</td>
<td>Yes</td>
<td>Not responsive, looks back onto life.</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>20 items</td>
<td>Moderate</td>
<td>Only English</td>
<td>Free to use<sup>15</sup></td>
</tr>
<tr>
<td>S迎QOLS-DW Schedule for the evaluation of individual quality of life —Direct Weighting<sup>16,15</sup></td>
<td>Not appropriate</td>
<td>c<sub>1</sub> =0.51 after 1 week</td>
<td>Not Suitable</td>
<td>Poor responsiveness to interventions. Further research needed.</td>
<td>Not suitable</td>
<td>Not suitable</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>10 min</td>
<td>Moderate</td>
<td>Many languages</td>
<td>Free for research purposes</td>
</tr>
</tbody>
</table>

Each property for every tool was assessed for quality using the criteria in Table 2. If a property for a tool was 'high quality', it was scored +1 and the cell for that property was coloured green. For properties of tools that were of 'average quality' the cell was scored +0.5 and coloured yellow. For properties of tools that were 'low quality', cells were scored −1 and coloured red. The composite score was the summation of scores for all non-missing properties divided by the number of non-missing properties available for that tool. Tools are ranked from highest to lowest in this table based on their composite score.

ICC, intraclass correlation coefficient.
HRQOL may have been useful. China in the primary care setting where the pictures in the
Interestingly, the HRQOL has also been used in patients from
diabetes, chronic kidney disease, stroke and multiple sclerosis.
well-being of patients in chronic disease states including dia-
HRQOL has mainly been used to assess the general health and
the discriminatory nature of the tool is compromised. The
focused on the individual rather than the community, with only
very easy to administer because of the pictures. It is very much
faced focused on the individual rather than the community, with only
one in six questions related to community connectedness. The
HRQOL is also a very general tool, similar to the PWI, and so
the discriminatory nature of the tool is compromised. The
HRQOL has mainly been used to assess the general health and
well-being of patients in chronic disease states including dia-
Whether tools are subjective, such as clarity and responsiveness. Clarity has
cut-offs could have been chosen, it is unlikely that the ranking
would have changed much. Some variables by their very nature
are subjective, such as clarity and responsiveness. Clarity has
been discussed extensively in the Methods section.
Responsiveness was determined based on the authors’ assessment
of the potential for the assessment to reflect change over time. Some tools showed change after an intervention and this
was noted. Some tools were not responsive to major interventions
and this was also noted. For the remaining tools, they
were marked favourably if they were set in the present or the
last few weeks. Tools were penalised in assessment if they
referred to the whole life-course rather than to recent previous
events. A life-course strategy would be expected to be associated
with tools that are less responsive to interventions.

Articles that assessed or reported the validity of the measurement
tools were used as the basis for our summary to comment on
the validity of individual health and well-being tools. The
findings of these articles were taken at face value and entered
into Table 3. However, many of the articles did not use common
terminology for validity and did not assess validity in the same
way. Some tools had significant floor or ceiling effects leading to
poor discriminant validity. For example, the Nottingham Health
Profile (NHP) scored 0 for over 50% of people in a study of the
general population, exemplifying a major issue for using a tool
to evaluate an intervention in the general population.

Despite limitations identified in some tools, the complete
table is provided for information. We merely note that scoring
has some elements of subjectivity, and potential for some differ-
ent scoring criteria could be used to give different total scores
and rankings. However, we have used a logical framework to
distinguish between tools that could be used to assess health
and well-being in community interventions. The information
provided in Table 3 enables others to identify instruments having
properties and measure constructs that are more aligned with
their purpose.

CONCLUSION

Our analysis identified the relevant literature and assessed the
properties across various domains relevant to health and well-

<table>
<thead>
<tr>
<th>Class of tools</th>
<th>Composite score</th>
<th>Number of tools</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excellent</td>
<td>>0.85</td>
<td>5</td>
</tr>
<tr>
<td>Good</td>
<td>>0.75–0.85</td>
<td>9</td>
</tr>
<tr>
<td>Mediocre</td>
<td>0.5–0.75</td>
<td>7</td>
</tr>
<tr>
<td>Poor</td>
<td><0.5</td>
<td>6</td>
</tr>
</tbody>
</table>

Furthermore, there are many types of interventions that
would be suitable for measuring change in overall health and
well-being from the recommended top five tools.

- A new treatment for chronic disease, for example, a drug,
 operation or allied health intervention for a physical or
 psychological comorbidity.
- Programmes promoting primary prevention through targeting
 risk factors such as weight control, smoking cessation,
 increasing physical activity, harm reduction from alcohol and
 drugs.
- Alterations to the community at a community level, for
 example, intervention by a local council, increasing jobs,
 recreation and sport avenues, improving housing or health
 services.
- Targeted interventions at otherwise healthy subgroups, for
 example, for youth: a new gym, new indoor recreation
 centre or sports programme.

Note that different tools would be more suitable for different
interventions. The CWI would be useful for interventions at the
community level. The HRQOL or QOLS would be more suit-
able for treatments of chronic disease. The WHOQOL-Bref
may be more suitable for primary prevention of risk factors and
the PWI may be more suitable for targeted interventions in sub-
groups. A limitation of this study arises from the cut-offs and
scores applied for the properties of each tool. While other
cut-offs could have been chosen, it is unlikely that the ranking
would have changed much. Some variables by their very nature
are subjective, such as clarity and responsiveness. Clarity has
been discussed extensively in the Methods section.

Responsiveness was determined based on the authors’ assessment
of the potential for the assessment to reflect change over time. Some tools showed change after an intervention and this
was noted. Some tools were not responsive to major interventions
and this was also noted. For the remaining tools, they
were marked favourably if they were set in the present or the
last few weeks. Tools were penalised in assessment if they
referred to the whole life-course rather than to recent previous
events. A life-course strategy would be expected to be associated
with tools that are less responsive to interventions.

Articles that assessed or reported the validity of the measurement
tools were used as the basis for our summary to comment on
the validity of individual health and well-being tools. The
findings of these articles were taken at face value and entered
into Table 3. However, many of the articles did not use common
terminology for validity and did not assess validity in the same
way. Some tools had significant floor or ceiling effects leading to
poor discriminant validity. For example, the Nottingham Health
Profile (NHP) scored 0 for over 50% of people in a study of the
general population, exemplifying a major issue for using a tool
to evaluate an intervention in the general population.

Despite limitations identified in some tools, the complete
table is provided for information. We merely note that scoring
has some elements of subjectivity, and potential for some differ-
ent scoring criteria could be used to give different total scores
and rankings. However, we have used a logical framework to
distinguish between tools that could be used to assess health
and well-being in community interventions. The information
provided in Table 3 enables others to identify instruments having
properties and measure constructs that are more aligned with
their purpose.

CONCLUSION

Our analysis identified the relevant literature and assessed the
properties across various domains relevant to health and well-

!
being. Many of the tools are well constructed psychometrically, and some are freely available, while others require payment. Five measurement tools were rated as excellent using the scoring methods that we adopted. Our tabulation of the different properties across 27 instruments makes it easier to select an appropriate tool for evaluating the effectiveness of a community intervention to improve health and well-being.

There is an advantage in using these existing and well-characterised tools rather than constructing original tools, given that the existing choice includes free tools with sound psychometric properties, established reliability and validity, ease of use and, often, established population norms.

What is already known on this subject?

Many standardised measurement tools are available that measure health and well-being to evaluate community interventions, yet some investigators continue to use ad hoc tools. Some small reviews of a few tools exist.

What does this study add?

This study is a systematic comparison of all the relevant measurement tools of health and well-being found in the literature. Twenty-seven tools were found and further investigated for various properties and an overall comparison was made in a standard manner. This study allows investigators to pick an effective and appropriate measurement tool to evaluate their next community intervention.

Contributors ST developed the idea, carried out extensive editing and gave general guidance. MD wrote the review, search terms, carried out the search, populated the figures and tables, reviewed each selected tool individually and carried out the reference work.

Competing interests None declared.

Provenance and peer review Not commissioned; externally peer reviewed.

Data sharing statement The data for this article is basically Table 3 found in the article.

REFERENCES

Downloaded from http://jech.bmj.com/ on 3 June 2015 by guest. Protected by copyright.
45 Maska L, Anderson J, Michaud K. Measures of functional status and quality of life in rheumatoid arthritis: Health Assessment Questionnaire Disability Index (HAQ), Modified Health Assessment Questionnaire (MHAQ), Multidimensional Health Assessment Questionnaire (MDHAQ), Health Assessment Questionnaire II (HAQ-II), Improved Health Assessment Questionnaire (Improved HAQ), and Rheumatoid Arthritis Quality of Life (RAQoL). *Arthritis Care Res (Hoboken)* 2011;63(S1):S4–13.

