The Great Recession, unemployment and suicide

Thor Norström, Hans Grönqvist

ABSTRACT
How have suicide rates responded to the marked increase in unemployment spurred by the Great Recession? Our paper puts this issue into a wider perspective by assessing (1) whether the unemployment-suicide link is modified by the degree of unemployment protection, and (2) whether the effect on suicide of the present crisis differs from the effects of previous economic downturns.

Methods We analysed the unemployment-suicide link using time-series data for 30 countries spanning the period 1960–2012. Separate fixed-effects models were estimated for each of five welfare state regimes with different levels of unemployment protection (Eastern, Southern, Anglo-Saxon, Bismarckian and Scandinavian). We included an interaction term to capture the possible excess effect of unemployment during the Great Recession.

Results The largest unemployment increases occurred in the welfare state regimes with the least generous unemployment protection. The unemployment effect on male suicides was statistically significant in all welfare regimes, except the Scandinavian one. The effect on female suicides was significant only in the eastern European country group. There was a significant gradient in the effects, being stronger the less generous the unemployment protection. The interaction term capturing the possible excess effect of unemployment during the financial crisis was not significant.

Conclusions Our findings suggest that the more generous unemployment protection the weaker the detrimental impact on suicide of the increasing unemployment during the Great Recession.

INTRODUCTION
Unemployment is a well-established risk factor of suicide, as indicated by studies at micro, as well as macro level. An urgent research question is thus to assess how suicide rates have responded to the marked increase in unemployment spurred by the Great Recession, considered to be the deepest global economic downturn since World War II. Marked suicide increases that seem to be linked to increasing unemployment have been reported for a large number of countries. However, the fragmentary character of these findings hampers any more general conclusions. To put the current crisis into a wider perspective, it seems feasible to consider a time period that is long enough to include previous economic downturns. Further, it can be expected that the impact of unemployment on population mental health is modified by the degree of unemployment protection offered by the social welfare system. The aim of the present paper is thus to address the topic at issue in a more encompassing manner by analysing time-series data spanning the period 1960–2012 for 30 countries which represent a wide spectrum of welfare regimes.

UNEMPLOYMENT AND SUICIDE
Job loss has several tangible and negative consequences that may adversely affect mental health. For instance, to lose one’s job means that steady routines structuring everyday life dissipate, that social workplace relations vanish, and that the private economy becomes strained. It is therefore not surprising that unemployment is a well-established risk factor of suicide. Several prospective studies have thus documented an increased risk of suicide among those who become unemployed. The reported relative risk is typically in the range 2–5. However, these estimates are probably inflated as unemployed people are likely to be selected on factors conducive to suicide; for example, depression increases the risk of both suicide and to become unemployed. An alternative strategy that should alleviate this problem is to analyse time-series data on the population level, that is, to look at how changes in the unemployment rate affect the suicide rate. Depression may increase the risk of unemployment at the individual level, but is less likely to do so at the aggregate level. It is worthy to note that analyses at the population level capture also the possible detrimental impact of unemployment on those who remain in employment, but fear losing their jobs (see and for more detailed discussions of differences between using micro and macro data in this context). Several aggregate level time-series studies report a significant relation between unemployment and suicide. The early studies in this tradition mostly rely on trend analyses (for reviews, see and) which compromises the validity of the findings. However, positive findings are also reported by researchers applying fixed-effects modelling of time-series data pertaining to a set of European countries, and to the US states.

IS THE EFFECT OF UNEMPLOYMENT ON SUICIDE UNIFORM ACROSS TIME AND SPACE?
Welfare state regimes
In her review of the literature, Bartley identifies poverty and financial anxiety as especially important mechanisms linking unemployment to increased suicide risk (similar conclusions are drawn by and). This suggests a potentially modifying effect of a generous welfare system that can provide a safety net in precarious situations and mitigate the adverse effect of a job loss. The hypothesis that the health effect of economic downturns is contingent on the generosity of the social welfare system receives support from the few
studies that have addressed this topic. Thus Stuckler et al. on
the basis of time-series data for 26 European Union (EU) coun-
tries between 1970 and 2007, found that the unemployment
effect on suicide was lower in countries with high labour market
security, proxied by government spending on labour market pro-
grames. Similar findings are reported on the basis of US state
data.26 Further, in their analyses of time-series data for 23
Organisation for Economic Co-operation and Development
(OECD) countries for the period 1960–1997, Gerdtham and
Ruhm21 found a modifying impact of social insurance spending
on the association between unemployment and total mortality.
However, the approach of using data on government expend-
iture on welfare provisions has some well-known limitations;
social spending is in itself heavily influenced by structural
changes reflecting business cycles, demographic trends or labour
market transformation.22 We will instead rely on an alternative
approach that classifies welfare states on the basis of the content
and nature of social citizenship rights, as indicated by legislated
social insurance replacement rates. More specifically, we will
apply a scheme that has been developed within comparative
population health research.23–25 and that has been used in com-
mparative analyses of the association between unemployment and
health.23 In this scheme the countries are classified into five
welfare state regimes, ranked from low (1) to high (5) levels of
social and financial protection during unemployment: (1) Eastern
European countries; (2) Southern European countries;
(3) Anglo-Saxon countries; (4) Bismarckian; and (5)
Scandinavian countries (see table 1). The ranking is based on
the generosity of the unemployment protection system as indi-
cated by four indicators: ‘the generosity of benefits paid to
the unemployed (replacement rates), the qualifying period and con-
ditions, duration of benefit payments and the waiting period
before entitlement is activated’.23 The highest replacement rates
(the most important indicator)26 are thus found in the
Scandinavian and Bismarckian countries, the lowest in the
eastern and southern European countries, with the Anglo-Saxon
countries in between (table 1).

Is the Great Recession worse than previous economic
downturns?
An interesting research question is whether or not the effect on
mental health of the present crisis differs from the effects of
previous economic downturns. One hypothesis is that losing
one’s job would be particularly harmful when the national
economy is seriously weakened. First, the poor prospects of
finding a new job should bolster the feelings of hopelessness.
Second, the austerities that have been implemented in several
countries due to the recession have limited the access to social
services and medical treatment.27 As an alternative hypothesis it
can be argued that a job loss be felt as less stigmatising when
this situation is shared by many others in society.

DATA AND METHODS
The study comprises 30 countries, and the longest observation
period is 1960–2012, though it is appreciably shorter for some
countries (see table 1). Data on unemployment (% unemployed
in the work force) were sourced from Eurostat. Age-specific
mortality data for females and males were obtained from the
WHO Mortality Data Base (Geneva). Gender specific
age-standardised mortality rates (number of deaths per 100 000
population) were constructed (following WHO World
Standard28) for the age-groups 20–64 years, and 65 years and
above. Previous studies suggest that male suicide rates respond
stronger than female suicide rates to economic downturns,
which has been interpreted as a consequence of men’s stronger
work commitment and responsibility to be the main bread-
winner.7 However, some studies report social contagion effects
from the job loser, particularly affecting the mental health of
the spouse.29 30 We expect any impact of unemployment on
suicide to be confined to the age-group of the working popula-
tion (20–64 years). We used the age-group 65 years and above
as a placebo outcome where no or a minuscule effect is
expected.

The association between unemployment and suicide was
assessed by applying two different methodological techniques.
The rationale for this is that triangulating findings from different
methods should reduce the risk of obtaining method-bound
results. The first method was fixed-effects modelling. To test the
hypothesis that the unemployment effect may differ across
welfare state regimes, the countries were sorted into five
country groups ranging from low to high levels of unemploy-
ment protection, as described above and detailed in table 1. The
other approach was to obtain country-specific estimates of the
association at issue by means of time-series analyses of data for the
individual countries; these estimates were then pooled into
the five welfare state regimes. A brief description of the two
methods follows below.

The first method involves analyses of pooled cross-sectional
time-series data. When such data are used for estimating the
relationship between two variables, there are two obvious
sources of bias that may distort the outcome. One is the possible
presence of unobserved country differences that are linked to
the dependent as well as the independent variables. The other
threat to validity of results is the possibility that X and Y vari-
ables have converging (or diverging) time trends that do not
reflect a causal relationship, but rather the impact of other
factors. We thus chose to analyse the differenced data because
the differencing not only eliminated all trends in our data, but
also means that only the intracountry covariation over time is
explored (fixed-effects models), thus eliminating the first-
mentioned source of bias as well. Further, the more conservative
panel corrected SEs were used.31 Finally, the models included
panel-specific estimation of residual autocorrelation.

The time-series analysis was performed by applying the tech-
nique developed by Box and Jenkins,32 often referred to as
ARIMA-modelling (autoregressive integrated moving average).
As noted above, a simple differencing was sufficient to remove
trends to achieve the stationarity required for
ARIMA-modelling. Further, the noise (error) term, which
includes explanatory variables not considered in the model, is
allowed to have a temporal structure that was modelled and esti-
mated in terms of autoregressive and/or moving average par-
eters. All estimated ARIMA-models were satisfactory
with respect to residual structure (which should not differ from
white noise) according to the Box–Ljung Q statistics.33 The
country-specific estimates of the unemployment effect were
pooled within each of the five country groups (see Norström
and Skog31 for a more detailed description of this approach.)

We included an interaction term to capture the possible
excess effect of unemployment during the years of the financial
crisis. The interaction term was constructed as follows:

$$\text{Unemployment}_{it} = \text{LnUnemployment}_{it} \times \text{Crisis}_{it}$$ (1)

where Unemployment is the unemployment rate (%) and Crisis
is a country specific variable that takes the value 0 in years with
no recession, 0.25 in years with a 1-quarter recession, and so

forth, and 1 in years with 4 quarters of recession. The common recession definition was used, that is, that a recession occurred when GDP has contracted at least two consecutive quarters.

Data were obtained from Eurostat and OECD. Different International Classification of Diseases (ICD)-classifications have been used during the study period, from ICD-7 to ICD-10. Possible influences of revisions of ICD-classification were captured by dummy variables. Missing mortality data (table 1) were imputed through linear interpolation; dummy variables were created for these years.

One issue concerns the functional form of the relation between unemployment and suicide. Most previous studies have applied a semilog model, that is, with logged output. This assumes an accelerating risk function (convex downwards) which is far from obvious. As noted above, people who become unemployed tend to be selected on suicidogenic characteristics. The selection effect should be especially strong in periods of low unemployment, while the fraction of ordinary people among the unemployed is expected to increase with increasing unemployment rate. This should dampen the suicide response, suggesting a risk function that is concave downwards. This notion is supported by the study by Crawford, Kuforiji and Ghosh34 which on the basis of 54 published case-control studies found a strong inverse relation between the prevalence

Table 1 Descriptive statistics (period averages) for unemployment replacement rate, unemployment, male suicide rate per 100 000 (20–64 years), and female suicide rate per 100 000 (20–64 years)

<table>
<thead>
<tr>
<th>Observation period</th>
<th>Unemployment replacement rate* (%)</th>
<th>Unemployment (%)</th>
<th>Suicide rate per 100 000 (20–64 years)</th>
<th>Females</th>
<th>Males</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eastern European countries</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Croatia 1991–2012</td>
<td>12.93</td>
<td>9.31</td>
<td>32.73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Czech Republic 1993–2012</td>
<td>8.46</td>
<td>9.54</td>
<td>35.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estonia 1990–2012</td>
<td>8.86</td>
<td>11.00</td>
<td>61.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hungary 1992–2012</td>
<td>8.53</td>
<td>17.70</td>
<td>60.59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Latvia 1992–2012</td>
<td>11.68</td>
<td>11.31</td>
<td>64.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lithuania 1994–2010</td>
<td>12.91</td>
<td>14.08</td>
<td>88.94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Romania 1990–2011</td>
<td>7.45</td>
<td>4.62</td>
<td>25.60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slovakia 1994–2010</td>
<td>14.59</td>
<td>4.06</td>
<td>27.78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Period average</td>
<td>56.10</td>
<td>10.45</td>
<td>9.92</td>
<td>44.64</td>
<td></td>
</tr>
<tr>
<td>Southern European countries</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Greece 1983–2010</td>
<td>9.83</td>
<td>1.95</td>
<td>6.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Italy 1960–2010</td>
<td>8.31</td>
<td>3.76</td>
<td>10.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spain 1972–2011</td>
<td>14.30</td>
<td>3.11</td>
<td>10.21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Period average</td>
<td>55.11</td>
<td>9.69</td>
<td>3.27</td>
<td>10.39</td>
<td></td>
</tr>
<tr>
<td>Anglo-Saxon countries</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Australia 1960–2011</td>
<td>5.45</td>
<td>9.01</td>
<td>25.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada 1960–2009</td>
<td>7.53</td>
<td>7.99</td>
<td>25.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ireland 1960–2010</td>
<td>9.15</td>
<td>4.76</td>
<td>16.81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UK 1960–2010</td>
<td>5.79</td>
<td>6.17</td>
<td>14.84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USA 1960–2010</td>
<td>6.08</td>
<td>7.49</td>
<td>23.63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Period average</td>
<td>61.32</td>
<td>6.80</td>
<td>7.09</td>
<td>21.11</td>
<td></td>
</tr>
<tr>
<td>Bismarckian</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Austria 1960–2011</td>
<td>3.07</td>
<td>12.49</td>
<td>37.92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Belgium 1960–2009</td>
<td>7.40</td>
<td>12.31</td>
<td>29.46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>France 1960–2010</td>
<td>6.51</td>
<td>10.67</td>
<td>30.87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Germany 1960–2012</td>
<td>5.30</td>
<td>11.13</td>
<td>28.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switzerland 1960–2010</td>
<td>1.64</td>
<td>13.05</td>
<td>34.61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Period average</td>
<td>71.00</td>
<td>4.78</td>
<td>11.29</td>
<td>29.24</td>
<td></td>
</tr>
<tr>
<td>Scandinavian countries</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Denmark 1960–2011</td>
<td>5.53</td>
<td>16.25</td>
<td>32.79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finland 1960–2011</td>
<td>6.25</td>
<td>13.27</td>
<td>50.89</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Norway 1960–2012</td>
<td>2.81</td>
<td>7.86</td>
<td>21.92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sweden 1960–2010</td>
<td>4.32</td>
<td>12.32</td>
<td>30.27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Period average</td>
<td>72.10</td>
<td>4.69</td>
<td>12.4</td>
<td>33.93</td>
<td></td>
</tr>
</tbody>
</table>

*The fraction of current wages which the social unemployment benefit system provides to a wage earner in the case of unemployment. Average for the period 1992–2009 for Eastern European countries, and 1971–2009 for other country groups.26
†Suicide data are missing 1997–1998 for Poland, 2004–2005 for Italy and 2000–2002 for Belgium.
of unemployment on the one hand, and the odds-ratio for suicide among the unemployed, on the other. A study based on data for Ireland reports findings consistent with this pattern. To test this empirically, we used the data for all study countries to estimate a fixed-effects model as described above, including unemployment and unemployment squared as predictors, and suicide (males 20–64 years) as output. The estimate obtained for unemployment was 1.181 (SE=0.214, p<0.001), and for unemployment squared −0.045 (SE=0.010, p<0.001), which indicates a risk function that is concave downwards. However, this model specification would make comparisons across country groups awkward, and we thus chose a log-log model that can accommodate the suggested non-linear relationship, and that yields a single effect estimate in the form of an elasticity.

The following fixed-effects model was thus estimated for each of the five country groups (and for all countries together):

\[
\nabla \ln S_{it} = c_1 \nabla \ln Unemployment_{it} + c_2 \nabla Uncrisis_{it} + \beta \nabla X_{it} + e_{it}
\]

(2)

where \(S \) is the suicide rate, Unemployment the unemployment rate (%), Uncrisis the interaction term as defined above, and \(X \) a vector of dummy variables capturing ICD-revisions and imputations of missing mortality data. The key parameters to be estimated are the elasticities denoted \(e_1 \) and \(e_2 \). Corresponding ARIMA-models were estimated for each of the 30 countries. For each of the five country groups we thus obtained two estimates of the unemployment effect on suicide, that is, one from the fixed-effects modelling and another from pooling the country specific ARIMA-estimates into country groups. We used F-tests to assess whether the estimated unemployment effects differed across country groups. We also used F-tests to assess whether the country specific ARIMA-estimates were homogenous within country groups.

We considered the option of controlling for GDP/capita. However, the obvious relation between unemployment and GDP (Okun’s law) is best understood as a result of reduced labour input (increased unemployment) leading to decreased output (GDP). Controlling for GDP would thus potentially imply controlling for an intermediary variable, which is not recommended as this induces a bias towards the null. Thus, although controlling for GDP is not our preferred model we will investigate how such a specification affects the unemployment estimate because this gives a hint of how much of a possible unemployment effect on suicide that is mediated by reduced material resources.

All statistical analyses were performed with Stata, V13 (StataCorp).

RESULTS

Table 1 displays descriptive statistics for the key variables. As shown in figure 1, unemployment increased after 2007 in all country groups except the Bismarckian; the increase was especially marked in the eastern and southern European country groups. (Although there is certainly a considerable heterogeneity within the country groups, unemployment increased in every single country, except Germany, where it decreased somewhat). It can also be seen that in some country groups (especially the Anglo-Saxon and the Scandinavian), unemployment increased at least as much during the 1990-crisis as during the current crisis.

Figure 1 (A–E) Trends in unemployment (%), female suicide rate (20–64 years) and male suicide rate (20–64 years) in five country groups.
The male suicide rate increased markedly in the eastern European country group, but little or not at all in the other country groups. The female suicide rate was generally stable, or decreased. (2011 and 2012 are excluded in figure 1 due to missing suicide data for many countries, see table 1.) Generally, it seems clear that unemployment has a limited explanatory power with respect to trends in suicide. For instance, in three of the country groups (eastern Europe, Bismarckian and Scandinavia) there was a dramatic decline (35–40%) in male suicides during the study period that is obviously due to other factors than unemployment. This, of course, does not preclude that changes in the unemployment rate may impact on suicide, but we should not expect this impact to be very large. This expectation was borne out by the model estimations (table 2); a 1% increase in unemployment was associated with an increase in male suicides by 0.06% (p<0.001). However, this average effect for all countries conceals a great deal of heterogeneity. The estimated effect was thus strongest in the two country groups with the weakest unemployment protection, that is, the Bismarckian (elasticity=0.038, p<0.001), and the Scandinavian countries (elasticity=0.030, p=0.136). This apparent gradient (figure 2) in the estimated effects on male suicides was statistically significant as suggested by the F-test that rejects the hypothesis that the five estimates are equal.

The estimates from the fixed-effects models and the pooled ARIMA-estimates were fairly consistent with each other. Further, the F-tests indicate homogeneity of the ARIMA-estimates within each of the country groups. The estimated effect on female suicides (20–64 years) was significant only in the eastern European country group (table 3).

The interaction term (Uncrisis) capturing the possible excess effect of unemployment during the years of the financial crisis was clearly insignificant for all of the country groups. The dummy variables for changes in ICD-classifications were statistically insignificant (estimates not shown). The estimates on the placebo outcomes (female and male suicides 65 years and above) were also statistically insignificant (see online supplementary tables A1 and A2 in Web appendix). Including GDP/capita as control variable resulted in a lowering of the estimate and significance of the unemployment effect in the eastern and southern European country groups, while the estimates in the remaining country groups were unaffected (see online supplementary table A3 in Web appendix). This suggests that the unemployment effect on suicide in these country groups partly was mediated by reduced material resources.

DISCUSSION
As noted in a recent *Lancet* article, remarkably little research has been devoted to the health effects of the economic crisis that bursted in the fall of 2007, and considered to be the deepest recession since the Great Depression. Suicide rates can be seen as a summary proxy for population mental health. From this perspective, it is of interest to analyse how this form of mortality is affected by the current crisis, and more specifically the ensuing surge in unemployment. This is an indicator that lies close to people’s experience of economic turmoil, and which has proved to be the one that is most closely related to population health. In this paper we have put this issue into perspective by analysing time-series data that span a long period of time and cover countries representing welfare regimes with quite different degrees of unemployment protection. The data were analysed by two different methods that supplement each other.

Table 2 Estimated effects (elasticities) of unemployment and Uncrisis on male suicide rate (20–64 years)

<table>
<thead>
<tr>
<th>Country group</th>
<th>Fixed-effects estimates</th>
<th>Pooled ARIMA-estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unemployment</td>
<td>Uncrisis</td>
</tr>
<tr>
<td></td>
<td>Est SE p Value</td>
<td>Est SE p Value</td>
</tr>
<tr>
<td>1. Eastern European countries</td>
<td>0.128 0.028 <0.001</td>
<td>0.068 0.085 0.421</td>
</tr>
<tr>
<td>2. Southern European countries</td>
<td>0.166 0.065 0.010</td>
<td>0.000 0.062 0.997</td>
</tr>
<tr>
<td>3. Anglo-Saxon countries</td>
<td>0.085 0.034 0.013</td>
<td>−0.012 0.155 0.939</td>
</tr>
<tr>
<td>4. Bismarckian</td>
<td>0.033 0.009 <0.001</td>
<td>0.000 0.045 0.997</td>
</tr>
<tr>
<td>5. Scandinavian countries</td>
<td>0.030 0.020 0.136</td>
<td>−0.173 0.084 0.039</td>
</tr>
<tr>
<td>F test for heterogeneity‡</td>
<td>2.535*</td>
<td>0.904*</td>
</tr>
<tr>
<td>All countries</td>
<td>0.062 0.011 <0.001</td>
<td>0.012 0.038 0.746</td>
</tr>
</tbody>
</table>

*Estimates from fixed-effects models, and pooled estimates from country-specific ARIMA-models.
†F test for heterogeneity of estimates within country groups.
‡F test for heterogeneity of estimates between country groups.

Figure 2 Estimated unemployment effects (FE-models shown in table 2) on suicide (males 20–64) plotted against unemployment replacement rates. See table 1 for definition of unemployment replacement rates and country groups.
The division of countries into the five welfare regimes unfolded a great deal of heterogeneity. First, our data show that some country groups are worse struck than others by the current crisis. Second, this uneven distribution of hardship is compounded by the marked gradient in the unemployment effect on suicide. Hence, the less generous the unemployment protection, the sharper the increase in unemployment, and, additionally, the stronger the unemployment effect on suicide. However, not to lose the perspective, it should be pointed out that in most country groups unemployment was at least as high during the crisis of the 1990s, and that the unemployment effect on suicide does not seem to be stronger during the Great Recession than during previous economic downturns during the study period. Our expectation, based on previous research, that the unemployment effect would be confined to males, was by and large borne out by our findings. The one exception from this pattern was the statistically significant effect on the female suicide rate that we obtained for the eastern European country group. However, some studies suggested contagion effects between two predominant approaches: (1) to analyse a shorter time period for a single country, which tends to yield low statistical power, and (2) to analyse data for all countries jointly, which is likely to conceal a good deal of heterogeneity. Another limitation is that there are no gender specific time-series data on unemployment covering our study period. This lowers the precision of our exposure measure which is likely to yield a downward bias of its estimated effect. Lastly, the risk of omitted variable bias can never be dismissed in the present kind of research. However, it should be noted that although there are numerous factors that affect the suicide rate, only omitted factors that also are synchronised with changes in suicide as well as unemployment would bias our outcomes.

To conclude, contextualising the unemployment increase spurred by the Great Recession, our findings suggest that its impact on suicide is not stronger than that of previous economic downturns, and that its impact is strongly modified by the level of unemployment protection.

Table 3 Estimated effects (elasticities) of unemployment and Uncrisis on female suicide rate (20–64 years)

<table>
<thead>
<tr>
<th>Country group</th>
<th>Fixed-effects estimates</th>
<th>Pooled ARIMA-estimates</th>
<th>F test*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unemployment</td>
<td>Uncrisis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Est SE p Value</td>
<td>Est SE p Value F test*</td>
<td></td>
</tr>
<tr>
<td>1. Eastern European countries</td>
<td>0.121 0.048 0.012</td>
<td>0.051 0.162 0.752</td>
<td>0.142 0.037 <0.001 0.338 NS 0.172 0.117 0.144 0.083 NS</td>
</tr>
<tr>
<td>2. Southern European countries</td>
<td>0.042 0.101 0.679</td>
<td>−0.109 0.109 0.315</td>
<td>0.024 0.066 0.719 3.940 NS 0.030 0.125 0.810 0.191 NS</td>
</tr>
<tr>
<td>3. Anglo-Saxon countries</td>
<td>0.084 0.059 0.151</td>
<td>−0.372 0.242 0.124</td>
<td>0.007 0.029 0.806 0.291 NS −0.290 0.121 0.018 0.002 NS</td>
</tr>
<tr>
<td>4. Bismarckian</td>
<td>0.011 0.014 0.435</td>
<td>−0.055 0.066 0.404</td>
<td>0.023 0.019 0.228 0.888 NS −0.033 0.097 0.734 0.001 NS</td>
</tr>
<tr>
<td>5. Scandinavian countries</td>
<td>0.017 0.030 0.570</td>
<td>−0.185 0.125 0.139</td>
<td>0.012 0.042 0.771 0.203 NS −0.217 0.203 0.286 0.732 NS</td>
</tr>
<tr>
<td>F test for heterogeneity</td>
<td>0.640 NS 1.079 NS</td>
<td>1.843 NS 1.847 NS</td>
<td></td>
</tr>
</tbody>
</table>

Estimates from fixed-effects models, and pooled estimates from country-specific ARIMA-models. NS p≥0.05. *F test for heterogeneity of estimates within country groups. †F test for heterogeneity of estimates between country groups.
Correction notice This article has been corrected since it was published Online First. The sentence ‘It is worthy to note that analyses at the population level capture also the possible detrimental impact of unemployment on those who remain in unemployment...’ has been corrected.

Contributors TN and HG conceived the design and drafted the paper. TN conducted the analyses. Both authors approved the final draft.

Funding This research was funded by FORTE: Swedish Research Council for Health, Working Life and Welfare (2013–2014).

Competing interests None.

Provenance and peer review Not commissioned; externally peer reviewed.

Data sharing statement All data sources are public and detailed in the paper.

Open Access This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

REFERENCES
41. Rockett IR, Thomas BM. Reliability and sensitivity of suicide certification in higher-income countries. Suicide Life Threat Behav 1999;29:141–49.