Results Men, with a mean age of 34.5 years (SD=17.1), were followed-up. Deaths were monitored through vital registration. Analyses were restricted to women younger than 30 years who delivered singletons (72%, 70% and 68% of the original cohorts, respectively). Additional analyses compared mothers aged 12–19, 20–29 years. Additional analyses compared mothers aged 12–19, 20–29 years. The excess risk was due to post-neonatal deaths.

Conclusion There were no interactions between maternal age and cohort year. After adjustment for confounding, the pooled ORs for infant death were 1.08 (95% CI 0.42 to 2.78) for mothers younger than 30 years (72%, 70% and 68% of the original cohorts, respectively). Maternal age was categorised into three groups (<16, 16–19, and 20–29 years). Additional analyses compared mothers aged 12–19 and 20–29 years. The outcome variables included fetal, perinatal, neonatal, post-neonatal and infant mortality.

Methods Feces of children from 0 months to 12 years living in the areas of study and diagnosed with gastroenteritis are collected and evaluated for the presence of adenovirus. Water and mussels are sampled monthly and analysed for adenovirus by PCR and nested-PCR. Total coliforms and E. coli were detected using the Total Coliform/E. coli Enzyme substrate test (Colilert®).

Results All water and mussels analysed were positive for E. coli. Adenovirus genome was detected in 76% of water samples and 100% of mussel samples collected.

Conclusion These data show that this area is highly contaminated with domestic sewage and indicates that consumption of seafood may be associated with cases of gastroenteritis reported in the region.

Reference values for the trace metals vary markedly; therefore, comparisons between different regions are difficult. In this study, the mean blood lead was 25.86 ppb, cadmium 0.31 ppb, nickel 9.18 ppb, molybdenum 1.59 ppb, and antimony 0.60 ppb. The (mean ± SD) blood level for study children (n=486) was 3.01 ± 0.25 ppb, arsenic 10.74 ± 4.71 ppb, mercury 1.59 ± 1.16 ppb, manganese 1.85 ± 1.09 ppb, nickel 9.18 ± 8.23 ppb, zinc 3781 ± 1752 ppb, chromium 2.10 ± 1.53 ppb, cobalt 0.65 ± 0.40 ppb, copper 1064 ± 403 ppb, molybdenum 1.59 ± 1.25 ppb, and antimony 0.60 ± 0.65 ppb. Blood screening and surveillance linked to appropriate public health interventions is strongly recommended for the UAE.

Introduction Several studies have shown that many aquatic ecosystems are often contaminated with pathogenic microorganisms through the discharge of untreated or partially treated sewage. The maintenance of water quality is a major challenge for governments with direct consequences on the health of the environment and the population. Mangrove is an important source of livelihood for fishermen living in the region of Vitória, ES, Brazil. In the last years high numbers of gastroenteritis cases have been reported in this region suggesting an association between the consumption or handling of contaminated water and mussels and the development of gastrointestinal diseases. The aim of this study was to investigate the sanitary quality of water and mussels and to evaluate an association of gastroenteritis cases and the presence of adenovirus and bacterial indicators of fecal pollution in these samples.

Methods Feces of children from 0 months to 12 years living in the areas of study and diagnosed with gastroenteritis are collected and evaluated for the presence of adenovirus. Water and mussels are sampled monthly and analysed for adenovirus by PCR and nested-PCR. Total coliforms and E. coli were detected using the Total Coliform/E. coli Enzyme substrate test (Colilert®).

Results All water samples and mussels analysed were positive for E. coli. Adenovirus genome was detected in 76% of water samples and 100% of mussel samples collected.

Conclusion These data show that this area is highly contaminated with domestic sewage and indicates that consumption of seafood may be associated with cases of gastroenteritis reported in the region.