Results Semen assessments were obtained for 502 men. This group was representative of the general population regarding social class, education and geography. The median sperm concentration of samples was 25.86 ± 13.06 ppb, cadmium 0.31 ± 0.25 ppb, arsenic 0.63 ppb. The mean blood lead was 25.86 ± 13.06 ppb, cadmium 0.31 ± 0.25 ppb, arsenic 0.63 ppb. The mean age was 8.4 years (SD ± 2 years). ICP-MS instrument was used to determine the metal concentration. Data analysis was performed using the SPSS.

Methods It was a cross-sectional study. One hundred and forty seven subjects were selected from nine elementary schools. The mean age was 8.4 years (SD ± 2 years). ICP-MS instrument was used to determine the metal concentration. Data analysis was performed using the SPSS.

Results The (mean±SD) blood level for study children (n=146) of lead was 25.86 ± 13.06 ppb, cadmium 0.31 ± 0.25 ppb, arsenic 10.74 ± 4.71 ppb, mercury 1.53 ± 0.16 ppb, manganese 1.85 ± 1.09 ppb, nickel 9.18 ± 2.33 ppb, zinc 37.31 ± 175.2 ppb, chromium 2.10 ± 1.53 ppb, cobalt 0.65 ± 0.40 ppb, copper 1064 ± 403 ppb, molybdenum 1.59 ± 1.25 ppb, and antimony 0.60 ± 0.65 ppb.

Conclusions Reference values for the trace metals vary markedly, especially due to sampling, age, diet, exposure differences and analytical techniques used. In this study, the mean blood lead was below the CDC’s recommended level of concern (>10 µg/dl) and with cadmium, mercury and chromium were comparable with similar studies elsewhere; manganese and zinc were slightly lower; copper and molybdenum were slightly higher while arsenic and cobalt much higher. Blood screening and surveillance linked to appropriate public health interventions is strongly recommended for UAE.

Results New South Wales, Australia

13.06 ppb, cobalt 0.65 ppb, chromium 403 ppb, zinc 3731 ppb, manganese 1.85 ppb, nickel 9.18 ppb, iron 10.74 ppb, arsenic 0.63 ppb.

Background Environmental toxic metal exposure may adversely affect children’s development and behaviour. Data are lacking about heavy metal exposure in children in UAE and Gulf countries.

Objectives To determine blood concentrations of 12 heavy metals in school-age children in Al Ain City, UAE.

Methods Seven subjects were selected from nine elementary schools. The mean age was 8.4 years (SD ± 2 years). ICP-MS instrument was used to determine the metal concentration. Data analysis was performed using the SPSS.

Results The (mean±SD) blood level for study children (n=146) of lead was 25.86 ± 13.06 ppb, cadmium 0.31 ± 0.25 ppb, arsenic 10.74 ± 4.71 ppb, mercury 1.53 ± 0.16 ppb, manganese 1.85 ± 1.09 ppb, nickel 9.18 ± 2.33 ppb, zinc 37.31 ± 175.2 ppb, chromium 2.10 ± 1.53 ppb, cobalt 0.65 ± 0.40 ppb, copper 1064 ± 403 ppb, molybdenum 1.59 ± 1.25 ppb, and antimony 0.60 ± 0.65 ppb.

Conclusions Reference values for the trace metals vary markedly, especially due to sampling, age, diet, exposure differences and analytical techniques used. In this study, the mean blood lead was below the CDC’s recommended level of concern (>10 µg/dl) and with cadmium, mercury and chromium were comparable with similar studies elsewhere; manganese and zinc were slightly lower; copper and molybdenum were slightly higher while arsenic and cobalt much higher. Blood screening and surveillance linked to appropriate public health interventions is strongly recommended for UAE.

Introduction Several studies have shown that many aquatic ecosystems are often contaminated with pathogenic microorganisms through the discharge of untreated or partially treated sewage. The maintenance of water quality is a major challenge for governments with direct consequences on the health of the environment and the population. Mangrove is an important source of livelihood for fishermen living in the region of Vitória, ES, Brazil. In the last years high numbers of gastroenteritis cases have been reported in this region suggesting an association between the consumption or handling of contaminated water and mussels and the development of gastrointestinal diseases. The aim of this study was to investigate the sanitary quality of water and mussels and to evaluate an association of gastroenteritis cases and the presence of adenovirus and bacterial indicators of fecal pollution in these samples.

Methods Feces of children from 0 months to 12 years living in the areas of study and diagnosed with gastroenteritis are collected and evaluated for the presence of adenovirus. Water and mussels are sampled monthly and analysed for adenovirus by PCR and nested-PCR; total coliforms and E coli were detected using the Total Coli/coli Enzyme substrate test (Colilert ®).

Results All water samples and mussels analysed were positive for E coli. Adenovirus genome was detected in 76% of water samples and 100% of mussel samples collected.

Conclusion These data shows that this area is highly contaminated with domestic sewage and it indicates that consumption of seafood may be associated with cases of gastroenteritis reported in the region.

Introduction Several studies have shown that many aquatic ecosystems are often contaminated with pathogenic microorganisms through the discharge of untreated or partially treated sewage. The maintenance of water quality is a major challenge for governments with direct consequences on the health of the environment and the population. Mangrove is an important source of livelihood for fishermen living in the region of Vitória, ES, Brazil. In the last years high numbers of gastroenteritis cases have been reported in this region suggesting an association between the consumption or handling of contaminated water and mussels and the development of gastrointestinal diseases. The aim of this study was to investigate the sanitary quality of water and mussels and to evaluate an association of gastroenteritis cases and the presence of adenovirus and bacterial indicators of fecal pollution in these samples.

Methods Feces of children from 0 months to 12 years living in the areas of study and diagnosed with gastroenteritis are collected and evaluated for the presence of adenovirus. Water and mussels are sampled monthly and analysed for adenovirus by PCR and nested-PCR; total coliforms and E coli were detected using the Total Coli/coli Enzyme substrate test (Colilert ®).

Results All water samples and mussels analysed were positive for E coli. Adenovirus genome was detected in 76% of water samples and 100% of mussel samples collected.

Conclusion These data shows that this area is highly contaminated with domestic sewage and it indicates that consumption of seafood may be associated with cases of gastroenteritis reported in the region.

Background Environmental toxic metal exposure may adversely affect children’s development and behaviour. Data are lacking about heavy metal exposure in children in UAE and Gulf countries.

Objectives To determine blood concentrations of 12 heavy metals in school-age children in Al Ain City, UAE.

Methods Seven subjects were selected from nine elementary schools. The mean age was 8.4 years (SD ± 2 years). ICP-MS instrument was used to determine the metal concentration. Data analysis was performed using the SPSS.

Results The (mean±SD) blood level for study children (n=146) of lead was 25.86 ± 13.06 ppb, cadmium 0.31 ± 0.25 ppb, arsenic 10.74 ± 4.71 ppb, mercury 1.53 ± 0.16 ppb, manganese 1.85 ± 1.09 ppb, nickel 9.18 ± 2.33 ppb, zinc 37.31 ± 175.2 ppb, chromium 2.10 ± 1.53 ppb, cobalt 0.65 ± 0.40 ppb, copper 1064 ± 403 ppb, molybdenum 1.59 ± 1.25 ppb, and antimony 0.60 ± 0.65 ppb.

Conclusions Reference values for the trace metals vary markedly, especially due to sampling, age, diet, exposure differences and analytical techniques used. In this study, the mean blood lead was below the CDC’s recommended level of concern (>10 µg/dl) and with cadmium, mercury and chromium were comparable with similar studies elsewhere; manganese and zinc were slightly lower; copper and molybdenum were slightly higher while arsenic and cobalt much higher. Blood screening and surveillance linked to appropriate public health interventions is strongly recommended for UAE.

Conclusion The slightly increased risk of post-neonatal mortality among the offspring of adolescent mothers suggests that social and environmental factors may be more important than maternal biologic immaturity. The possibility of residual confounding cannot be ruled out.

Results There were no interactions between maternal age and cohort year. After adjustment for confounding, the pooled ORs for infant death were 1.08 (95% CI 0.42 to 2.78) for mothers younger than 16 years, 1.48 (1.03 to 2.12) for 16–19-year-olds, and 1.45 (1.01 to 2.07) for those aged 12–19, compared to a 20–29-year-old mothers. The excess risk was due to post-neonatal deaths.

Conclusion The slightly increased risk of post-neonatal mortality among the offspring of adolescent mothers suggests that social and environmental factors may be more important than maternal biologic immaturity. The possibility of residual confounding cannot be ruled out.