studies were conducted in developing countries, most did not provide preferential access to researchers from there. **Conclusion** A useful DAF should encompass complex issues ranging from ethical and legal to feasibility and practicability while remaining user-friendly to encourage collaboration. Giving consideration to researchers from countries involved in the study will promote international collaboration which will facilitate local research and enhance epidemiological knowledge.

2.6 Maternal and Child Health Risk Factors for Pregnancy Outcome

Chair: Prof. Jill Pell, UK

Objective To ascertain the chance of a second pregnancy resulting in live birth following pregnancy loss.

Methods Scottish data on all women whose first pregnancy occurred between 1951 and 2000 were linked to records of a subsequent pregnancy. The exposed cohorts comprised women with a first ectopic pregnancy, miscarriage, stillbirth or termination. The unexposed cohort comprised women who had an initial live birth. Kaplan-Meier curves of time to second pregnancy outcome and live birth from the date of first pregnancy were constructed. Cox’s proportional hazards models were used to calculate the HR with 95% CI of any second pregnancy and live birth. The reference category was women whose first pregnancy ended in a live birth.

Results There were 667144 women with an initial live birth, 39530 with a miscarriage, 2969 with an ectopic first pregnancy, 3094 with a stillbirth and 78493 with termination of their first pregnancy ended in a live birth.

Cancers in Great Britain attributable to occupation for IARC group 1 and 2A carcinogens.

Results Cancer deaths attributable to occupation in 2005 are 5.3% (2023) (men: 8.2% (6366); women 2.3% (1657)). Attributable incidence estimates are 13694 (4.0%) cancer registrations (men: 10074 (5.7%); women 3620 (2.1%)). Occupational attributable fractions are over 2% for mesothelioma, sinonasal, lung, nasopharynx, breast, non-melanoma skin, bladder, oesophagus, soft tissue sarcoma and stomach cancers. Asbestos, shift work, mineral oils, solar radiation, silica, diesel engine exhaust, coal tars and pitches, occupation as a painter or welder, dioxins, environmental tobacco smoke, radon, tetracloroethylene, arsenic and strong inorganic mists each contribute 100+ registrations. Industries/occupations with over 200 cancer registrations include construction, women’s shift work, metal working, personal/household services, mining, land transport, printing/publishing, retail/hotels/restaurants, public administration/defence, farming and several manufacturing sectors.

Conclusions This study is the first detailed cancer burden study using all IARC 1 and 2A carcinogens and quantifying the contribution of individual industry sectors. Our methodology provides a basis for adaptation for use in other countries and global occupational burden estimation and for extension to include social and economic impact evaluation. The results highlight specific carcinogenic agents and the occupational circumstances and industrial areas where exposures to these agents occurs, facilitating prioritisation of risk reduction strategies.