and assays the effect of livestock vaccination rate on disease report in humans.

Methods Necessary information was achieved from concerned authorities. Data analysis was done by SPSS software version 16. Mapping was performed using ArcGIS version 9.3.

Results Brucellosis is reported more in the West and Northwest provinces, where their sheep and goat population density is higher than other parts of the country. The highest incidence of brucellosis was seen in 1991 with a rate 101.63 per one hundred thousand people. On average, each year about 27,500 new cases were reported in the country. Brucellosis incidence over the years showed a decreasing trend ($r = -0.79, P < 0.001$). Pearson correlation analysis showed that in different provinces there was a significant association between the annual incidence of Malta fever and the annual infection rate of sheep and goats ($r = 0.547, P < 0.001$), the annual incidence of Malta fever and the annual infection rate of cattle ($r = 0.527, P < 0.001$) and the annual incidence of Malta fever and the percentage of vaccinated cows ($r = 0.098, P = 0.031$).

Conclusion As the prevalence of brucellosis depends very closely with the prevalence of brucellosis in animals, the control of the disease in human population is not possible unless it is controlled in livestock; so the cooperation between different organizations (Veterinary, public health ...) is needed.

WHAT NEXT MEASLES CONTROL FOR KARNATAKA INDIA?

Introduction Worldwide, measles still kills 400 people every day, more than 90% of them being under-fives. Three out of four deaths happen in India. The objectives of my work are to describe the epidemiology of measles in Karnataka and to identify ways to improve measles control in the state.

Methodology I collated and tabulated weekly surveillance reports and outbreak investigation line lists for 4 years. I synthesised the spatio-temporal distribution of measles cases and outbreaks in the state. Through logistic regression multivariate analysis, specified the contextual demographic and socio-cultural determinants of measles outbreaks and vaccination coverage in the state of Karnataka.

Findings Measles surveillance data from 2006 to 2009 reveals that measles is indeed endemic in Karnataka, with frequent outbreaks. The notification rate of measles is 10.94 cases per 100,000 population per year. Seasonality of notified measles cases characteristics increases between November and April and decreases from May to October. There were 163 confirmed outbreaks in the state in the 4 years under study. Measles outbreaks were happening consistently in the northern part of the state and sporadically in the southern part. The duration of these outbreaks from the date of appearance of rash in a first case to last case was ranged from 7 days to 120 days with median of 39 days.

Discussion Significant reduction in measles incidence and outbreaks can be attained only by adding a second dose to the routine vaccination scheme in the whole state and by conducting catch-up campaigns in northern Karnataka.

IS AWARENESS OF DOTS AMONG MEDICAL PRACTITIONERS A WORRY? A DEVELOPING NATION SCENARIO

Background Annually two million people in India develop Tuberculosis and 330,000 die. WHO-recommended DOTS strategy was pilot-tested in 1993 and launched as Revised National Tuberculosis Control Programme (RNTCP) in 1997. Awareness of DOTS among the doctors in the private sector was appalling although nationwide coverage was attained by 2006.

Objective To study awareness of DOTS among Medical Practitioners of urban and rural Mysore.

Methodology 401 Medical practitioners in hospitals and nursing homes of urban and rural areas of Mysore who treated Tuberculosis patients (private and public sector) were approached. They were grouped under different specialties as per the year of graduation (before or after introduction of DOTS).

Results Thirty eight per cent doctors who graduated before the introduction of DOTS didn’t follow DOTS compared to 14.9% doctors who graduated later. 100% doctors working in Government sector felt that DOTS was better than daily regimen while 85% from the private sector felt so. Only 47.9% of the doctors in the private sector practiced DOTS compared to 95.1% in the Govt. Sector. Hence, the number of doctors practicing DOTS in Private Sector was <50% of that in the Govt. Sector. Both of these comparisons were found to be statistically highly significant ($P < 0.001$). Awareness of DOTS was alarmingly low among Orthopaedic Surgeons, Gynaecologists and Paediatricians when compared to Physicians and General Practitioners.