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ABSTRACT
Although rapid response capacity has been instituted in
many cities following recent catastrophic heatwave
events, the recognition that theoretically preventable
heat-related deaths may occur throughout the summer
has provoked much less response. This essay reviews
published estimates of the general summertime
temperatureemortality relationship characterised in
different settings around the world. A random-effects
meta-regression is applied to the estimates in relation to
a number of standardised city-level characteristics of
demography, economy and climate. Heat thresholds
were generally higher in communities closer to the
equator, suggesting some population adaptation. In
almost half of the locations, the risk of mortality
increased by between 1% and 3% per 18C change in high
temperature. Increasing population density, decreasing
city gross domestic product and increasing percentage
of people aged 65 or more were all independently
associated with an increase in the heat slope. Improved
care of older people, residential architecture and urban
planning measures to reduce high temperatures in
densely populated areas are likely to play a key role
alongside targeted heat-health warning systems in
reducing future heat burdens.

INTRODUCTION
Amplified by global warming, there is growing
resolve to limit the public health impacts of expo-
sure to hot weather. Recent catastrophic events
have brought the health risks of heatwaves into
public and media attention.1 2 However, given
recognition that even moderately warm tempera-
tures can be associated with adverse health impacts
and that theoretically preventable heat-related
deaths may occur throughout the summer, several
ecological studies have been conducted in recent
years to characterise the temperature-mortality
relationship apparent in populations during typical
summer months. Arguably there is now enough
evidence to characterise this general temperature-
mortality relationship observable in communities
in a variety of settings across the world.
The aetiological link between deaths on hot days

and heat exposure can be difficult to establish, and
deaths attributable to heat-related causes may
therefore be underestimated.3 Heat exposure can
exacerbate a range of other medical conditions and
so, other than heat-stroke and hyperthermia,
deaths from many other causes may also rise during
hot weather. Deaths from cardiovascular and
respiratory disease are commonly reported as the
underlying cause of death during heatwaves, and,

to avoid misclassification, epidemiological studies
assessing heat impacts often use all-cause mortality
as the outcome measure.
Epidemiological studies that estimate the heat-

mortality function observable at a community-level
commonly use routinely collected data and aim to
measure short-term (day-to-day) associations
between daily mortality counts and ambient
temperature levels after controlling for confounding
factors. In general, such studies are often inter-
ested in estimating two parameters as measures
of vulnerability of a population to heat: the heat
threshold indicates the value of temperature
above which heat effects may be observed in
some (the most sensitive) people in the popula-
tion, and the heat slope as a measure of effect
size. Figure 1 shows the typical relationship
observed between days of mortality and
summertime temperature in populations with
a temperate climate, in this case London, UK,4

with a well-defined value of temperature above
which mortality risk begins to rise (heat
threshold) and thereafter a smooth, often linear,
increase in risk with increasing temperature (heat
slope). Some extremely hot days (especially those
occurring during a heatwave) may be associated
with mortality greater than predicted by a linear
slope, but they will number very few.4

Both the threshold and slope are likely to vary
considerably across populations depending on
differing climatic, demographic and socioeconomic
profiles. For example, as well as individual risk
factors such as advanced age, contextual factors
such as social contact and the built environment
may also modify risk.5 Public health protection
measures are being increasingly employed to mini-
mise heat risk. Common among these are heat-
health warning systems, which trigger short-term
interventions in response to weather forecasts.6 7

Greater understanding of the specific determinants
that explain heterogeneity in heat risk will ensure
appropriate development of such targeted inter-
ventions and provide insight into future vulnera-
bility expected in a warmer world.
Among the factors likely to contribute to current

and future vulnerability is urbanisation. It is
recognised that the dangers of heat exposure are
likely to be amplified in heavily built-up areas due
to increased thermal storage capacity and night-
time radiation. Consequently, in an increasingly
urbanised world, it is expected that populations in
cities will carry the biggest burden from heat
stress.8 9

Using published estimates of population-level
vulnerability to ambient temperature, this essay
reviews the heatemortality relationship observed
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in cities throughout the world. The aim is to explain between-
city differences in risk in relation to a variety of climatic,
demographic and socioeconomic parameters measured for each
population.

METHODS
Search strategy and selection criteria
The following databases were searched in any language:
MEDLINE (1950-present) and EMBASE (1974-present). The
MeSH term ‘Weather ’ was used in combination with the MeSH
term ‘Mortality ’. Reference lists of all relevant studies were also
inspected to identify any further studies. Details of the search
strategy are provided in figure 2.

Only studies which applied time-series regression or case-
crossover methods of analysis were considered. Both designs are
currently deemed appropriate approaches to estimate short-term
heat effects, and provide comparable results.10 Studies included
were those that were conducted on multiple cities, that analysed
mortality on a daily resolution and provided an estimate of the
heat slope and threshold, or the heat slope observed during
summer months. In addition, single city studies providing the
same information were also retained if the study location was
not broadly represented by any of the multicity papers. On the
rare occasions where the same location appeared in more than
one multicity paper, the estimates were taken from the study
that analysed the longer mortality series. The few studies on
morbidity outcomes were not considered as impacts have been
observed to be inconsistent and generally not as large as with
mortality.11e15 Studies that analysed only defined periods of
exceptionally high temperature (‘heatwaves’), rather than
general summertime heat, were excluded as such episodes are
unique events and therefore not readily comparable.

For all retained studies, heat slopes and thresholds observed
for all-cause, all-ages mortality were extracted wherever possible.
In studies not restricted to summer months, heat thresholds
were most commonly estimated using goodness-of-fit of statis-
tical models, or otherwise were determined based on percentiles
or absolute values of the temperature distribution. It is impor-
tant to stress that estimates are from population-based studies,
and so do not provide information on individual risk. Wherever
possible, estimates were based on same-day temperature expo-
sure only (lag 0), which in most cases would be expected to
capture the majority of the heat impact.

Then, in order to explore heterogeneity of effects, a random-
effects meta-regression was applied to the heat slopes in relation
to a number of standardised city-level characteristics. These
were measures of climate, demography and economy, and were
derived from the following sources: World Climate,16 World
Gazetteer,17 World Health Statistics,18 The UN-HABITAT
Urban Indicators Database,19 World Health Organization
(WHO) ‘Healthy cities project’,20 European Foundation urban
indicators,21 City Mayors statistics,22 MERCER Consulting
quality of living survey,23 Economic Intelligence Unit’s Global
liveability rankings,24 and the 2008 SustainLane US city rank-
ings.25 For nine Californian counties identified in one study, city-
level information from representative cities was used, and for
the Netherlands effect estimate obtained from another study,
city-level information from Amsterdam was used. Meta-regres-
sion analysis was conducted in STATA 10.1.

RESULTS
Seven studies were identified that were multilocation and
provided estimates of heat slopes above a threshold (or above the
lowest temperature value within the summer months).26e33 Most
evidence to date is based on North American and European
populations (figure 3). In order to further extend geographical
coverage, single site studies from the following locations were also
included: Sydney, Australia34; Christchurch, New Zealand35;
Shanghai, China36; and Beirut, Lebanon.37 In total, heat slopes
from 64 locations in six continents were considered.
Heat slopes and thresholds were provided in terms of daily

mean or daily maximum temperature, or daily mean or daily
maximum apparent temperature, which is an index measure of
temperature and high humidity.38 Table 1 summarises the main
results from each study. Estimates from the Keatinge et al study
were based on all-cause mortality in age group 65e74 years
only.26

In general, higher heat thresholds (based on either mean or
maximum measures) were observed in populations with higher
summertime temperatures. This is also reflected in higher
thresholds occurring in populations closer to the equator - figure 4
shows the pattern of heat thresholds with latitude for studies
measuring mean temperature. Similar patterns were also
observed in the studies using any one of the other tempera-
ture measures.
In terms of heat slopes, published estimates ranged from no

evident heat effect in Dublin (Ireland), Dallas and Charlotte
(USA), and Busan (South Korea), to a 12.3% (95% CI 5.7 to 19.4)
increase in mortality per 18C increase in high temperature in
Beirut (Lebanon) and 18.8% (13.0 to 25.0) in Monterrey
(Mexico), with both cities having correspondingly high heat
thresholds. The heat slope in Seoul was considerably larger than
for the other cities in South Korea. In almost half of all locations
studied, heat slopes were estimated to be between 1% and 3%
per 18C change in temperature. It is noteworthy that even in
Helsinki and Stockholm, cities that experience relatively cool
summers, there was a clearly defined heat threshold and slope.
Heat slopes were appreciably lower in the US-based Zanobetti
et al and Basu et al studies. In part, this may be because these
estimates were based on temperatures observed throughout the
summer months (MayeSeptember) rather than above a heat
threshold. In both studies, however, the slope estimate remained
largely unchanged in sensitivity analyses limited to higher
temperatures.30 31

In meta-regression models, heat slopes were found to be
strongly related to heat thresholds, with larger effects occurring
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Figure 1 Relationship between daily mortality and summertime daily
mean temperature in London, 1976e2003.
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in populations with higher thresholds - p value for trend <0.001
in either studies quoting a mean or a maximum temperature
measure. Also related to the slope was the age distribution, with
an estimated 0.056% (95% CI 0.001 to 0.111) increase in risk for
each percentage increase in those aged 65 years or more in the
city. The age coefficient was larger when studies were restricted
to either one of the apparent temperature measures. In models
controlling for the age distribution, statistically significant

associations (p<0.001) were also observed between increasing
slope and decreasing healthcare (score out of 100), or increasing
slope and increasing population (defined as city population - not
urban agglomeration). Both of these associations, however, were
rendered non-significant when controlling also for population
density (per square kilometre). In the final model, increasing
population density, decreasing total gross domestic product
(GDP) of city (expressed in US dollars using purchasing power

Figure 2 Literature search strategy.

244 potentially relevant articles

860 articles rejected (based on title)

MeSH(Weather) AND MeSH(Mortality)
1104 articles identified

76 articles not relevant or not presenting original research (based on 
abstract)

58 articles on heat-wave events only

21 articles based on seasonality assessment rather than explicit
weather factors

7 articles based on monthly data resolution

28 articles with incompatible methods or presentation of results
54 articles

7 articles of multi-location studies 
presenting estimates of heat slopes and 

thresholds (or heat slopes within 
summer months)

11 articles presenting estimates of heat 
slopes and thresholds (or heat slopes 

within summer months)

4 articles of single-location studies in areas 
unrepresented by the multi-location studies

Figure 3 Study locations.
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parity exchange rates) and increasing percentage aged 65 or
more, were all independently associated with an increase in the
heat slope. Broadly similar patterns were observed when models
were restricted to studies using only mean temperature, or only
mean apparent temperature, or only maximum apparent
temperature.

DISCUSSION
Published studies indicate that in many populations ambient
heat affects mortality. Such effects occur in a range of
geographical settings and in countries of all levels of income. By
comparing estimates from studies using broadly similar
approaches, it was possible to highlight some important
commonalities and differences between the cities studied. For
example, heat-related mortality was observed in places already
accustomed to high temperatures such as New Delhi,33 as well
as in cities with cool summers where annual heat exposure may
not perceived to be a problem, such as Helsinki.32 The study by
Baccini et al also studied Dublin where no heat effect was
observed; this may reflect the fact that Dublin experiences
less variation in summertime temperature compared to
Helsinki, despite a higher summertime mean.32 Variation in
summertime temperature was, however, not found to be
a significant predictor of heat mortality across all cities in the
current study.
The present study suggests that an ageing population may

heighten future vulnerability to heat exposure. During hot
weather, older people may become dehydrated, hypernatraemic
and have a likelihood of renal failure, with resultant complica-
tions of the cardiovascular system.39 They are also more likely
to be on medication that may interfere with the normal
sweating process and other systems that regulate body
temperature. In addition, older people may be at increased risk
because they are more likely to live alone and have less social
contact.40e42

A previous case-crossover study of 50 US cities found larger
heat effects associated with higher population density.43 A
similar pattern was observed in the present study occurring on
a global scale. In part, this may reflect the higher temperatures
experienced in urbanised settings because of greater thermal-
storage capacity of heavily engineered environments, poorer
ventilation and localised heat sources, such as vehicles and air-Ta
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conditioning units.44 This process, known as the urban heat
island effect,45 may also contribute to greater heat stress by
raising night-time temperatures, which in turn limits relief from
exposure.46 High settlement density has previously been
reported to be correlated with higher temperatures and greater
thermal discomfort.47

Lower GDP of a city was associated with higher heat risk. This
may reflect technological protection measures such as access to
home air-conditioning. Although it was not possible to obtain
standardised city-level prevalence of air-conditioning, heat risks
were comparatively low or absent in cities from the USA, where
air-conditioning use is common. The exception to this was the
Curriero study, which analysed older data when home air-condi-
tioning may not have been as widespread.27 28 The same study did
report that the percentage of homes with air-conditioners was
a significantpredictor of theheat slope across their 11UScities,27 28

and otherUS studies have also reported the role of air-conditioning
in reducing heat risk.48 49 However, air-conditioning use may not
be an affordable solution inmanypoor countries and is itself highly
energy-intensive, thereby contributing to further greenhouse gas
emissions. Consequently, the role of air-conditioning as part of
public health protection strategies may be best focused on
communal areas such as publicly accessible cooling centres, rather
than in individual homes.

Higher heat thresholds were observed in populations experi-
encing higher summertime temperatures and also broadly in
those closer to the equator. The threshold values, therefore, are
a measure of tolerability of a population to its local climate, and
differences in thresholds worldwide are likely to reflect a host of
behavioural and cultural factors as well as long-term physio-
logical adaptation. Such differences suggest that populations can
adapt to changes in climate, and indeed there is epidemiological
evidence from some populations that heat impacts have reduced
over time, most likely due to benefits of increased societal
prosperity such as improvements in healthcare and housing.50 51

However, the rapidity of climate change expected in the coming
decades under most scenarios of global warming makes future
acclimatisation uncertain. In high-income settings, future
vulnerability may also be heightened by a move towards more
people living on their own in later life. Limited social contact
was a key risk factor for mortality identified during the
heatwave episodes of Chicago 1995 and Paris 2003.52 53 In some
low-income settings, urbanisation is increasing at a rapid pace
and may escalate the problem of heat stress common in most
cities. Furthermore, as much of the urbanisation may take the
form of informal settlements and slums with accompanying
problems of sanitation,33 heat-related infectious diseases may
also rise. In such situations, where heat-related mortality is not
mainly restricted to exacerbation of chronic diseases in older
people as in high income-settings, far fewer of the deaths are
likely to be explained by a simple forward displacement
(‘harvesting’) of deaths in already vulnerable individuals.54

Consequently, in terms of length of life being shortened, the
largest heat burden may fall on the poorest populations, who
also have the least economic capacity to adapt.

Some differences in risk across the 64 locations may also be
explained by differences in the study periods analysed and
slight variations in the outcome and exposure series used.
Estimates were based on all-cause all-ages mortality in all cases
except the two locations from the Keatinge et al study, which
were based on ages 65e74 years only.26 In high-income settings,
the majority of heat-related deaths are likely to be classified
with an underlying cause of cardiovascular or respiratory
disease.55 56 In the present essay, three of the studies made no

mention of excluding deaths from external causes. Although
there is some evidence that such deaths are sensitive to hot
weather,57 they make up only a small percentage of the total
mortality profile of a high-income country and so their inclu-
sion is unlikely to impact on estimates greatly. Temperature
levels observed on the same day as the day of death were
available as the main exposure of interest in all studies except
three, where an average of the same day and day before (lag
0e1 days),33 or lags 0e2 days,36 or 0e3 days was used.32 All
studies demonstrated heat impacts that were mostly imme-
diate; however, as estimates did not consider possible
harvesting of heat deaths (reflected in negative risk at longer
lags), the net heat effect is likely to be overestimated in most
cases.32 Also, it is important to note that, although cities with
heat thresholds at the very high end of their temperature
distribution were generally associated with the largest relative
risks, they may not necessarily carry the biggest burden
attributable to heat as days of such high temperatures will be
rare. For example, the largest heat effect was estimated in
Monterrey (Mexico) above a threshold of 318C mean temper-
ature, but on average less than 5% of all days within the year
exceed such a value.33

In general, all selected studies used a similar modelling
approach and similar levels of confounder control, with only
slight variations in terms of model specifications. All studies
considered a temperatureehumidity index as the exposure of
interest, or otherwise explicitly controlled for relative humidity
when estimating temperature effects. Unit increases in risk are
also unlikely to be substantially dependent on whether a mean
or maximum temperature measure was considered.30 Patterns of
mortality predictors remained largely the same when regression
models were restricted to studies measuring only mean
temperature, or only mean apparent temperature, or only
maximum apparent temperature. Most studies controlled for air
pollution; often this included consideration of particulate
pollution,30 31 33e36 or otherwise nitrogen dioxide.32 The Basu
et al US-based study reported that heat effects were not
confounded or modified by air pollution exposure30; Zanobetti
et al did observe some confounding of the heat effect by ozone,
but no effect-modification by ozone or fine particulates.31 This
topic has received much interest in recent years and several
studies in various settings, including the USA, have reported
synergistic effects between high temperatures and partic-
ulates,58e61 ozone62 and sulphur dioxide.34 It has been argued
that any effect-modification may be attributable to seasonal
variations in population exposure to pollutants rather than to
increased toxicity.63

Although the studies reviewed here provide evidence that
heat-related mortality is a regular summertime occurrence,
many of these deaths are theoretically preventable and in recent
years specific interventions to warn and protect the public from
the dangers of hot weather have become more common.
Following major heatwave events,1 2 64 many cities in North
America and Europe now have heat-plans, including the use of
heat-health warning systems (HHWS), where short-term inter-
vention measures are initiated in response to forecasts of hot
weather. The most widespread forms of HHWS utilise
a synoptic approach, whereby risk is based on a number of
weather parameters as they commonly appear within air
masses.65 The epidemiological evidence is now building to
identify those most at risk during high temperatures.66e70 To
date, however, there has been little evaluation of the effective-
ness of HHWS and public responses,71e74 but it is likely that
they will become more commonplace as similar systems are in
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development across cities in Australia and Asia. Many of these
systems are only designed to be triggered during days of extreme
heat so they do not address temperatures at other periods of the
summer, which, although more moderate, occur more often and
so are responsible for a larger fraction of heat-attributable
deaths.4 So in the longer term, it is expected that other forms of
interventions will also be necessary in order to reduce the overall
summertime burden. General improvements in health and social
care of older people in the community may contribute to this.
Also needed are more energy-efficient buildings and greater
consideration of cooling strategies by city-planners, which
minimise the heat island of a city; for example, increased allo-
cation of green spaces and water bodies to cool the built envi-
ronment, and restrictions on personal transport usage to help
reduce anthropogenic heat sources. These may all help to reduce
future death tolls attributable to heat, as well as possible health
cobenefits arising from reduced air pollution and greenhouse gas
emissions, and less reliance on the motor car.

In conclusion, populations from many cities around the world
already experience a considerable burden from heat-related
mortality and may become more vulnerable in future due to
climate change, urbanisation and population ageing. Measures
designed to minimise heat islands in cities, to keep building
interiors cool and to improve the general care of older people, are
likely to play a key role alongside HHWS in reducing future
impacts.
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