Milk consumption, stroke, and heart attack risk: evidence from the Caerphilly cohort of older men

P C Elwood, J J Strain, Paula J Robson, Ann M Fehily, Janie Hughes, Janet Pickering, Andy Ness

Objective: To examine associations between milk consumption and incident heart disease and stroke.

Design: A representative population sample of men was asked to weigh and record their food intake for seven days. The total consumption of milk was obtained from these records. Details of all deaths and vascular events were collected during the following 20 years. Incident ischaemic strokes and heart disease events were diagnosed by standard criteria.

Participants: A representative 3:10 subsample of the men in the cohort.

Main results: 665 men (87% of those approached) returned satisfactory seven day diet diaries. Adjusted odds ratios (95% confidence intervals) for an event were: 0.50 (0.25 to 0.97) for an ischaemic stroke and 0.58 (0.36 to 0.94) for a myocardial infarction, relative to those with lower intakes of milk. In the subgroup of 665 men whose milk consumption was the median or higher, the relative odds of an event were 0.52 (0.27 to 0.99) for an ischaemic stroke and 0.88 (0.56 to 1.40) for a myocardial infarction.

Conclusions: These results give no convincing evidence of an increased risk of vascular disease from milk drinking. Rather, the subjects who drank more than the median amount of milk had a reduced risk of an ischaemic stroke, and possibly a reduced risk of an ischaemic heart disease event. These conclusions are in agreement with the results of a previously reported overview of 10 large, long term cohort studies based on food frequency intake records.

METHODS

The Caerphilly cohort study was set up in 1979–83. It was based on 2512 men aged 45–59 years. A random sample of 764 men was drawn from the total population sample at baseline. These men were given large capacity spring balance weighing scales with 1 g divisions. Each man and his partner was given detailed instructions on how to weigh and record every separate food and drink item the man consumed. Food items eaten away from the home were recorded and weights estimated. After a short practice run, a record was then kept for the following seven consecutive days and during this time each man was closely supervised.

Food items were coded according to McCance and Widdowson food tables. Additional information on the composition of novel foods was sought from food manufacturers. All food codes and general coding was checked by a second nutritionist. Full details of the complete methodology have been given elsewhere.

From these records the total amount of milk consumed was estimated, being the sum of the milk taken in tea and toast, milk drinks, and with breakfast cereals, together with the amount of milk in recipes such as custards and milk puddings. Any dried milk recorded was converted to an appropriate volume of liquid milk. From the total milk consumed during the seven days a daily average was obtained.

Each man also completed a semi-quantitative food frequency questionnaire with help from his partner, at baseline, and again five years and 10 years after baseline. These asked about the volume of milk consumed (less than 0.5 pints, 0.5 to 1 pint, and greater than one pint per day). The total amounts of milk recorded in the weighed intakes were converted into these same volumes, and the agreement between the questionnaires and the weighed records checked. Agreement was high, and even 10 years after baseline overall half the men were
still in the same volume subgroup, and only 4% had changed their intake by two groups.

Evidence on prevalent vascular disease was collected at baseline by questionnaire together with a 12-lead ECG and all men with evidence of a prior stroke or myocardial infarct have been excluded from the analyses that follow.

The men have all been followed up for 19–23 years since baseline. Subsequently, at five year intervals they were seen in special clinics, questioned about symptoms and illnesses suggestive of a possible stroke or heart attack, and an ECG recorded. Hospital and general practitioner notes were inspected and relevant clinical details extracted. A diagnosis of ischaemic stroke (ICD I63–4 in ICD 10th revision) was made by two expert clinicians, using all the clinical details, including computed tomography, which was available for about half the stroke events.13 The term heart attack (ICD I21–5) includes deaths certified as attributable to ischaemic heart disease together with non-fatal myocardial infarction.14 Incident vascular events between baseline and 2001 inclusive have been included in the analyses that follow.

Data on factors that might confound the relations of interest were collected, including social class (based upon the most recent occupation of each man and grouped into non-manual and manual), current cigarette consumption (grouped at three levels: never smoked, former smokers, and current smokers), and usual alcohol consumption (grouped into none, below, and above the mean intake of 20.1 g/day). Height measured on a stadiometer and weight measured on a beam balance were used to derive body mass index (BMI = kg/m²). Blood pressure was measured at room temperature after a prolonged rest, using a random zero sphygmomanometer. Samples of fasting blood were taken for estimation of a wide range of lipid, haemostatic, and other factors of relevance to vascular disease.
representative subsample of these men. Again, the response rate was high (87%) and follow up was virtually complete.

The 665 men in this subsample kept a weighed food intake record for seven days and these show that the men with the greater consumption of milk experienced a reduction in the risk of ischaemic stroke and a possible reduction in ischaemic heart disease risk.

These results are closely similar both to the results we found for 2403 men in the full Caerphilly cohort who had completed food frequency questionnaires at baseline, and for 2403 men in the full Caerphilly cohort who had completed heart disease risk.

risk of ischaemic stroke and a possible reduction in ischaemic

greater consumption of milk experienced a reduction in the

record for seven days and these show that the men with the

rate was high (87%) and follow up was virtually complete.

Explanations of these results other than a beneficial effect of milk would seem to be unlikely. Residual confounding is always a possibility in a cohort study, but adjustments have been made in this study, and in each of the published studies for a wide range of factors. It would certainly seem unlikely that confounding, or bias, could have turned a harmful association with milk drinking into the observed protective effect. Furthermore, had there been residual confounding of the relations with the disease events in this cohort, because vascular deaths constitute more than half the total deaths in a community you would reasonably expect a difference in total deaths, similar in direction to those for vascular disease. This is not shown, the relative odds for all cause deaths in the two groups being almost identical (table 4).

It seems to be widely believed however that milk consumption increases the risk of vascular disease, and should therefore be limited. This belief seems to be founded

Number of men	333	332	0.40
Age at baseline (y)	52.1 (4.5)	51.8 (4.3)	0.09
Manual workers	7.4%	5.9%	0.001
Current smokers	55%	54%	0.13
Alcohol intake (g/day)	132 (32–273)	50 (0–149)	0.001
BMI (kg/m²)	26.4 (3.7)	25.7 (3.2)	0.01
Energy intake (kJ/day)	9.7 (2.6)	10.4 (2.23)	0.001
Fat intake (g/day)	97 (28.4)	101 (25.6)	0.001
Systolic BP (mm Hg)	142.3 (20.0)	139.4 (18.2)	0.05
Serum total Cholesterol (mM/l)	6.16 (1.22)	6.22 (1.16)	0.53
Triglycerides (mM/l)	1.96 (1.54)	1.66 (1.03)	0.001
HDL-cholesterol (mM/l)	1.39 (0.43)	1.83 (0.35)	0.07

The data shown are percentages, or means and SDs as appropriate. Missing values as follows: smoking, four men; occupation (social class) 14 men; serum total cholesterol 38 men; triglycerides 47 men; homocysteine 156 men. These were equally divided between the two subgroups of the men and for no other variable were there missing values. 51 – 2 3

Estimates derived from fasting blood samples.

The median intake of all milk and from all sources was 195 cc per day.

This is not shown, the relative odds for all cause deaths in the two subgroups of the men and for no other variable were there missing values. 51 – 2 3

Estimates derived from fasting blood samples.

The median intake of all milk and from all sources was 195 cc per day.

This is not shown, the relative odds for all cause deaths in the two subgroups of the men and for no other variable were there missing values. 51 – 2 3

Estimates derived from fasting blood samples.

The median intake of all milk and from all sources was 195 cc per day.
upon the fact that many cross sectional studies have shown that milk intake is positively related to blood cholesterol levels and an increase in milk consumption is followed by an increase in cholesterol level. An important difficulty in assessing the importance of this relation is the fact that milk consumption is at the same time negatively related to blood pressure, an equally important risk factor for heart disease, and a much greater factor in ischaemic stroke risk. For example, in the Puerto Rico cohort study the men who drank the most milk had half the prevalence of hypertension compared with those who drank no milk.27 A second source of evidence suggesting harm from milk is ecological, and a number of studies have shown positive correlations between milk production in selected countries and heart disease mortality.2,4,5 An important difficulty in interpreting conclusions based on such data is an absence, and usually a complete absence, of adjustments for the effects of confounding factors.

Randomised, controlled, intervention trials would undoubtedly give the best evidence on the relation between a factor, dietary or other, and the risk of a disease. Such a study would however be virtually impossible in the case of milk. To have reasonable power to detect either a 10\% increase, or a 10\% reduction in heart disease events, a clinical trial would have to include more than 20 000 subjects, and these would have to agree to either (at random) avoid all milk for perhaps five years, or consume reasonably large amounts of milk for the same period. No such study is likely to be acceptable.

Policy implications

The present perception of milk as harmful, in increasing cardiovascular risk, should be challenged and every effort should be made to restore it to its rightful place in a healthy diet.

CONCLUSIONS

In the absence of evidence from intervention trials, the best available evidence on milk consumption and vascular disease risk comes from prospective, cohort studies. One such study is described in which milk consumption, estimated from seven day weighed intake records, shows a negative association with ischaemic stroke in the men with the greatest milk consumption, and, possibly, with heart disease.

ACKNOWLEDGEMENTS

The Caerphilly study was conducted by the former MRC Epidemiology Unit (South Wales) and was funded by the Medical Research Council of the United Kingdom. The archive is now maintained by the Department of Social Medicine in the University of Bristol, UK.

REFERENCES

Authors’ affiliations

P C Elwood, Visiting Professor, University of Ulster, Coleraine, Northern Ireland
J J Strain, P J Robson, Northern Ireland Centre for Food and Health (NICHE), University of Ulster
A M Fehily, Consultant Nutritionist
J Hughes, J Pickering, University of Wales College of Medicine, Cardiff, UK
A Ness, University of Bristol, Bristol, UK

Funding: The Medical Research Council UK and the University of Ulster UK. Janet Pickering and Janie Hughes are supported by the UK Food Standards Agency.

Conflicts of interest: none declared.