Environmental risks in the developing world: exposure indicators for evaluating interventions, programmes, and policies

Majid Ezzati, Jürg Utzinger, Sandy Cairncross, Aaron J Cohen, Burton H Singer

Reducing environmental health risks in the developing world form an integral part of the overall efforts for improving global health. As a result, there is growing interest in measuring and monitoring population exposure to major environmental risks and assessment of their health effects, because focusing on risk factors is key for disease prevention. Most monitoring efforts in developing countries have used, and will probably continue to use because of cost, aggregate level data sources such as sample surveys of large populations at the national or sub-national level (for example, demographic and health surveys, DHS). The environmental components of these surveys however have generally been based on “survey convenience” and disconnected from micro-scale studies in environmental health sciences. Consequently, routine population surveys currently provide limited information on details of exposure to environmental risks, which is determined by multiple technological, environmental, and behavioural factors. Epidemiological studies of environmental health, on the other hand, have generally focused on single variable physical and biological measures of risk, and have insufficiently investigated the behavioural and socioeconomic factors that influence exposure to environmental risks.

Reliable and consistent analyses of exposure to environmental risks, and their technological and behavioural determinants, are key for designing interventions, especially in resource poor settings. Furthermore, successful implementation of programmes to disseminate technologies requires examining their socioeconomic dimensions such as technology access, infrastructure, and user behaviour. In this paper we describe a basic framework for selection of indicators for environmental health risks, which is based on the interactions of the technological, environmental, socioeconomic, and behavioural determinants of risk, using examples from important environmental risks in the developing world. We argue that selected in-depth studies should empirically estimate the contributions of technological, environmental, and behavioural determinants to exposure and to health outcomes. Routine monitoring activities, such as household surveys, can then collect data on more distal indicators selected and quantified based on such in-depth studies at considerably lower cost and effort.

A BASIC FRAMEWORK FOR EXPOSURE TO ENVIRONMENTAL RISKS

Figure 1 depicts a generic version of a multi-layer “causal web” that includes a continuum of distal (for example, socioeconomic and demographic), proximal (for example, technological, environmental, or behavioural), and physiological and pathophysiological causes of disease. For example, income and education, irrigation and waste disposal infrastructure, access to clean water and improved sanitation, hygiene behaviour, nutritional status, and the presence of specific pathogens in drinking water or food may all be underlying risk factors for diarrhoeal diseases. Similarly, automotive technology and transportation infrastructure, the presence and concentration of lead in petroleum, lead emissions, and blood or bone lead levels are all risk factors for lead induced cognitive effects.

In many common applications, indicators for which data are available have been used as proxies for “environmental factors” defined broadly (see table 1 in Ezzati et al). At the same time, as schematically shown in figure 1, a central feature of environmental risks is that exposure itself is determined by multiple technological, environmental, and behavioural factors. As we describe below, measuring and...
monitoring these multiple factors provides a number of benefits for interventions and public health programmes. Therefore, in addition to describing a basic framework for environmental exposure monitoring, this paper contributes to the literature on health indicators by extending the broad concept of “environment” to include multiple dimensions, all with social and policy determinants and measurable health outcomes.†

GOALS OF ENVIRONMENTAL RISK INDICATORS

Public health researchers and practitioners would have at least three important purposes for using indicators of exposure to environmental risks:

(1) **Assessment and quantification of population health effects**

The health effect quantification ability has often been phrased as indicator “validity”.16 17 Few indicators can however be dichotomously classified as “valid” or “invalid”. Rather, indicators that are more distant from the health outcome may not fully characterise the distributions of exposure and hazard in the population by themselves, because exposure results from the interactions of multiple factors (fig 1), which exhibit heterogeneity within and between populations.18 Therefore, the ability of an indicator to predict health effects (that is, its “validity”) improves with increasing proximity to a health outcome. The actual measurements of exposure/dose of a pollutant (or mixture of pollutants) and their biological markers (for example, blood or bone lead levels) become the preferable indicator for quantifying disease consequences.

(2) **Design and evaluation of interventions**

In addition to estimating the efficacy and/or community effectiveness of an existing intervention, characterising the determinants of exposure can assist in designing new interventions. This purpose is arguably more important in the context of developing world environmental health challenges, where the number of efficacious or cost effective interventions may be limited. For example, emissions from open biomass stoves fluctuate over short time intervals, with emission peaks occurring when fuel is added or moved, and the stove is lit, the cooking pot is placed on or removed from the fire, or food is stirred19 20 (fig 2A). Because household members who cook—typically women—are closest to the stove at such times, peak emissions contribute significantly to the exposure of female household members (fig 2B).20 With such exposure patterns, people who cook gain disproportionately small benefits from improved housing ventilation compared with those who are further away from the stove.22 23 Interventions using cleaner fuels or stoves that reduce peak emissions, on the other hand, would provide comparably larger benefits to female household members.23 In contrast with direct inhalation during cooking described above, bioaccumulation of trace elements (for example arsenic and fluorine) in food dried and stored over the stove for long durations is an important route of exposure to these pollutants in parts of China (figs 3A and 3B).23 In this case, alternative food drying techniques and behavioural change (for example, washing food before consumption) can reduce exposure and associated health effects, like arsenic poisoning and dental or skeletal fluorosis.

Similarly, malaria transmission can be reduced or interrupted by eliminating mosquito breeding sites that are in close proximity to human habitations,23 by locating human settlements at an appropriate distance from the main transmission foci (fig 4A),26 or changes in housing designs (for example, mosquito proofing by means of house screening, closure of eaves in houses, and installations of ceilings) (fig 4B).27 28

(3) **Appraisal and quantification of inequalities in exposures and health effects**

The poor or marginalised groups in most societies simultaneously have higher exposure to multiple environmental risk factors and are also more susceptible to the their hazards.14 20 28 Concentrations of various pollutants in ambient air or distribution of blood lead level in relation to different neighbourhoods and social groups (based on factors like income and race) are examples of indicators that are better representation of the equity aspects than aggregate use
MULTIPLE INDICATORS FOR EXPOSURE TO ENVIRONMENTAL HEALTH RISKS

While the validity of exposure indicators as predictors of hazards often improves with increasing proximity to health outcomes (for example, blood lead level as an indicator of damage to cognitive function; goal 1 above), physiological indicators alone do not permit measuring the contributions of more distal factors to exposure. This would in turn hamper the design of new and potentially more effective interventions, which may be based on factors such as technology and behaviour (goal 2 above). The multiplicity of analytical and policy/programmatic goals described above should therefore motivate careful selection of environmental health indicators that relate environmental monitoring to exposure biomarkers on the one hand (for health effect assessment), and to technology and behaviour on the other (for designing interventions).

In the following sections we provide a summary of exposure mechanisms for several environmental risk factors that are of particular relevance in the developing world. Table 1 provides examples of indicators. The current availability of studies on multiple exposure determinants varies, being most abundant for water and sanitation, possibly due to the longer history of research on this topic. For each risk factor, references to studies that present the relevant research are also provided.

We divide the indicators into four categories: (a) access and infrastructure, (b) technology, (c) behaviour, and (d) agents and vectors. This classification provides an approximate mapping to various forms of programmes and policies. Access and infrastructure indicators permit assessing the feasibility and cost for increased coverage of technological interventions, which rely on delivery infrastructure. Access and infrastructure indicators would also illustrate whether the inequalities in exposure are a result of lack of resources at the level of households and individuals, or whether they are caused by absence of broader infrastructure, often not modifiable by household level decisions, and hence requiring public policy action (figs 5A and 5B). If technology availability is the main determinant of risk exposure, policies that encourage research and development of more effective or less costly technologies are needed. Including behaviour as a category of indicators acknowledges the critical interface between technology and behaviour in determining not only whether a technological intervention is used but also how it is used. Both factors have important implications for the effectiveness of a technology in reducing exposure, and show the role of behavioural interventions. Finally, agents and vectors are not directly modifiable by policies, but are important indicators of hazard, and of success of technological and behavioural interventions. Data on agents and vectors cannot generally be collected in large scale surveys. Data on agents and vectors in selected studies nevertheless facilitate quantifying the role of other exposure indicators.

Multiple indicator categories also assist in identifying “primary” and “secondary” exposure determinants and interventions, with the former affecting several exposure routes simultaneously. For example, in the case of indoor air pollution, the relevance of better ventilated houses (secondary) is determined by the presence or absence of clean fuels (primary). In the case of water and sanitation, safe excreta disposal and hand washing with soap can interrupt several routes of oral-faecal transmission. For malaria, effective control through environmental management reduces the pressure on other interventions such as insecticide treated nets or antimalarial drugs. Where primary exposure routes have been investigated, data needs on secondary exposure routes may be reduced.

Water, sanitation, and hygiene

The water-borne and water-washed distinction of White et al and subsequent analyses have shown that while disease may be transmitted by drinking water containing pathogens, faecal-oral disease transmission may also be reduced or interrupted with increased access to water coupled with domestic hygiene. Quantity of water used, especially at low current consumption levels, depends on water source, the distance of the water source from the household (with a non-linear relation), and hygiene behaviour. Poor or absent sanitation may increase faecal-oral transmission by contaminating water sources (that is, increasing water-borne transmission), contaminating hands or food (water-scarce diseases), or increasing potential transmission by flies. The impact of excreta disposal is likely to be greatest in crowded urban and peri-urban areas where it prevents faecal contamination of residential environments.

Indoor air pollution from solid fuels

Hundreds of harmful substances are emitted during the burning of biomass or coal in the form of gases, liquids (suspended droplets), or solids (suspended particulates), in particularly large quantities when burned in open or poorly ventilated stoves. These pollutants include carbon monoxide,
nitrogen dioxide, particles in the inhalable range (<10 μm in aerodynamic diameter), and other organic matter (predominantly composed of polycyclic aromatic hydrocarbons and other volatile organic compounds such as benzene and formaldehyde).\(^{44-46}\) Combustion of coal in addition to the above pollutants may release oxides of sulphur, arsenic, and fluoride.\(^{23}\) The concentrations of different pollutants at locations inside the house depend on energy technology (stove and fuel combination), house design (for example, the size and construction materials of the house, the arrangement of rooms, and the number of windows),\(^ {20\ 22}\) and stove use behaviour (for example, whether fuel is dried before combustion). In additional to pollution levels, exposure depends on time activity budgets of individual household members (for example, time spent inside or near the stove and direct participation in cooking tasks).\(^{20\ 22}\) Whether energy is used for cooking or heating is also an important determinant of exposure.

Cooking is often done in shorter time intervals and possibly in confined areas, with a subset of household members consistently close to the source of pollution. In contrast, heating by definition entails longer hours of energy use for a larger area, and comparatively similar distance to the energy source for most household members.
Table 1 Examples of indicators in each of the four categories of access and infrastructure, technology, behaviour, and agents and vectors for selected environmental risk factors that are of particular relevance in developing countries

<table>
<thead>
<tr>
<th>Global health effects in 2000*</th>
<th>Access and infrastructure</th>
<th>Technology</th>
<th>Behaviour</th>
<th>Agents and vectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water, sanitation, and hygiene</td>
<td>Mortality: 1.7 M</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HMD: -1.9 M</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LMD: 100000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRD: 3.7%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indoor air pollution from household energy use</td>
<td>Mortality: 1.6 M</td>
<td>Energy infrastructure including distance to electrical grid, and vendors for provision of various fuels and stoves; regional ecology including available sources of biomass</td>
<td>Household energy technologies including fuel type(s) and stove type(s); including multi-fuel and multi-stove use; housing characteristics including the location of cooking, number and size of rooms, the relation between stove location and other rooms, number and size of doors and windows, and house construction material</td>
<td>Indoor concentration of one or multiple indicator pollutants such as respirable particles, carbon monoxide and poly-aromatic hydrocarbons (PAH); fuel chemical composition especially for specific pollutants such as arsenic and fluorine in coal; pollutant specific biomarkers</td>
</tr>
<tr>
<td>HMD: -1.0 M</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LMD: 560000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRD: 2.6%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban ambient air pollution</td>
<td>Mortality: 0.8 M</td>
<td>Regional energy, transportation, and industrial infrastructure; urban residential, commercial, and industrial design layouts; road networks; population density; meteorological and topographical variables (for example, wind)</td>
<td>Industrial, residential, and transportation energy consumption, fuel types, combustion technology, and pollution control technologies; building design and ventilation</td>
<td>Ambient concentration and physical/chemical characteristics of indicator pollutants (for example, particle concentration, particle size distribution and chemical composition) in multiple urban sites</td>
</tr>
<tr>
<td>HMD: 220000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LMD: 425000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRD: 0.4%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malaria</td>
<td>Mortality: 1.1 M</td>
<td>Climate suitability (mainly driven by temperature and precipitation); nature and capacity of local vector species; vegetation and land cover; distance to standing bodies of freshwater suitable for mosquito; population density; community housing infrastructure and available materials for house mosquito proofing; distribution and availability of bed nets and insecticides for re-impregnation</td>
<td>Irrigation technologies; mosquito proofing of houses, including screens and windows; population density; community housing infrastructure and available materials for house mosquito proofing; distribution and availability of bed nets and insecticides for re-impregnation</td>
<td>Entomological inoculation rate (number of infectious bites per person per time unit in a population area above a certain threshold (for example, >5000 parasites/µl of blood)</td>
</tr>
<tr>
<td>HMD: 100000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LMD: 28000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRD: 0.2%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*Health effects include mortality and burden of diseases as % of total global burden of disease (GBD), measured in disability adjusted life years (DALYs). Health effects are shown for high mortality developing countries (HMD), lower mortality developing countries (LMD), and industrialised countries (GRD) (source Ezzati et al and World Health Organisation). Because access to technology is a key determinant of its use and applies to all the technological indicators considered, we use “access” to specifically refer to basic infrastructure and geo-ecological characteristics that would allow households and individuals to choose a technology, if compatible with household means and preferences. For example, meteorological characteristics (for example, temperature and number of sunny/cloudy days) and energy infrastructure (for example, fuel markets and distance to the power grid) are important determinants of using various energy technologies above and beyond household income. Access and infrastructure can at times indicate simultaneous exposure to multiple risks, driven by the same underlying population level determinants. For example, living in urban slums in many developing countries can be an indicator for exposure to poor water and sanitation, indoor and outdoor air pollution, and malaria. Such population level indicators can therefore not only provide information on exposure to a risk, but also vulnerability to its hazards because of simultaneous exposure to other factors. For many diseases affected by the environmental health risks and factors considered, an additional aspect of behaviour includes health seeking behaviour and case management that may be effective interventions for reducing long term morbidity or mortality. The behavioural indicators in the table are associated with prevention of disease through exposure reduction. Health effects measured by ambient particle concentration that is, excluding lead and ozone.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
because of the location of residential neighbourhoods and different indoor and outdoor urban microenvironments, locations, type and structure of indoor environments, and (3) vehicles as a result of ambient pollution depend on the characteristics, (2) indoor concentrations in buildings and examples, wind direction and speed), and urban physical factors. Examples are provided from a number of key disciplines in the physical, social, and health sciences. Such integration of data gathering and analysis is permitted both better quantification of health effects of risk factors, and design of more effective interventions. Such integration of data gathering and analysis is possible but requires participation from different disciplines in the physical, social, and health sciences.

Vector borne diseases (for example, malaria)

Malaria transmission exhibits considerable spatial and temporal heterogeneity, largely driven by the specific local ecological and environmental characteristics. The single most common feature for disease transmission across endemic settings is the presence and extent of freshwater bodies, and sometimes brackish water sources. The aquatic habitats used by mosquitoes for laying eggs are also highly species specific, which implies that only those sites that support breeding by key malaria vectors need to be controlled. In addition to controlling mosquito breeding sites, malaria risk can be lowered significantly by reducing the contact between humans and mosquitoes. High efficacy can be achieved by the design and implementation of protective housing (for example, mosquito proofing by house screening), and personal protection (for example, sleeping under insecticide treated nets).

DISCUSSION

Above and beyond estimating total health effects, reliable and consistent analyses of exposure to environmental risks are essential for designing technologies and programmes to improve health conditions especially in resource poor settings. Successful implementation of such programmes further requires examining the technological and environmental determinants of exposure in relation to factors such as access, infrastructure, and behaviour. We have presented a basic framework that distinguishes environmental risk factors and their determinants in multiple layers—distal (for example, socioeconomic, proximal (for example, technological, environmental, and behavioural), and physiological (for example, biomarkers)—while representing them as a linked network of cause and effect. To investigate the multiple public health goals of monitoring, selected in-depth studies should empirically estimate the contributions of technological, environmental, and behavioural determinants to exposure and to health outcomes. While an ambitious goal, such in-depth studies can be implemented at comparatively low cost by adding more detailed environmental, technological, and socioeconomic variables to longitudinal cohort studies (which have detailed measured data on health outcomes and physiological risks) or by increasing the number of measured health, physiological, and environmental variables in demographic surveillance sites (which collect detailed data on demographic, socioeconomic, and some technological and environmental variables). Routine monitoring activities such as household surveys can then collect data on selected technological, environmental, and behavioural indicators at considerably lower cost and effort.

An additional aspect of environmental health risks is the crucial role of social and political institutions in risk exposure and the design and implementation of specific intervention...
programmes and policies.7 56–58 These institutions lie in a range of scales from households (for example, which household members control household income that could be used for the purchase of fuel and stoves) and community (for example, community water and sanitation committees, systemic racism and class bias in land use decisions and housing market dynamics), to regional or national (for example, environmental regulatory agencies), and even trans-national (project funding by multi-lateral aid agencies, investment in technology research and development).

A challenge in designing research on complex systems, such as technology-health-environment-health linkages, has been integrating data collection and analysis of multiple variables that have traditionally been used in multiple science and social science disciplines. For this reason, many epidemiological studies have focused on single, at times opportunistic, indicators for exposure such as source of water or energy. Our understanding of environmental health hazards and interventions has advanced greatly as a result of such studies. At the same time, continuing to use such indicators alone, especially without linking them to a broader range of socioeconomic and behavioural factors that determine their exact form and hazards would limit the design and implementation of intervention technologies, and of programmes to deliver them. The classification of exposure indicators into assets and infrastructural technology, behaviour, and agents and vectors provides an initial step for such an integrated approach, directed towards the design of more effective interventions.

Currently, multiple national, international, and bilateral efforts in monitoring environmental health risks are underway including the living standard measurement survey (LSMS) of the World Bank, the multi-indicator cluster surveys (MICS) of UNICEF, and the demographic and health surveys (DHS) conducted by Macro International. Given the enormous potential uses of such information as evidence base for policies, programmes, and interventions, we suggest coupling such surveys with longitudinal cohort studies or demographic surveillance sites, and coordinating efforts in detailed selection of specific indicators and data collection.

ACKNOWLEDGEMENTS

The paper has benefited from comments by three anonymous reviewers. We thank S Lindsay for an electronic copy of figure 4B.

REFERENCES

J Epidemiol Community Health: first published as on 14 December 2004. Downloaded from http://jech.bmj.com/ on May 11, 2022 by guest. Protected by copyright.
Declining prevalence of STI in the London sex industry, 1985 to 2002

H Ward, S Day, A Green, K Cooper, J Weber

Objectives: To describe major changes in the London sex industry between 1985 and 2002 and assess the implications for sexually transmitted infection (STI) risk.

Method: A descriptive study comparing women who first attended a sex work clinic between 1996 and 2002 and those first attending from 1985 to 1992; a nested case-control study. 1050 female sex workers took part. The setting was a specialist clinical service for sex workers based in a London genitourinary medicine (GUM) clinic, and fieldwork in west London. The main outcome measures were reported condom use and prevalent STI.

Results: Over the period of the study there was a significant increase in the proportion of sex workers not born in the United Kingdom (from 25% to 63%, p<0.001), and women entered sex work at an older age (median 24 years compared with 20 years, p<0.001). Condom use increased (with the exception of oral sex). There was a significant decline in the proportion of participants reporting a previous STI (32% compared with 80%, p<0.001) and the prevalence of acute STI declined from 23% to 8% (p<0.001). Acute STI was associated with younger age, younger age at first sex work, being new to sex work, and inconsistent condom use. In a multivariate analysis unprotected sex with clients was the only significant risk.

Conclusion: Major restructuring of the sex industry, including the shift to a primarily migrant workforce, has been associated with a steep decline in acute STI, undermining popular assumptions that migrant sex workers are central to the ongoing STI epidemic. We attribute the decline in acute STI to an increase in safer sex.

▲ Sexually Transmitted Infections 2004;80:374-378.