Motor vehicle driver injury and socioeconomic status: a cohort study with prospective and retrospective driver injuries

G Whitlock, R Norton, T Clark, M Pledger, R Jackson, S MacMahon

Study objective: To investigate the association between motor vehicle driver injury and socioeconomic status.

Design: Cohort study with prospective and retrospective outcomes.

Setting: New Zealand.

Participants: 10 525 adults (volunteer sample of a multi-industry workforce, n=8008; and a random sample of urban electoral rolls, n=2517).

Outcome measure: Motor vehicle driver injury resulting in admission of the driver to hospital or the driver’s death, or both, during the period 1988–98; hospitalisation and mortality data were obtained by record linkage to national health databases.

Main results: After adjustment for age and sex, driver injury risk was inversely associated with both occupational status (p for linear trend <0.0001) and educational level (p for linear trend =0.007). Participants in the lowest approximate quartile of occupational status were four times as likely (HR 4.17, 95% CI 2.31 to 7.55) to have experienced a driver injury during follow up as participants in the highest approximate quartile. Participants who had been to secondary school for less than two years were twice as likely (HR 2.26, 95% CI 1.34 to 3.81) to have experienced a driver injury as those who had been to university or polytechnic. There was little evidence that driver injury risk was associated with neighbourhood income (p for linear trend =0.12).

Conclusions: Occupational status and educational level seem to be important determinants of driver injury risk. Driver injury countermeasures should be targeted to people in low status occupations, as well as to people with comparatively little formal education.

Several studies have reported that low socioeconomic status is a risk factor for vehicle related injury, a composite outcome that typically comprises motor vehicle driver and passenger injury (henceforth simply “driver” and “passenger” injury), and sometimes also includes cyclist and pedestrian injury. There is, though, only sparse evidence about the associations of socioeconomic status with each of these specific types of road user injury. It is plausible that the associations could differ quantitatively, and perhaps even qualitatively. For example, whereas people in lower socioeconomic groups may have higher risks of driver injury, they might well have lower risks of pedestrian or cyclist injury. The determinants of driver injury are of particular interest because, as the use of private motor vehicles has become more widespread, injuries to drivers have recently formed a larger proportion of total road user injuries in many countries. Moreover, drivers not only injure themselves, but they frequently injure other types of road user, so effective countermeasures that prevent driver injury might, as a corollary, also prevent injuries to other types of road user. Hence, while accurate information on the socioeconomic determinants of driver injury is of particular importance, little such information is available, and the information cannot necessarily be inferred from the available data on broader composite outcomes. We consequently investigated the associations of driver injury risk with indicators of socioeconomic status in a cohort study of 10 525 New Zealand adults.

METHODS

Participants

Participants in this cohort study were recruited in 1992–93 (baseline) from two sources: the workforce of a nationwide multi-industry corporation (8008 participants, response rate 76%) and the electoral rolls of greater Auckland (2517 participants, response rate 67%). The ages at baseline ranged from 16 to 88 years (median 42 years). Seventy two per cent of participants were men. All participants provided signed consent to take part in the study, and the study was approved by the University of Auckland Human Subjects Ethics Committee.

Exposure

Three indicators of socioeconomic status were assessed from a questionnaire administered at baseline: educational level, occupational status, and neighbourhood income. Educational level was defined as self reported highest level of education attended. Occupational status was defined as the International Socioeconomic Index (ISEI) score for self reported occupation. Neighbourhood income was defined as median annual household income for the area unit (a geographically defined area containing, on average, 680 households) in which the participant lived. The income data were obtained from Statistics New Zealand, which matched self reported domicile address with household income data from the 1991 New Zealand census. The income data are reported in New Zealand dollars (SNZ 1.00 = US$ 0.60 in 1991).

Potential confounders

Driving exposure was estimated from two sources: age specific and sex specific data on driving exposure in the 1989–90 New Zealand Household Travel Survey, and self reported occupation (which was classified as likely to entail much, some, little, or no driving). More precise, individual data on driving exposure were not available for participants in this study. Age, sex, alcohol (self reported maximum daily intake), area of

See end of article for authors’ affiliations

Correspondence to: Dr G Whitlock, Clinical Trial Service Unit and Epidemiology Studies Unit, Harkness Building, Radcliffe Infirmary, Oxford OX2 6HE, UK; gary.whitlock@ctsu.ox.ac.uk

Accepted for publication 14 November 2002
Table 1 Standardised distributions* of several known and possible risk factors for driver injury, by indicators of socioeconomic status

<table>
<thead>
<tr>
<th>Educational level</th>
<th>Secondary status</th>
<th>International Socioeconomic Index Score†</th>
<th>Neighbourhood income</th>
</tr>
</thead>
<tbody>
<tr>
<td>University/polytechnic</td>
<td>>3 years</td>
<td>60–85</td>
<td>40–69.7</td>
</tr>
<tr>
<td>>3 years</td>
<td>2340</td>
<td>2240</td>
<td>2174</td>
</tr>
<tr>
<td>2–3 years</td>
<td>2018</td>
<td>2018</td>
<td>2018</td>
</tr>
<tr>
<td><2 years</td>
<td>1934</td>
<td>1934</td>
<td>1934</td>
</tr>
<tr>
<td>Maximum alcohol intake, mean (SD), drinks/day</td>
<td>54 (1.7)</td>
<td>54 (1.7)</td>
<td>54 (1.7)</td>
</tr>
<tr>
<td>Total estimated driving exposure, mean (SD), 000 km**</td>
<td>93.0 (22.5)</td>
<td>93.0 (22.5)</td>
<td>93.0 (22.5)</td>
</tr>
<tr>
<td>Age, mean (SD), years§</td>
<td>42.0 (14.8)</td>
<td>42.0 (14.8)</td>
<td>42.0 (14.8)</td>
</tr>
<tr>
<td>Men, %¶</td>
<td>72.8</td>
<td>72.8</td>
<td>72.8</td>
</tr>
<tr>
<td>Total estimated driving exposure, mean (SD), 000 km**</td>
<td>90.6 (22.1)</td>
<td>90.6 (22.1)</td>
<td>90.6 (22.1)</td>
</tr>
<tr>
<td>Body mass index, mean (SD), kg/m²</td>
<td>25.3 (4.3)</td>
<td>25.3 (4.3)</td>
<td>25.3 (4.3)</td>
</tr>
<tr>
<td>Workforce cohort, %</td>
<td>71.4</td>
<td>71.4</td>
<td>71.4</td>
</tr>
</tbody>
</table>
| SD, standard deviation. p Values for homogeneity of risk factors across levels of each socioeconomic indicator: all p<0.001, except for driving exposure across categories of neighbourhood income (p=0.02). *Percentages, means, and p values were standardised for age and sex unless stated otherwise. †Higher scores indicate higher occupational status. §Data on educational level missing for 340 (educational level), 1217 (occupational status) and 1147 (neighbourhood income) participants. ¶Standardised for sex only. ||Standardised for age only (in the case of work related driving, additional standardisation for sex was not possible because of sparse data). **Total estimated driving exposure between 1988 and 1998, not standardised for either age or sex as this variable was estimated from age and sex characteristics.
over half (n=46) of the cases in the retrospective period, and two thirds (n=37) in the prospective period, were injured while driving a four wheeled vehicle (in most instances, a car). The remainder in each period were injured while driving a motorcycle.

Table 1 shows the distribution of possible confounders across categories of the socioeconomic indicators. People in the lowest educational level groups tended to be older, whereas those in the lowest occupational status and neighbourhood income groups tended to be younger. Men and heavy drinkers tended to be more prevalent in the lower socioeconomic groups.

Table 2 shows the associations between driver injury risk and each of the indicators of socioeconomic status. After adjustment for age and sex, driver injury risk was inversely associated with both occupational status (p for linear trend <0.0001) and educational level (p for linear trend =0.007).

The association with occupational status was strong, with participants in the lowest occupational status group being four times as likely (HR 4.17, 95% CI 2.31 to 7.55) to have experienced a driver injury during follow up as participants in the lowest educational level or occupational status‡. The educational and neighbourhood income models were adjusted for occupational status, whereas the occupational status model was adjusted for educational level.

For both occupational status and neighbourhood income, the findings in the prospective and retrospective periods were qualitatively similar (table 3). However, for educational level, there was evidence of an inverse association in the retrospective period but little evidence of an association of any type in the prospective period.
DISCUSSION

In this cohort study, which had both prospective and retrospective outcomes, we observed inverse associations of driver injury risk with occupational status and educational level. The association with occupational status was particularly strong, and remained after adjustment for several covariates. There was comparatively little evidence that driver injury risk was associated with neighbourhood income. Because of the moderately small number of cases in this study, the findings will have been quite susceptible to the play of chance. Nevertheless, the estimated CI and p values suggest that the association with occupational status, and perhaps also with educational level, were not likely to have arisen by chance alone.

Possible biases

The study included retrospective cases, so past driver injury might have affected socioeconomic status at baseline (“reverse causation”). However, for both occupational status and neighbourhood income the prospective and retrospective findings were qualitatively similar, providing indirect evidence against reverse causation. By contrast, for educational level there was no evidence that educational level could well have been the result of chance. The fairly crude method by which driving exposure was assessed probably led to underadjustment for that variable. However, errors in the measurement of driving exposure may not have been a serious limitation because when investigating socioeconomic differences in driver injury risk, differences in risk per unit time of follow up are probably as important as differences in risk per kilometre driven. Important differences in risk per unit time can usefully inform public policy whether or not the excess risk can be accounted for by differences in driving exposure, as a differential burden exists none the less.

Other potential biases in this study were probably only negligible. A postal survey of 179 motor vehicle injury cases and a random sample of 200 other participants showed 95% (95% CI 89% to 100%) sensitivity and 97% (95% CI 94% to 100%) specificity for driver injury detection. Educational level, occupation (on which occupational status was based), and domicile address (on which neighbourhood income was based) are variables for which self reported values and subsequent data coding should have been reasonably accurate. However, errors in the measurement of driving exposure may not have been a serious limitation because when investigating socioeconomic differences in driver injury risk, differences in risk per unit time of follow up are probably as important as differences in risk per kilometre driven. Important differences in risk per unit time can usefully inform public policy whether or not the excess risk can be accounted for by differences in driving exposure, as a differential burden exists none the less.

Key points

- There is little good evidence about the socioeconomic determinants of motor vehicle driver injury.
- The determinants of driver injury are of particular interest as drivers frequently injure other road users.
- In this cohort study, occupational status and educational level were important determinants of serious driver injury.
- Driver injury countermeasures should be targeted to people in low status occupations and people with comparatively little formal education.

Consistency with previous studies

For the reasons outlined above, the determinants of driver injury are of particular importance. There seem, though, to be few if any previously published cohort study data on the socioeconomic determinants of driver injury. Studies with less robust designs—including a case series with general population controls (provided by national census data) that reported a strong inverse association of driver injury with occupational status, and a cross sectional study that did not find evidence of an association between driver crashes and occupational

Table 3 Hazard ratios for driver injury during the prospective and retrospective periods, by indicators of socioeconomic status

<table>
<thead>
<tr>
<th>Socioeconomic status</th>
<th>Prospective period</th>
<th>Retrospective period</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number of cases*</td>
<td>Hazard ratio (95% CI)</td>
</tr>
<tr>
<td>Educational level</td>
<td></td>
<td></td>
</tr>
<tr>
<td>University/polytechnic</td>
<td>16</td>
<td>1.00 (reference)</td>
</tr>
<tr>
<td>Secondary >3 years</td>
<td>18</td>
<td>1.81 (0.92 to 3.55)</td>
</tr>
<tr>
<td>Secondary 2–3 years</td>
<td>14</td>
<td>1.83 (0.89 to 3.76)</td>
</tr>
<tr>
<td>Secondary <2 years</td>
<td>6</td>
<td>1.12 (0.43 to 2.92)</td>
</tr>
<tr>
<td>Missing</td>
<td>1</td>
<td>(p for trend =0.82)</td>
</tr>
<tr>
<td>Occupational status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISEI 60–85</td>
<td>5</td>
<td>1.00 (reference)</td>
</tr>
<tr>
<td>ISEI 40–59</td>
<td>10</td>
<td>1.77 (0.60 to 5.25)</td>
</tr>
<tr>
<td>ISEI 30–39</td>
<td>10</td>
<td>1.60 (0.55 to 4.71)</td>
</tr>
<tr>
<td>ISEI 20–29</td>
<td>23</td>
<td>4.48 (1.68 to 12.0)</td>
</tr>
<tr>
<td>Missing</td>
<td>7</td>
<td>(p for trend =0.005)</td>
</tr>
<tr>
<td>Neighbourhood income</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NZ$40000–NZ$69700</td>
<td>7</td>
<td>1.00 (reference)</td>
</tr>
<tr>
<td>NZ$35000–NZ$39999</td>
<td>10</td>
<td>1.41 (0.53 to 3.70)</td>
</tr>
<tr>
<td>NZ$27500–NZ$34999</td>
<td>12</td>
<td>1.33 (0.52 to 3.39)</td>
</tr>
<tr>
<td>NZ$15000–NZ$27499</td>
<td>16</td>
<td>1.94 (0.79 to 4.76)</td>
</tr>
<tr>
<td>Missing</td>
<td>10</td>
<td>(p for trend =0.18)</td>
</tr>
</tbody>
</table>

*One retrospective case also experienced a driver injury during the prospective period, only the first of these events was included in the analyses in table 2. †Adjusted for age and sex.
status (despite a large sample size)15—have produced somewhat inconsistent results. Several studies (including case-control studies17–20 and case series with general population controls21–23) have investigated the socioeconomic determinants of vehicle related injury, and though there was a tendency for the studies to report inverse associations, the results were not totally consistent with each other, nor, therefore, with those of this study. Some of the studies reported inverse associations with occupational status2,3,5–7, neighbourhood income4, and other area based indicators of socioeconomic status,10 whereas others (one of which was large24) did not find evidence of associations with occupational status,10 educational level16 or personal income.17 It is difficult to draw conclusions about driver injury from these studies of vehicle related injury not only because they were somewhat inconsistent, but also because driver injury is merely one component of vehicle related injury.

Causation
In the context of previous research, it is quite possible that in this study driver injury was causally associated with occupational status and educational level. Potential mechanisms by which low occupational status and educational level increased driver injury risk could have included drunk driving13,17,21 and drivers not wearing seatbelts.22 Furthermore, drivers in low socioeconomic groups might have been more likely to use old vehicles that are hard to maintain or have fewer modern safety features such as airbags.

Although there was little evidence of an association between driver injury risk and neighbourhood income, the possibility that individual or household income is causally associated with driver injury cannot be excluded as neighbourhood income would have been only a crude surrogate for these variables.

Implications
If the socioeconomic determinants of one type of road user injury (such as passenger injury) differ qualitatively, or perhaps even only quantitatively, from those of another type of road user injury (such as cyclist injury), then countermeasures designed to prevent one type of injury might be comparatively ineffective in preventing the other. Good data are therefore needed on the specific socioeconomic determinants of each type of road user injury, including driver injury. Further research is needed to establish whether driver injury risk is inversely associated with indicators of socioeconomic status in different settings. Further data are also needed to establish whether occupational status is a particularly strong determinant of driver injury risk, and if so, why.

The findings of this study imply that it may be appropriate for driver injury countermeasures to be targeted to drivers in low status occupations, as well as to drivers with comparatively little formal education. It would be sensible, for example, for television campaigns against speeding or drink driving to be communicated by people with whom manual or semi-manual workers can readily identify27 rather than, for example, by people who look and sound as though they work in high status occupations.

ACKNOWLEDGEMENTS
Gary Whitlock undertook this research during the tenure of a Health Research Council of New Zealand training fellowship. The research was supported in part by grants from the Fletcher Challenge Welfare Fund, the Health Research Council of New Zealand, and the National Heart Foundation of New Zealand. Taane Clark is supported by a National Health Service (UK) research training fellowship.

Authors' affiliations
G Whitlock, M Pledger, Clinical Trials Research Unit, Department of Medicine, University of Auckland, New Zealand
R Norton, S MacMahon, Institute for International Health, University of Sydney, Australia
T Clark, Centre for Statistics in Medicine, University of Oxford, United Kingdom
R Jackson, Department of Community Health, University of Auckland, New Zealand

Conflicts of interest: none.

REFERENCES