Socioeconomic differences in children’s and adolescents’ hospital admissions in Germany: a report based on health insurance data on selected diagnostic categories

S Geyer, R Peter, J Siegrist

Study objective: The extent of social inequalities in children’s hospitalisation risks was examined in terms of socioeconomic status and parents’ nationality. This was considered in terms of inpatient treatment attributable to a number of diagnoses (ICD-9), especially infectious diseases and psychiatric disorders.

Design and setting: Analyses were performed with records of a German statutory health insurance comprising 48 412 (52.8% male and 47.2% female) children and adolescents of 15 years of age or younger who were co-insured between 1987 and 1996. Classification of socioeconomic position was based on parental occupational position.

Results: Social inequalities in terms of hospital admissions attributable to acute diseases were rather small. The only exception were infections of the respiratory organs: in the highest status positions as compared with the lowest one the relative risk for being admitted was RR=0.22 (95% CI 0.16 to 0.89). However, length of stay in hospital was significantly related to socioeconomic position for infections of the upper respiratory tract and infections of the respiratory organs, with children and adolescents with the lowest socioeconomic background having spent the longest periods in hospital. With regard to nationality, pneumonia/flu was the only diagnostic category where relative risks for being admitted were higher in non-German children and adolescents (RR=1.5; 95% CI 1.2 to 1.8). Conversely, hospital admissions attributable to psychiatric diagnoses were significantly lower among non-German patients (RR=0.43; 95% CI 0.30 to 0.61), thus suggesting differential utilisation patterns according to nationality.

Conclusions: Health inequalities in children’s and adolescents’ hospital admissions in Germany are small and inconsistent if parents’ socioeconomic status and nationality are taken as criterion. Yet, children of lower status background stay longer in hospital if suffering from highly prevalent infectious diseases. This last observation may be attributable to more severe disease conditions.
Ostberg reported a relative mortality risk of RR=1.4, with the difference for males being more pronounced than for females. For the age groups between 5 and 9 years, the gradient was reduced (RR=1.42 for males and RR=1.1 for females), and up to the age of 15 it almost disappeared. In a recent report from the United Kingdom children of single mothers were shown to be exposed to a threefold increase in mortality risk, compared with children from the most favourable socioeconomic background. In a German study on perinatal mortality including 1626 mothers, both the rates of stillbirths and of perinatal mortality strongly decreased with increasing educational level, but insufficient statistical control of confounders restricts the interpretation of findings. An impressive Dutch study reported a consistent social gradient in perinatal mortality, using historical data from 1854 onwards. Although perinatal mortality decreased substantially over time, the social gradient remained.

While research on social determinants of mortality and morbidity in childhood largely focused on conventional measures of socioeconomic position, additional markers of social inequality are needed. One particular indicator concerns immigrant status or nationality of origin. With the increasing number of immigrants in many European countries, differences in health between the native population and the health of immigrants have become a topic of concern, but not many studies so far investigated the issue of health among immigrant children and adolescents. In a recent Dutch study on peri-

METHOD
The data for this study were provided by a statutory health insurance. They were recorded between 1987 and 1995 and actually determined for accounting purposes. The study population eligible for analysis consisted of 48 412 (52.8% male and 47.2% female) children and adolescents up to 15 years (table 1), the majority of them having a parent holding unskilled and semi-skilled occupational positions. Infants (less than 1 year old) had not been considered. Some 70.2% had German nationality; the largest non-German groups were Turkish (n=6644; 13.7% of participants), Italian (n=2074; 4.3%), Yugoslavian (includes all nationalities of the former Yugoslavia: n=1517; 3.1%), Greek (n=1205; 2.5%) and Marocan (n=1106; 2.3%) immigrants.

While research on social determinants of mortality and morbidity in childhood largely focused on conventional measures of socioeconomic position, additional markers of social inequality are needed. One particular indicator concerns immigrant status or nationality of origin. With the increasing number of immigrants in many European countries, differences in health between the native population and the health of immigrants have become a topic of concern, but not many studies so far investigated the issue of health among immigrant children and adolescents. In a recent Dutch study on perinatal mortality including 1626 mothers, both the rates of stillbirths and of perinatal mortality strongly decreased with increasing educational level, but insufficient statistical control of confounders restricts the interpretation of findings. An impressive Dutch study reported a consistent social gradient in perinatal mortality, using historical data from 1854 onwards. Although perinatal mortality decreased substantially over time, the social gradient remained.

While research on social determinants of mortality and morbidity in childhood largely focused on conventional measures of socioeconomic position, additional markers of social inequality are needed. One particular indicator concerns immigrant status or nationality of origin. With the increasing number of immigrants in many European countries, differences in health between the native population and the health of immigrants have become a topic of concern, but not many studies so far investigated the issue of health among immigrant children and adolescents. In a recent Dutch study on perinatal mortality including 1626 mothers, both the rates of stillbirths and of perinatal mortality strongly decreased with increasing educational level, but insufficient statistical control of confounders restricts the interpretation of findings. An impressive Dutch study reported a consistent social gradient in perinatal mortality, using historical data from 1854 onwards. Although perinatal mortality decreased substantially over time, the social gradient remained.

In this paper we focus on socioeconomic status—and immigrant status—related differences in the prevalence of selected diagnoses for hospital admission of children in Germany. In particular, most common diagnoses are considered, such as infectious diseases and psychiatric conditions. The following analyses are based on health insurance data on hospitalisation and respective main admission diagnoses, date of hospital admission and length of stay.

Table 1 Distribution of gender and socioeconomic status, assigned according to parents' occupational position (number of cases and row percentages)

<table>
<thead>
<tr>
<th>Occupational Group</th>
<th>Male</th>
<th>Female</th>
<th>Total</th>
<th>Unskilled/semi-skilled</th>
<th>Skilled manuals</th>
<th>Skilled non-manuals</th>
<th>Intermediates/professionals</th>
<th>Unclassified</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>11787/46.1%</td>
<td>10112/44.3%</td>
<td>21899</td>
<td>5675/22.2%</td>
<td>1490/5.8%</td>
<td>205/0.8%</td>
<td>4627/25.1%</td>
<td>12436</td>
<td>25584/100%</td>
</tr>
<tr>
<td>Female</td>
<td>10112/44.3%</td>
<td>10760</td>
<td>20872</td>
<td>5085/22.3%</td>
<td>1415/6.2%</td>
<td>207/0.9%</td>
<td>6009/26.3%</td>
<td>22828</td>
<td>22828/100%</td>
</tr>
<tr>
<td>Total</td>
<td>21899</td>
<td>20760</td>
<td>42659</td>
<td>10760/22.3%</td>
<td>2905</td>
<td>412</td>
<td>12436</td>
<td>44364</td>
<td>44364/100%</td>
</tr>
</tbody>
</table>

Table 2 Hospitalisation rates for gender and nationality

<table>
<thead>
<tr>
<th>Gender</th>
<th>Infections of the upper respiratory tract (n=2494)</th>
<th>Infections of respiratory organs (n=1178)</th>
<th>Chronic obstructive airways diseases (n=469)</th>
<th>Pneumonia/flu (n=413)</th>
<th>Neuroses, anxiety, depression (n=213)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male (n=25584)</td>
<td>1346 (5.3)</td>
<td>666 (2.6)</td>
<td>291 (1.1)</td>
<td>254 (1.0)</td>
<td>130 (0.5)</td>
</tr>
<tr>
<td>Female (n=22828)</td>
<td>1148 (5.0)</td>
<td>512 (2.2)</td>
<td>178 (0.8)</td>
<td>159 (0.7)</td>
<td>83 (0.4)</td>
</tr>
<tr>
<td>Nationality</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>German (n=33998)</td>
<td>1743 (5.1)</td>
<td>858 (2.5)</td>
<td>335 (1.0)</td>
<td>239 (0.7)</td>
<td>174 (0.5)</td>
</tr>
<tr>
<td>Other nationality (n=14414)</td>
<td>751 (5.2)</td>
<td>320 (2.2)</td>
<td>134 (0.9)</td>
<td>174 (1.2)</td>
<td>39 (0.3)</td>
</tr>
</tbody>
</table>

Percentages shown in parentheses.
occupational qualifications available for Germany to choose we used the highest level obtained. Wherever occupational
groups, following the British registrar general classification:
many categories were reduced into five, and finally four
groups of age, sex, and socioeconomic position as reference category.
Thus the results will be presented with the lowest socioeco-
some effects into account, we conducted additional analyses
resulting from these stratified analyses were difficult to evalu-
ate because of small cell numbers. Thus we decided to present
the main findings on socioeconomic status and hospital
admissions for the total age group, and in addition for males
versus females. However, when considering immigrant status
we report the age specific effects in addition to the ones con-
cerning the total group. Relative risks are estimated, usually
the highest socioeconomic position is used as reference
category. In the present case this leads to very large confidence
intervals as the number of subjects in the highest category is
small, and the number with a given disease is even smaller.
Thus the results will be presented with the lowest socioeco-
omic position as reference category.
The dependent variable is the risk of the respective type of
illness (until age 15).
For data management and basic statistics SPSS 6.1 on PC was
used, the Cox regressions were computed with STATA 6.0.
RESULTS
In tables 4 and 5, results of the regression analyses are
presented. The relative risks for hospital admissions and the
respective 95% confidence intervals for different socioeco-
nomic positions and for gender are displayed. The relative
risks are given for the whole population—that is, for all age
groups.
Socioeconomic status
For infections of the upper respiratory tract (table 4) as the
most common diagnosis leading to hospital admission, no
differences according to socioeconomic status emerged. The
widths of the confidence limits do not permit any substantial

<table>
<thead>
<tr>
<th>Table 3</th>
<th>Hospitalisation rates for age groups</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Up to 4 years</td>
</tr>
<tr>
<td>Hospitalised</td>
<td>839 (5.2)</td>
</tr>
<tr>
<td>Not hospitalised</td>
<td>15236 (94.8)</td>
</tr>
<tr>
<td>Total</td>
<td>16075</td>
</tr>
</tbody>
</table>

Percentages shown in parentheses.

<table>
<thead>
<tr>
<th>Table 4</th>
<th>Relative risks and 95% confidence intervals for the diseases in childhood and adolescence for all age groups</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Intermediates/professionals*</td>
</tr>
<tr>
<td>Infections of the upper respiratory tract (ICD9: 470–479)</td>
<td>1.30 (0.87 to 1.95)</td>
</tr>
<tr>
<td>Infections of respiratory organs (ICD9: 460–466)</td>
<td>0.22 (0.06 to 0.89)</td>
</tr>
<tr>
<td>Chronic obstructive airways diseases (ICD9: 490–496)</td>
<td>0.59 (0.14 to 2.37)</td>
</tr>
<tr>
<td>Infections/illness (ICD9: 480–487)</td>
<td>0.58 (0.14 to 2.32)</td>
</tr>
<tr>
<td>Neuroses, anxiety and depression (ICD9: 300, 311, 313)</td>
<td>0.58 (0.08 to 4.19)</td>
</tr>
</tbody>
</table>

*Reference category: Unskilled/semi-skilled positions (risk=1).†Reference category: males (risk=1), that is, the risks for females are displayed.
for infections of the respiratory tract and for neurosis, anxiety and depressive disorders is even smaller in immigrant children as compared with children with German nationality. As mentioned above, controlling for socioeconomic status may result in an overadjustment. In this special case, an additional multivariate analysis exploring the separate and combined effects of the two indicators of social inequality, occupational status and immigrant status, on the risk of hospital admission was not possible because some 83% of all children with non-German origin belonged either to the lowest occupational group or to the group with unclassified parents.

Again, mean duration of hospital stay was analysed according to immigrant status. When adjusting for socioeconomic status and gender no systematic difference was observed. For instance, mean duration of hospitalisation in German children was higher for the disease category “infections of the respiratory organs” (16.8 versus 9.5 days; p<0.001), “chronic obstructive airways” (26.0 versus 14.9 days; p<0.001) and “psychiatric conditions” (36.6 versus 25.2 days; p=0.05), but it was higher in immigrant children for the disease category “infections of the upper respiratory tract” (5.5 versus 5.1 days; p<0.01).

DISCUSSION

This study investigated the issue of socioeconomic differences in hospital admissions among children and adolescents. Increased risks of hospital admissions for subjects of lower socioeconomic background emerged for infections of respiratory organs (ICD 460–466), but only if the extreme ends of the socioeconomic scale were compared. When immigrant status was chosen as an indicator of socioeconomic inequality, an increased risk of pneumonia became obvious, but for the remaining diagnostic categories the results could not be interpreted. With respect to immigrant status, reduced rather than increased risks of hospital admissions emerged in the case of respiratory infections and psychiatric disorders (although this was not true for all age groups). When considering mean lengths of hospitalisation according to socioeconomic status, social gradients were found for the two most common diagnostic categories—that is, “infections of the upper respiratory tract” and “infections of the respiratory organs”: the lower the children’s socioeconomic position, the longer their hospitalisation periods. In particular, considering infections of respiratory organs, children whose parents were not classified in terms of occupational status exhibited the longest inpatient periods. Finally, our results confirm that boys had higher risks of being hospitalised compared with girls, irrespective of the diagnosis of hospital admission, and after adjusting for the effects of socioeconomic status or immigrant status (see also references 8–11).

These findings confirm at least in part that children and adolescents from families with lower socioeconomic status, and especially boys, exhibit a higher burden of respiratory infections as measured by duration of hospital stay compared with boys with a more privileged family background. It is

Table 5 Inpatient treatment for diseases for German and non-German nationality of different age groups and gender after controlling for socioeconomic status (occupational position of the main wage earner) and gender; relative risks and 95% confidence intervals*

<table>
<thead>
<tr>
<th></th>
<th>All ages</th>
<th>Up to 4 years</th>
<th>5 to 9 years</th>
<th>10 to 15 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infections of the upper respiratory tract</td>
<td>0.84 (0.77 to 0.92)</td>
<td>0.75 (0.59 to 0.91)</td>
<td>0.80 (0.71 to 0.90)</td>
<td>1.10 (0.94 to 1.28)</td>
</tr>
<tr>
<td>Acute infections of respiratory organs</td>
<td>0.73 (0.64 to 0.83)</td>
<td>1.43 (1.10 to 1.87)</td>
<td>0.60 (0.49 to 0.73)</td>
<td>0.67 (0.53 to 0.85)</td>
</tr>
<tr>
<td>Pneumonia/flu</td>
<td>1.48 (1.21 to 1.80)</td>
<td>1.47 (1.10 to 1.96)</td>
<td>1.44 (1.04 to 1.99)</td>
<td>1.67 (1.04 to 2.61)</td>
</tr>
<tr>
<td>Chronic obstructive airways diseases</td>
<td>0.78 (0.63 to 0.95)</td>
<td>1.50 (1.06 to 2.12)</td>
<td>0.74 (0.53 to 1.05)</td>
<td>0.47 (0.32 to 0.69)</td>
</tr>
<tr>
<td>Neurones, anxiety, depressive disorders</td>
<td>0.43 (0.30 to 0.61)</td>
<td>0.58 (0.19 to 1.75)</td>
<td>0.33 (0.17 to 0.65)</td>
<td>0.46 (0.30 to 0.72)</td>
</tr>
</tbody>
</table>

*The numbers give the relative risks for individuals with non-German nationality. Reference category are children and adolescents with German nationality (risk=1).
commonly assumed that length of hospital stay reflects the severity of a disease condition. Thus, the observed stepwise gradient in duration of hospitalisations for these two diagnostic categories may indicate more severe status of illness among lower socioeconomic status children.

If pneumonia as a particularly severe condition of respiratory disorders is considered, our results indicate that children with immigrant status exhibit a more severe burden of illness. The majority of them belong to families with unskilled or unclassified occupations. Point prevalence of pneumonia/flu is also markedly increased when the total group of unskilled and unclassified subjects is considered, but large confidence intervals preclude firm conclusions. Differences in physicians’ referral behaviour may play a part in explaining the fact that duration of inpatient periods are longer among lower socioeconomic status subjects, taking the two most widely prevalent causes of hospital admissions into account. Although the almost complete health insurance coverage in Germany excludes the severest financial barriers to health care and waiting lists do not exist, less visible obstacles may be effective. Difficulties to contact a hospital or a doctor, cultural or language differences may explain differential illness behaviour. Moreover, other socially different patterns of help-seeking may explain in part the inconsistencies observed in hospital admission rates. For instance, in the case of less frequent hospitalisations because of psychiatric conditions among immigrant status children and adolescents, studies on stigmatisation of individuals with psychiatric impairment may offer an explanation. Although the anxiety of being devaluated and rejected is a common phenomenon, this may be more pronounced in the non-German population resulting in more reluctance to admit the presence of a psychiatric condition. Thus, data on hospital admissions because of psychiatric disturbances, even more than those because of other conditions, might reflect utilisation patterns concerning medical services rather than true prevalence rates. This may lead to higher proportions of untreated mental disorders in the immigrant population.

As mentioned, social differences in duration of hospitalisations are assumed to reflect severity of disease as a consequence of delayed help seeking. Because of sociocultural differences in illness behaviour physician utilisation and hospitalisation is likely to be postponed. Several investigations support this conclusion, in particular with respect to mothers’ health seeking behaviour. The limitations of this study need to be mentioned: The choice of a single indicator of parents’ socioeconomic status may be subject to debate. In the analyses presented in this paper we have considered socioeconomic status differences by using the main household earners’ occupational status for classifying children and adolescents. This left us with a large subgroup with missing information. As pointed out earlier, the unclassified are heterogeneous in composition. Based on additional information there is reason to assume that between 60% and 70% of them either receive very low payment or they are long term unemployed, on early retirement, disabled or on social security. In the case when income had been chosen as indicator valid information had been available for less than half of our insurance population. This was because of the lack of regular incomes, to exceptional payments (for example, compensations payed by the employer for leaving the job prematurely), or the incomes remained unrecorded because the insurance fees were based on other criteria than on parents’ wages. Information on education was available, but the distribution of educational degrees in this population was uneven. Even so, we conducted additional analyses taking educational degree as indicator of socioeconomic status. Although effects in general were weaker, similar tendencies evolved from these analyses. In view of a major role of a parental occupational status in defining children’s psychosocial and material living conditions we restricted our analysis to this indicator. In order to further validate information on occupational status we repeated the analysis by replacing the highest occupational position as evidenced in the health insurance files by the occupational position held by the main parental wage earner in the family. The results in general did not change.

With regard to a second indicator of social inequality, immigrant status, this variable in fact turned out not to provide substantial additional information as more than 80% of immigrant status children belonged to the group of parents with unskilled or unclassified occupations. A second limitation of our findings is the fact that the population insured by this health insurance company is not representative for the German population. Rather, lower middle class and lower class people are overrepresented to the detriment of upper middle class people. The low proportion of children from parents with professional or intermediate occupational status in our sample illustrates this argument. Given this fact, social differences in hospitalisation rates and the length of inpatient periods we may rather have underestimated than overestimated.

A third limitation points to a shortcoming in that our data were collected for accounting purposes. We could not consider variables indicating health needs, for example health status perceptions or comorbidity that had not been treated.

Finally, we do not have data on incidence or prevalence rates concerning the diseases of interest for the age groups considered here. This does not permit us to draw conclusions about differences between morbidity and hospitalisation.

Our analyses did not include data on hospital admissions attributable to accidents or mortality data, two categories with repeatedly reported social gradients. The question for social inequalities concerning accidents in children and adolescents of 16 years and below had been dealt with in an earlier paper by using the same health insurance data. If subjects from the highest as compared with the lowest socioeconomic position were compared, the latter displayed an excess risk of 40%, but the differences became insignificant after having stratified into three age groups. These findings are in line with the results presented in the current report. With regard to mortality data we conducted a respective analysis with “immigrant status” as predicting variable, adjusting for gender and socioeconomic status. As a relative mortality risk of 1.7 (95% CI 0.95 to 3.20) among immigrant status children was observed there is a tendency of higher mortality in this group, compared with native German children. A similar difference between immigrant status and native children was.
recently reported from the Netherlands.\(^1\) Again, childhood mortality being a relatively rare event, respective analyses for the five occupational groups could not be performed in our dataset.

With these limitations in mind we conclude that socioeconomic differences in selected diagnoses of hospital admission and, in particular, of duration of hospital stay, in children and adolescents are rather small. It is likely that variations in parents’ help seeking behaviour play an important part in explaining these differences. If validated by further studies these findings could point to an important role of improved health related counselling in parents with lower socioeconomic and with immigrant status.

ACKNOWLEDGEMENTS

We thank the AOK Mettmann for giving us the opportunity of using the health insurance data for scientific purposes. We are particularly indebted to Andrea Jung, Irene Jung, Christof Lebek and Margret Stolz who supported us with advice and discussions while preparing the material used for this paper.

Authors' affiliations

S Geyer, Medizinische Soziologie OE 5443, Medizinische Hochschule Hannover, Hannover, Germany

R Peter, Institut für Medizinische Soziologie, Universität Ulm, Ulm, Germany

J Siegrist, Institut für Medizinische Soziologie, Heinrich Heine-Universität Düsseldorf, Düsseldorf, Germany

REFERENCES

