May I join the debate between Drs Ness and Segall? Heart disease is a major public health concern, and there is a growing body of evidence linking certain dietary factors to an increased risk of this condition. The connection between milk and heart disease is a complex issue, and one that has been the subject of much debate.

The milk question has been the subject of much study, and there is evidence to suggest that the consumption of milk and milk products may be associated with an increased risk of heart disease. This association has been linked to the high calcium content of milk, which has been shown to increase the risk of heart disease. However, there is also evidence to suggest that milk consumption may be protective against heart disease, and this has been linked to the high vitamin D content of milk.

The debate between Drs Ness and Segall has highlighted the need for further research into the relationship between milk and heart disease. This research should aim to clarify the role of milk in the development of heart disease, and to identify any potential risk factors that may contribute to this association. By doing so, we can better understand the impact of milk consumption on heart health, and develop strategies to reduce the risk of heart disease.

It is important to note that the debate between Drs Ness and Segall has highlighted the importance of considering the role of other dietary factors in the development of heart disease. This includes considering the role of other nutrients, such as vitamin D, and the potential impact of other dietary patterns, such as low-fat milk consumption.

In conclusion, the debate between Drs Ness and Segall has highlighted the need for further research into the relationship between milk and heart disease. This research should aim to clarify the role of milk in the development of heart disease, and to identify any potential risk factors that may contribute to this association. By doing so, we can better understand the impact of milk consumption on heart health, and develop strategies to reduce the risk of heart disease.
Epidemiology. An introduction


The aim of this book is clearly stated by K J Rothman in the preface: “...to present a simple overview of the concepts that are the underpinnings of epidemiology, so that a coherent picture of epidemiology thinking emerges for the student. The emphasis is not on statistics, formulas, or computation, but on epidemiologic principles and concepts”. In fact, this is the essence of the book: conceptual, simple, and introductory to the epidemiological logic. It has been conceived as an introductory text to a general course in epidemiology.

The book is structured into 11 chapters. Chapter I is an introduction to epidemiological thinking, based on the concept of confounding that illustrates that epidemiology is more than just common sense”. Chapters 2 to 4 deal with the topics of causation, measuring disease occurrence and causal effects, and types of epidemiological studies. Chapters 5 and 6 deal with measurement error (biases and random error). Chapters 7 to 10 are devoted to the methods for analysing epidemiological effects, including an introduction to some more advanced issues, as controlling for confounding by stratifying data, measuring interactions, and using regression models in epidemiological analysis. Finally, chapter 11 deals with clinical epidemiology, including some concepts related to diagnosis and clinical trials.

The book has successfully met its pedagogical goal. Main epidemiological concepts and principles are presented in a simple language, as if they were being explained in a classroom, illustrated with clear and attractive examples, and all chapters contain a set of questions for further study. Moreover, a web site that supports reader participation and provides answers to these questions is available (http://www.oup-usa.org/epi/rothman).

Making sense of data


This is a book for learning epidemiology. It is oriented to understand what data tell us (and what data do not tell us). It seems that the authors’ intentions are directed to change the way of thinking, in order to adequately comprehend scientific approaches to public health issues and to develop a critical mind. This is especially important in the first steps taken in this field because basic concepts are easy but minds are not naturally qualified for appraising certain types of (abstract) problems. But for this training a personal effort is unavoidable and authors make it explicit by emphasising that it is a workbook. But the investment is worthwhile.

The book is structured in sections containing short exercises, comments on previous questions, and explanatory text. Each section ends with a self test. The seven sections are adequately ordered (this is not trivial) and cover all the relevant issues of most textbooks of epidemiology. The book goes beyond the introductory level; it includes stratification and concepts on the interpretation of multivariable methods mostly used in epidemiological studies, like logistic regression and proportional hazards models. One section deals with meta-analysis and the last one covers important and complex aspects related to what to do with the findings of epidemiological studies, with published data, information from the media, etc, before a decision is to be made.

Making sense of data is an excellent book. It is perfect for those determined to learn epidemiology and also for those determined to teach epidemiology and are comfortable with the proposed orientation. I would like to underline the authors’ suggestion that working in collaboration with others will be helpful in some cases. Although it is not practical as a textbook (authors recognise this) because of its structure, there is no doubt that thoughtful, sound concepts and methods are in there.

Computer programs for epidemiologists. PEPI v. 4.0


The book is the manual of PEPI version 4.0, a collection of programs that includes a variety of programs for use in statistical analysis and planning of epidemiological studies, covering sample size estimation, contingency tables, standardisation, logistic regression, survival analysis—although no Cox regression—,
smoothing of curves, and much more. Each program offers a number of options and outputs (the authors claim that “The programs may offer more options than you need, and most will display more results than you need”); this enlarges the range of possible users. The manual is clearly written and provides the main uses of each program as well as some mathematical details.

Logistic regression programs read data files. All the other programs work on elaborated data (for example: rates or number of observations in each cell of a table); therefore, primary data must be tabulated or counted using other statistical software before using PEPI, and then elaborated data must be entered at the keyboard.

Users of statistical packages (such as Stata, SPSS, or SAS) can find PEPI rather tedious because of this two phase procedure (tabulation in another program, analysis in PEPI). Furthermore, many programs in PEPI require reinitialisation each time you want to introduce new data. Nevertheless, my initial scepticism was modified after using it: when I needed to estimate the sample size for a matched case-control study, I could compare several packages and found that PEPI provides an output richer than others do. This feature is common to other programs in PEPI: they cover a variety of epidemiological tests wider than general purpose statistical packages.

Epidemiologists can use PEPI with two main purposes when analysing data: as an alternative to statistical programs that are more expensive, or as a complementary toolbox when other programs are available. Teaching and learning purposes are also possible.

J Llorca
Division of Preventive Medicine and Public Health, University of Cantabria School of Medicine, Santander, Spain

An editorial error occurred in the paper by Dr A Page and colleagues (2002;56:766–72). Both the male and female suicide rates in each category of the Gross Domestic Product variable (tables 1, 2, and 3) are not correct. The correct male and female suicide rates by GDP change category are shown in the accompanying data. These minor numerical translocations do not affect the analysis, results, or conclusions in any way.

Corrected data for GDP variable

<table>
<thead>
<tr>
<th>% Annual change in GDP</th>
<th>Men</th>
<th>Women</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minus 10%</td>
<td>34.47</td>
<td>7.32</td>
</tr>
<tr>
<td>Minus 5–9%</td>
<td>26.81</td>
<td>6.74</td>
</tr>
<tr>
<td>Minus 4% to plus 4%</td>
<td>23.94</td>
<td>7.25</td>
</tr>
<tr>
<td>Plus 5–9%</td>
<td>25.62</td>
<td>8.48</td>
</tr>
<tr>
<td>Plus 10%</td>
<td>23.94</td>
<td>8.77</td>
</tr>
</tbody>
</table>