RESEARCH REPORT

Types of alcoholic beverages and blood lipids in a French population

J-B Ruidavets, P Ducimetière, D Arveiler, P Amouyel, A Bingham, A Wagner, D Cottel, B Perret, J Ferrières

J Epidemiol Community Health 2002;56:24–28

Study objective: Prospective studies have shown a consistent relation between alcohol consumption and decreasing incidence of coronary artery disease. The protective effect of alcohol could be mediated through increased levels of HDL cholesterol (HDL-c). The aim of this study was to examine the relation between blood lipid levels and the consumption of different types of alcoholic beverages among 1581 men and 1535 women.

Design: Data from representative cross sectional surveys (1994–1997) in three different regions of France were used. The consumption of the different types of alcohol was quantified using a recall method according to a typical weekly consumption.

Main results: The median daily alcohol intake was 24 g for men and 4 g for women. After adjustment for confounders, total alcohol showed a positive and significant association with HDL-c and triglycerides (TG) in both sexes. In multivariate analysis, wine was positively associated with HDL-c. Beer was positively associated with HDL-c in men and with triglycerides in men and women. When taking drinking patterns into account, wine drinkers had higher HDL-c levels than non-wine drinkers. Differences became non-significant after adjustment for confounders and particularly for socioeconomic parameters.

Conclusions: In a French population sample, total alcohol was positively associated with HDL-c and triglycerides. The specific influence of any particular alcoholic beverage on blood lipids was not clearly demonstrated but wine preference found in a group with higher lifestyle standards was associated with a more favourable blood lipid profile.

The inverse relation between alcohol intake and ischaemic heart disease is mediated by numerous potential biological mechanisms. A large part of the beneficial effects of alcohol and of the various types of beverages on ischaemic heart disease has been ascribed to the increase in HDL cholesterol. Some authors have reported that the beneficial effects of wine were greater than those of any other beverage, but others have suggested that the beneficial effects of beer or both beer and wine were more effective. However, the specific influence of each type of alcoholic beverage on HDL-c has been less investigated. The results of these studies do not show significant differences between the various types of beverages on HDL-c. Nevertheless, no study has ever been carried out among populations in which alcohol consumption pattern is a regular one with all types of alcoholic beverages being affordable and available and with wine being the common alcoholic drink. The relation between the various types of alcoholic beverages and ischaemic heart disease is confounded by social and cultural factors, lifestyle and diet. The influence of these environmental factors in the relation between alcoholic beverages and blood lipids was not investigated. The aim of this study is to assess the potential relation between the amount of alcohol intake, the type of beverage and blood lipids in a French population sample characterised by a regular alcohol drinking pattern and where alcohol consumption is supplied mainly by wine.

METHODS

Population sampling
A cross sectional study was carried out from December 1994 to April 1997 in three regions of France. A population sample of 1581 men and 1535 women aged from 35 to 64 years was selected at random, in the north (Lille 555 men/558 women), in the east (Strasbourg 472 men/473 women) and in the south (Toulouse 554 men/504 women). The population samples were drawn from the polling lists available in each town hall. Participants were volunteers. Subjects were informed of the aim of the study and a formal consent was completed and signed by each subject. Authorisation from the appropriate ethics committee was obtained. Subjects were screened for cardiovascular risk factors in a health screening centre or at home.

Alcohol consumption
Total alcohol consumption and alcohol intake from each beverage type were assessed by quantitative questionnaires administered by a specially trained nurse. Moreover, drinking patterns specifying time and place of consumption, types of beverage and alcohol addiction (CAGE questionnaire) were established. Drinking habits were evaluated for each day according to a typical weekly alcohol consumption. Each type of alcoholic beverage (wine, beer, cider aperitifs and spirits) was recorded. Total alcohol was calculated as the sum of all the types of alcohol consumed and expressed in grams of alcohol per day.

Clinical measurement
Research nurses, specially trained in agreement with the MONICA protocol, performed clinical measurements. Anthropometric measurements including height, body weight, waist and hip circumferences were taken in agreement with standardised procedures. Body mass index (BMI) and waist to hip ratio (WHR) were computed as follows: weight (kg)/height (m) and waist/hip respectively. Blood pressure was measured twice in a sitting position, on the right arm with a standard mercury sphygmomanometer after a five minute rest.

Abbreviations: HDL-c, HDL cholesterol
Types of alcohol and blood lipids

Statistical analysis was conducted among men and women separately because the drinking patterns and the amount of alcohol intake were very different. The statistical significance of the difference between the groups was tested by the \(\chi^2 \) test for categorical variables and by one way analysis of variance for continuous ones. For variables with skewed distribution, analysis was performed after logarithmic transformation. The influence of the type of alcohol on lipid and lipoprotein parameters was analysed with a multivariate linear model after adjustment for confounding variables. The heterogeneity of adjusted \(\beta \) estimators was tested using the F test. An ANCOVA statistical analysis was performed (abstainers were excluded) to compare the mean values of blood concentrations of lipids, lipoproteins and apolipoproteins between the different groups (subjects who consumed wine only, alcohol beverages other than wine, wine and other alcohol beverages) after adjustment for confounding factors.

RESULTS

In this population sample, 36.7% of women and 15.4% of men reported that they drank no alcohol at all. Conversely 6.8% of men consumed at least 80 g alcohol a day and 31.3% of men drank 40 g or more per day. In women, only 4% consumed 40 g alcohol or more per day. For men, wine accounted for 66.2%, beer 16.8% and aperitifs 13.2% of total alcohol. For women, wine accounted for 63.7%, beer 17.7% and aperitifs 18.4% of total alcohol.

Table 1 shows the main characteristics of men in relation to their total alcohol intake. The percentage of beer increased with the amount of total alcohol intake and the percentage of aperitifs was twice higher in the light drinkers than in the other groups of alcohol drinkers. Men, who were heavy drinkers, were older than abstainers and they were more prevalent in the north than in the east and in the south. The number of years spent in school was on average higher among subjects with light alcohol consumption or abstainers. Mean levels of systolic and diastolic blood pressures, waist to hip ratio and fasting blood glucose increased significantly with alcohol consumption. The amount of total alcohol intake was positively associated with the percentage of current smokers and inversely correlated with the percentage of men who had intense physical activity. An increase in the proportion of men taking antihypertensive drugs was associated with a rise of alcohol intake.

In the same way, the proportion of heavy drinkers in women was higher in the north than in the east and in the south (table 2). We found significant differences related to alcohol intake, for body mass index, waist to hip ratio, fasting glucose and physical activity.

In men, after adjustment for confounding variables, mean blood levels for HDL-c, triglycerides and Apo A-I increased...
significantly in relation with the rank of each group of total alcohol consumption. In women, for HDL-c and Apo A-I identical results were obtained and for triglycerides, highest blood concentrations were observed in abstainers and when alcohol consumption was greater than 20 g a day (data not shown).

Table 3 shows the relations between the type of alcohol and the blood lipid concentrations. Coefficients of multiple linear model were adjusted for antihypertensive, antidabetic and hypolipidaemic drugs, for centre, age, body mass index, smoking habits, systolic blood pressure, years of schooling, fasting blood glucose, physical activity and occupational activity. In both sexes, total cholesterol and HDL-c were positively associated with wine consumption. HDL-c was positively associated with beer in men and aperitif consumption in women. In both sexes a positive association was observed between beer and triglycerides. When homogeneity of β coefficients of the linear regressions was tested, no significant differences were found in men. In women, significant difference ($p<0.05$) was noticed for HDL-c. Similar results were obtained for Apo A-I.

Tables 4 give adjusted means of lipid levels according to three patterns of alcohol intake: wine drinkers exclusively, a mixed pattern (including wine or beer or aperitif or cider or spirits) and subjects who drank all types of alcohol, except wine. This analysis was carried out after exclusion of abstainers. In men, only blood concentrations of triglycerides remained significantly different between the three groups ($p<0.01$) after adjustment for total alcohol consumption and several confounding factors. In women, after adjustment for confounders, no significant difference was observed for studied blood lipids.

DISCUSSION

This cross sectional study shows a positive association of HDL-c or Apo A-I with alcohol intake. This association seems to put into evidence a continuous dose dependent relation in

Table 2

<table>
<thead>
<tr>
<th>Alcohol consumption [g/d] and clinical and socioeconomical parameters in women</th>
<th>0 n=563</th>
<th>1–19 n=708</th>
<th>≥20 n=264</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alcohol consumption [g/d]</td>
<td>–</td>
<td>–</td>
<td>33.4</td>
</tr>
<tr>
<td>Beverages (% from total alcohol)</td>
<td>–</td>
<td>–</td>
<td>20.7</td>
</tr>
<tr>
<td>wine</td>
<td>–</td>
<td>21.6</td>
<td>9.6</td>
</tr>
<tr>
<td>beer</td>
<td>–</td>
<td>61.8</td>
<td>35.4</td>
</tr>
<tr>
<td>aperitifs</td>
<td>–</td>
<td>28.5</td>
<td>16.5</td>
</tr>
<tr>
<td>spirits</td>
<td>–</td>
<td>0.5</td>
<td>2.6</td>
</tr>
<tr>
<td>Age (y)</td>
<td>50.3</td>
<td>49.9</td>
<td>51.1</td>
</tr>
<tr>
<td>Years of schooling (y)</td>
<td>11.4</td>
<td>11.8</td>
<td>11.4</td>
</tr>
<tr>
<td>Systolic pressure [mm Hg]</td>
<td>128.8</td>
<td>128.4</td>
<td>130.4</td>
</tr>
<tr>
<td>Diastolic pressure [mm Hg]</td>
<td>79.8</td>
<td>79.2</td>
<td>80.4</td>
</tr>
<tr>
<td>Waist to hip ratio</td>
<td>0.82</td>
<td>0.82</td>
<td>0.83</td>
</tr>
<tr>
<td>Body mass index [kg/m²]</td>
<td>26.5</td>
<td>25.4</td>
<td>25.6</td>
</tr>
<tr>
<td>Fasting glucose [mmol/l]</td>
<td>5.36</td>
<td>5.23</td>
<td>5.45</td>
</tr>
<tr>
<td>Centre (%)</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>North</td>
<td>–</td>
<td>51.5</td>
<td>–</td>
</tr>
<tr>
<td>East</td>
<td>–</td>
<td>23.9</td>
<td>–</td>
</tr>
<tr>
<td>South</td>
<td>–</td>
<td>24.6</td>
<td>–</td>
</tr>
<tr>
<td>Current smoker [%]</td>
<td>15.6</td>
<td>16.1</td>
<td>17.8</td>
</tr>
<tr>
<td>Physical activity [%]</td>
<td>24.9</td>
<td>20.6</td>
<td>13.3</td>
</tr>
<tr>
<td>Drugs [%]</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Antihypertensive</td>
<td>19.4</td>
<td>16.7</td>
<td>17.4</td>
</tr>
<tr>
<td>Antidiabetic</td>
<td>12.0</td>
<td>12.3</td>
<td>11.0</td>
</tr>
<tr>
<td>Antidabetic</td>
<td>4.1</td>
<td>2.4</td>
<td>5.3</td>
</tr>
<tr>
<td>Occupational activity [%]</td>
<td>72.6</td>
<td>76.3</td>
<td>68.6</td>
</tr>
</tbody>
</table>
| *Standard deviation; †intense physical activity, 20 min, three times a week or more.

Table 3

<table>
<thead>
<tr>
<th>Coefficients of linear regression of blood lipids upon intake of types of alcohol</th>
<th>Men n=1581</th>
<th>Women n=1535</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total cholesterol</td>
<td>0.57</td>
<td>0.57</td>
</tr>
<tr>
<td>Wine</td>
<td>0.0040</td>
<td>0.0061</td>
</tr>
<tr>
<td>Beer</td>
<td>0.0017</td>
<td>0.0030</td>
</tr>
<tr>
<td>Aperitif</td>
<td>0.0045</td>
<td>0.0099</td>
</tr>
<tr>
<td>Spirits</td>
<td>-0.0058</td>
<td>-0.0294</td>
</tr>
<tr>
<td>HDL cholesterol</td>
<td>1.54</td>
<td>3.23</td>
</tr>
<tr>
<td>Wine</td>
<td>0.0021</td>
<td>0.0044</td>
</tr>
<tr>
<td>Beer</td>
<td>0.0015</td>
<td>-0.0009</td>
</tr>
<tr>
<td>Aperitif</td>
<td>0.0017</td>
<td>0.0098</td>
</tr>
<tr>
<td>Spirits</td>
<td>-0.0109</td>
<td>0.0174</td>
</tr>
<tr>
<td>Triglycerides</td>
<td>2.48</td>
<td>1.73</td>
</tr>
<tr>
<td>Wine</td>
<td>0.0011</td>
<td>0.0011</td>
</tr>
<tr>
<td>Beer</td>
<td>0.0029</td>
<td>0.0051</td>
</tr>
<tr>
<td>Aperitif</td>
<td>0.0004</td>
<td>0.0003</td>
</tr>
<tr>
<td>Spirits</td>
<td>-0.0180</td>
<td>-0.0089</td>
</tr>
</tbody>
</table>

Adjusted for antihypertensive, antidiabetic, hypolipidaemic drugs, centre, age, smoking, systolic blood pressure, years of schooling, physical activity, body mass index and occupational activity. * coefficient corresponding to an increase of 1 g of alcohol intake; †significance of β coefficients; ‡test of equality of β coefficients; §significance of the test of equality.
of diseases, or of beer
potential additive effect of wine
averages on HDL-c results from the specific role of ethanol. The
given alcoholic beverage on HDL-c seems rather hypotheti-
types of beverages in themselves. The specific influence of
amount of alcohol in the different types of beverages than by
suggest that the association between alcohol and HDL-c
together represented 86% of the total alcohol intake, and in
consumption. For both sexes, these beverages represented the
results showed that HDL-c was associated positively with wine
three patterns of alcoholic beverages. In the first approach the
ids were tested in a linear regression model and according to
parameters, triglyceride level in men remained significantly
and women. In contrast, after adjustment for the same
differences in men. This graded response of HDL-c with alcohol
and HDL-c or Apo A-I could be largely explained by standard
of living, sociocultural factors and the balance between the
amount of the different types of alcohol intake and the prefer-
beverage.
Globally in this study, the amount of total alcohol intake
was positively associated with age, tobacco consumption, body
mass index, waist to hip ratio, and negatively with years of
schooling. When considering the different types of alcoholic
beverages, it has been shown that in populations where wine
is not the main alcoholic beverage, wine drinkers had a
healthier lifestyle and a lower risk factor profile when compared
with other drinkers.
It was shown that moderate
consumption of wine was associated with good subjective
health also. In this study similar traits were found in wine
drinkers. Body mass index was lower and the proportion of
alcohol supplied by wine was higher in the subjects who had
physical activities and a higher educational level. By contrast,
beer drinkers were associated with a higher proportion of cur-
rent smokers, a higher proportion of men, a lesser physical
activity and a higher waist to hip ratio.
The area of residence was also one of the main determining
factors for the choice of alcoholic beverage as it was reported
10 years ago.
Beer was mainly consumed in the north of
France and wine in the south whatever the sex. In this study,
beer represented 31% and wine 56% of total alcohol intake for
men living in the north. By contrast, in the south, wine
accounted for 87% and beer 5% of total alcohol intake. A simi-
lar pattern was found for women. Aperitifs were consumed
mainly in the north and spirits in the east of France.
In France, wine is the most common and the most popular
alcoholic beverage. Its wide range of prices makes it affordable
whenever the socioeconomic status of the population. In this
population sample, among alcohol consumers, the proportion
of people who did not consume wine was very low, 7.7% and
12.7% of men and women respectively. Even among the mixed
consumption pattern, wine was preponderant and
represented 66% of total alcohol intake. Therefore, we can assume
that familial, social and cultural environments influence the
choice of alcoholic beverages. These results suggest that
lifestyle standards connected with wine preference are associ-
ated with a better blood lipid profile.
Furthermore, one of the main factors influencing blood lip-
ids that is not taken into account in this study is the diet. A
recent publication concerning a survey carried out in

Table 4 Drinking patterns and blood lipid levels among drinkers

<table>
<thead>
<tr>
<th>Blood lipids</th>
<th>Wine only mean</th>
<th>Wine+other beverages† mean</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDL cholesterol (mmol/l)</td>
<td>1.35 0.03</td>
<td>1.34 0.02</td>
<td><0.05</td>
</tr>
<tr>
<td>Triglycerides (mmol/l)</td>
<td>1.31 0.04</td>
<td>1.26 0.03</td>
<td><0.01</td>
</tr>
</tbody>
</table>

*All types of beverages except wine; †all types of beverages; ‡adjusted for antihypertensive, antidiabetic, hypolipidaemic drugs, centre, age, waist to hip ratio, smoking, systolic blood pressure, years of schooling, physical activity and total alcohol consumption; ¶performed after log transformation.
Denmark reported that wine drinking was associated with a higher intake of fruit, vegetables and olive oil for cooking. Nutritional habits and cardiovascular risk factors were investigated comparing a French population with a Northern Irish population. The conclusion was identical: wine drinkers had a healthier dietary pattern than other alcoholic beverage consumers.

Moreover, a possible bias related to misrepresented alcohol intake leading to misclassified subjects was considered by comparing reported alcohol consumption with γ-glutamyltranspeptidase, mean corpuscular volume and CAGE questionnaire. A significant graded relation (data not shown) was found when compared to alcohol showed a significant graded relation (data not shown).

CONCLUSION
In a French population sample, total alcohol intake was positively correlated with HDL-c, Apo A-I and triglycerides in both men and women. A specific influence on lipids by a given alcoholic beverage was not demonstrated clearly. However, nutritional habits, lower cardiovascular risk and higher social status linked to a wine consumption pattern could induce a more favourable blood lipid profile. In contrast, high alcohol intake is associated with high blood pressure, high waist hip ratio, the rise of triglyceride levels and unfavourable lifestyle behaviours such as smoking habits and low physical activity.

ACKNOWLEDGEMENTS
Funding: this study was supported by grants from the Institut National de la Santé et de la Recherche Médicale INSERM, the Direction Générale de la Santé, the Fonds d’intervention en Santé Publique, the Mutuelle Générale de l’Éducation Nationale, the Fondation de France, the CPAM de Sélestat, the Association régionale de Cardiologie d’Alsace, the Conseil Régional du Nord-Pas de Calais, the Institut Pasteur of Lille, the Unité d’évaluation du CHU de Lille and the Laboratoires Parke-Davis.

Conflicts of interest: none.

Authors’ affiliations
J-B Ruidavets, JF Ferrières, Department of Epidemiology, INSERM U558, Faculty of Medicine, Toulouse, France
P Ducimetière, A Bingham, INSERM U258, Paul Brousse Hospital, Villejuif, France
D Arveller, A Wagner, Department of Epidemiology, Faculty of Medicine, Strasbourg, France
P Amouyel, D Cotet, Department of Epidemiology, INSERM U508, Pasteur Institute of Lille, France
B Perret, Department of Biochemistry, INSERM U326, La Grande Hospital, Toulouse, France

REFERENCES