Prognostic factors in women with breast cancer: distribution by socioeconomic status and effect on differences in survival

C S Thomson, D J Hole, C J Twelves, D H Brewster, R J Black, on behalf of the Scottish Cancer Therapy Network

Abstract

Study objective—To quantify and investigate differences in survival from breast cancer between women resident in affluent and deprived areas and define the contribution of underlying factors to this variation. Design—Analysis of two datasets relating to breast cancer patients in Scotland: (1) population-based cancer registry data; (2) a subset of cancer registration records supplemented by abstraction of prognostic variables (stage, node status, tumour size, oestrogen receptor (ER) status, type of surgery, use of radiotherapy and use of adjuvant systemic therapy) from medical records. Setting—Scotland. Patients—(1) Cancer registration data on 21 751 women aged under 85 years diagnosed with primary breast cancer between 1970 to 1985, (2) national clinical audit data on 2035 women aged under 85 years diagnosed with primary breast cancer during 1987 for whom adequate medical records were available. Main results—Survival differences of 10% between affluent and deprived women were observed in both datasets, across all age groups. In the audit dataset, the distribution of ER status varied by deprivation group (65% ER positive in affluent group v 48% ER positive in deprived group; under 65 age group). Women aged under 65 with non-metastatic disease were more likely to have breast conservation than a mastectomy if they were affluent (45%) than deprived (32%); the affluent were more likely to receive endocrine therapy (65%) than the deprived (50%). However, these factors accounted for about 20% of the observed difference in survival between women resident in affluent and deprived areas. Conclusions—Deprived women with breast cancer have poorer outcomes than affluent women. This can only partly be explained by deprived women having more ER negative tumours than affluent women. Further research is required to identify other reasons for poorer outcomes in deprived women, with a view to reducing these survival differences.

Women with breast cancer from lower socioeconomic groups have relatively lower survival than affluent women and this difference in outcomes seems independent of the measure of socioeconomic status used. The clinical importance of this observation depends on the magnitude of the difference in survival. A recent review of cancer registration data from England and Wales indicated a difference of 5%–10% both for absolute and relative survival between the affluent and deprived groups depending on the period of diagnosis; similar figures were reported in the US, Finland, the Netherlands and by other British cancer registry studies. These differences equate to hazard ratios for the deprived women of between 1.16 to 1.49. Considering that five year observed survival for women with breast cancer in Scotland improved by just six percentage points (from 50% to 56%) in the 16 years from 1970 to 1985, the potential benefit of understanding and remedying the difference between socioeconomic groups is substantial. So far, attempts to explain socioeconomic differences on the basis of stage and treatment have produced conflicting findings, which may well reflect the differing health service provisions and socioeconomic structures in the countries in which the studies have been carried out.

In Scotland, it is possible to bring together high quality cancer registry data covering the whole country over a prolonged period with nationally conducted clinical audit data for a single year. The Scottish Cancer Therapy Network (SCTN) breast cancer audit of women diagnosed in 1987 collected a wide range of demographic and biological variables at presentation and details of treatment and outcome. This study builds on this earlier analysis of these data that examined survival among the surgically treated breast cancer patients only. That analysis confirmed the lower survival of women with breast cancer living in deprived areas and showed a difference in oestrogen receptor (ER) status between affluent and deprived patients; the potential contribution to differences in outcome from variation in ER status was unclear.

The first aim of this study was to establish that the effect of deprivation on survival observed in the registry data could be confirmed in the corresponding group of women in the audit, and not just in the subgroup of women treated surgically. Secondly, we wanted to assess the impact of differences in ER status and other prognostic factors on the effect of deprivation on survival in the well characterised group of patients in the audit. Finally, we sought to quantify the extent to which variations in ER status may account for the
observed differences in survival in the same group of women. The importance of the difference in the proportion of ER status by deprivation group needs to be investigated as women with ER negative tumours usually have poorer prognoses than women with ER positive tumours. Additionally, ER status should affect which form of adjuvant systemic therapy is given.

Methods

STUDY POPULATIONS

Cancer registration data

Data from the Scottish Cancer Registry were used to enable a precise estimate of the difference in the survival rates of women with breast cancer between socioeconomic groups to be obtained. Eligibility criteria for inclusion in survival analyses based on these data are detailed in a recent publication from the Scottish Cancer Intelligence Unit. Women were included if they had no previous history of malignancy, were resident in Scotland, aged under 85 years, registered as having invasive breast cancer (ICD-9 174) and diagnosed between 1978 and 1987 (before the introduction of the national breast screening programme in 1988); cases where the only record supporting a diagnosis of breast cancer was the death certificate were excluded. The DCO (death certificate only) rate covering the time period studied was 3% in Scotland. Deprivation groups were defined using the Carstairs Index, an area based score derived from 1981 census data, based on the postcode of residence at diagnosis. These scores were split into quintiles of the Scottish population and then combined into three groups (1) affluent, the least deprived quintile; (2) intermediate, quintiles 2, 3 and 4; and (3) deprived, the most deprived quintile. In Scotland, patients with cancer are not actively followed up to death by the cancer registry. Therefore, death information from the General Register Office (Scotland) was linked by probability matching until the end of 1996 and supplemented by deaths recorded on the cancer file for 1997 and 1998.

National Audit data

A national population-based study of all women with invasive breast cancer recorded by the Scottish Cancer Registry in 1987 was undertaken by the SCTN, with the aim of documenting patterns of care of patients resident in Scotland. The Medical Director of each Trust Hospital, the Chief Administrative Medical Officer of each Health Board and individual consultants were contacted to obtain permission to examine the case notes; all cooperated in the study. Specially trained SCTN data managers examined the case notes for all women eligible for inclusion in the audit.

The clinical factors examined in the audit were (1) “clinical stage”, adapted from that defined by TNM criteria in five categories (TNM stages I-III in patients undergoing surgery; an extra category for all TNM stage I-III non-surgical patients; TNM stage IV (metastatic) patients), (2) pathological tumour size (analysed in 1 cm bands), (3) pathological node status (positive; inadequate negative sample (INS-1, 2, 3 or unknown number sampled, all negative); negative (4 or more nodes sampled, all negative)) and (4) ER status (positive > 20 fmol/mg cytosolic protein or ≥ 10% staining). Histological grade was collected but not included in the analysis because 61% of women of all ages (and 56% of those under 65) did not have this information recorded.

The treatment factors available for analysis included type of surgery (mastectomy; breast conservation; none), use of radiotherapy to the breast, chest wall or axilla, and prescription of adjuvant systemic treatment, comprising endocrine therapy (tamoxifen; ovarian ablation) or chemotherapy, or both. A variable giving the possible combinations of any surgery, use of radiotherapy and any adjuvant systemic therapy was also investigated. Survival data for deaths up until 31 December 1998 (provisional for 1998) were obtained by probabilistic linkage with the death records from the General Register Office (Scotland).

DATA ANALYSIS

All of the clinical and treatment factors were examined to investigate whether any of them were associated with deprivation category, both in the overall group and stratified by age. Results are presented for age groups under and over 65 years, mainly to abrogate the influence of “missing data” that tended to be concentrated in the older age groups, and partly to allow comparison with the analysis of data from south east England. The significance of these relations was assessed by performing χ² tests of association. These comparisons were made both with and without the inclusion of the missing values to determine whether any apparently significant differences may have been attributable to variation in the proportion of missing values between deprivation categories. The treatment factors were examined only for women with no evidence of metastatic disease at presentation because it is in this group that any differences in the management of the disease are most likely to influence their longer term survival.

Kaplan-Meier estimates of survival at 5 and 10 years using both all cause mortality and breast cancer specific mortality were obtained for both the registry and the audit data. The breast cancer specific mortality was derived using the main underlying cause of death recorded by the Registrar General, Scotland and a breast cancer specific death was assumed when any of the following ICD-9 codes were recorded as the underlying cause on the death certificate: 174; 195.1; 196–198; 199; 217; 238.3; 238.9; 239.3; 239.9. (Scottish Cancer Intelligence Unit; appendix 7). Cox’s proportional hazards modelling was applied to the audit data to examine the effect of introducing other variables into the model on the relative hazard ratios for the intermediate and most deprived groups relative to the affluent group.

Results

All of the 21 751 eligible women aged under 85 years recorded on the Scottish Cancer Registry (SCR) as having invasive breast cancer
diagnosed during the years 1978 to 1987 were included in the analysis of registry data. The numbers of women in the three deprivation groups were 5080, 12,959 and 3719 for the affluent, intermediate and deprived groups, respectively. For 57 women, a deprivation score could not be assigned. For the audit, 2581 women were registered with the SCR at the start of data collection in 1994, of whom 2115 were eligible for the analysis. The remaining 466 women were excluded for the following reasons: death certificate only registrations (n=79); patients diagnosed and treated outside Scotland (n=16) or outwith the audit window (three months outside of 1987, n=35); those with non-invasive disease (n=36); not primary breast cancer (n=48); their records could not be traced (n=163) or their case notes had been destroyed (n=89). To be comparable with the registry data, a further 80 women aged 85 and over at diagnosis were also excluded from the study population. Therefore, the audit data analyses are based on 2035 women. There were 496 women in the affluent group, 1234 women in the intermediate group and 303 women in the deprived group for this dataset. Only two women could not be assigned a deprivation score.

SURVIVAL

Table 1 shows the Kaplan–Meier estimates of survival at 5 and 10 years for women with breast cancer diagnosed between 1978 and 1987 for the registry data and the 1987 audit data, based on breast cancer specific mortality for both datasets. Highly significant trends for better survival among the affluent are seen in each age group and across all ages in the registry data. The difference in breast cancer specific survival between the affluent and deprived groups was 8.7% (SE = 1.1%) at five years and 10.2% (SE = 1.1%) at 10 years. There was no evidence that the effect of deprivation category on survival varied significantly by age group (test for interaction p = 0.98) or that it decreased over the period 1978 to 1987 (test for interaction p = 0.06 for deprivation with year of diagnosis fitted as a continuous variable). Similar results were seen for the audit data, with differences in five year survival of 9.2% (SE = 0.5%) and 10 year survival of 13.0% (SE = 3.8%).

Similar differences in survival between the affluent and deprived groups were evident when any cause of death was used as the end point. The differences for the registry data were 8.7% (SE = 1.1%) and 10.1% (SE = 1.0%) at 5 and 10 years, respectively; for the corresponding audit data, the differences were 7.1% (SE = 3.6%) and 9.4% (SE = 3.6%), respectively. From the registry data, the hazard ratios relative to the affluent groups, after adjustment for age group, for the intermediate and deprived groups were 1.20 (95% CI 1.15, 1.26) and 1.37 (95% CI 1.29, 1.45), respectively. These were strikingly similar to those from the audit data, although the standard errors differed because of the far greater number of women in the registry data set compared with the audit. The corresponding age adjusted hazard ratios from the audit dataset were 1.19 (95% CI 1.01, 1.41) and 1.42 (95% CI 1.15, 1.76), respectively.

PROGNOSTIC FACTORS

The clinical effects of deprivation category derived from the audit is shown in table 2. The percentages are presented as totals of the known values only. Tests of association were performed with and without the inclusion of the unknown categories; in general the results were very similar with and without the unknowns. When the unknowns were excluded, no differences were seen for women under 65 years of age, over 65 years or for all ages combined, in the distribution of “clinical stage” (p = 0.07, 0.23 and 0.45 for <65 years, 65–84 and 84–88, respectively), pathological node status (p = 0.41, 0.35 and 0.20, respectively) or histological tumour size (p = 0.17, 0.12 and 0.17, respectively). However, differences by deprivation group were apparent for ER status that were significant for the under 65 age group and all ages

Table 1 Kaplan–Meier survival at 5 and 10 years for Registry data for 1978–1987 for breast cancer and for the Audit data (1987). Breast cancer specific deaths as endpoint

<table>
<thead>
<tr>
<th></th>
<th>5 years</th>
<th>10 years</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Aff</td>
<td>Intern</td>
</tr>
<tr>
<td>Registry data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total number*</td>
<td>5080</td>
<td>12 895</td>
</tr>
<tr>
<td>Age group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25–44 (n=3012)</td>
<td>71.9%</td>
<td>69.2%</td>
</tr>
<tr>
<td>45–54 (n=4513)</td>
<td>71.7%</td>
<td>67.5%</td>
</tr>
<tr>
<td>55–64 (n=5265)</td>
<td>69.6%</td>
<td>63.3%</td>
</tr>
<tr>
<td>65–74 (n=5258)</td>
<td>67.3%</td>
<td>63.5%</td>
</tr>
<tr>
<td>75–84 (n=3683)</td>
<td>61.1%</td>
<td>56.9%</td>
</tr>
<tr>
<td>All (n=21 751)</td>
<td>68.6%</td>
<td>63.6%</td>
</tr>
<tr>
<td>Audit data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total number†</td>
<td>496</td>
<td>1234</td>
</tr>
<tr>
<td>Age group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25–44 (n=295)</td>
<td>71.3%</td>
<td>72.6%</td>
</tr>
<tr>
<td>45–54 (n=4049)</td>
<td>72.3%</td>
<td>67.9%</td>
</tr>
<tr>
<td>55–64 (n=486)</td>
<td>78.5%</td>
<td>67.4%</td>
</tr>
<tr>
<td>65–74 (n=479)</td>
<td>73.7%</td>
<td>61.1%</td>
</tr>
<tr>
<td>75–84 (n=363)</td>
<td>62.0%</td>
<td>60.8%</td>
</tr>
<tr>
<td>All (n=20 405)</td>
<td>72.2%</td>
<td>67.7%</td>
</tr>
</tbody>
</table>

*A deprivation category could not be assigned to 25 cases. †There were 20 cases aged under 25 years included in the 0–84 group. ‡A deprivation category could not be assigned to two cases. §There were three cases aged under 25 years included in the 0–84 group.
Table 2 Distribution of cases (%) for the clinical factors in the deprivation groups by age group. Note that the percentages for the known values are based on the total of known cases (that is, excluding the unknowns).

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Total</th>
<th>Aff</th>
<th>Interm</th>
<th>Dep</th>
<th>p value§</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-84*</td>
<td>1234</td>
<td>303</td>
<td>496</td>
<td>330</td>
<td>0.23</td>
</tr>
<tr>
<td>No %</td>
<td>n/a</td>
<td>728</td>
<td>n/a</td>
<td>172</td>
<td>0.07</td>
</tr>
</tbody>
</table>

Clinical factors

"Clinical stage"

- **Stage I (surgical)**: 63 (25.8%), 145 (59.4%), 18 (7.4%).
- **Stage II (surgical)**: 14 (5.7%), 69 (29.2%), 14 (10.0%).
- **Stage III (surgical)**: 4 (1.6%), 6 (2.5%), 7 (5.0%).
- **Stage IV (surgical)**: 0 (0.0%), 1 (0.4%), 0 (0.0%).

ER status

- **Positive**: 133 (54.6%), 252 (58.1%), 61 (48.0%).
- **Negative**: 73 (35.4%), 182 (41.9%), 66 (52.0%).
- **Unknown**: 87 (n/a), 294 (n/a), 45 (n/a).

Node status

- **Positive**: 133 (54.6%), 252 (58.1%), 61 (48.0%).
- **Negative**: 73 (35.4%), 182 (41.9%), 66 (52.0%).
- **Unknown**: 87 (n/a), 294 (n/a), 45 (n/a).

Tumour size

- **≤1 cm**: 24 (10.6%), 82 (16.0%), 12 (9.2%).
- **>1 cm ≤2 cm**: 99 (43.8%), 178 (34.8%), 49 (37.7%).
- **>2 cm ≤3 cm**: 58 (25.7%), 139 (27.1%), 34 (26.2%).
- **>3 cm ≤4 cm**: 21 (9.3%), 57 (11.9%), 13 (10.0%).
- **>4 cm ≤5 cm**: 21 (9.3%), 62 (13.0%), 10 (7.7%).
- **>5 cm**: 10 (4.4%), 44 (8.2%), 12 (9.2%).

Tumour size by age group

- **65–84***: 293 (n/a), 728 (n/a), 172 (n/a).
- **0–84***: 203 (n/a), 506 (n/a), 131 (n/a).
- **0–64**: 496 (n/a), 1234 (n/a), 303 (n/a).

p values

- **Clinical stage**: 0.07, 0.23, 0.45.
- **ER status**: 0.01, 0.71, 0.02.
- **Node status**: 0.41, 0.35, 0.20.
- **Tumour size**: 0.17, 0.12, 0.17.

*A deprivation category could not be assigned to two cases. †TNM clinical stage for non-metastatic, surgical cases (I, II or III) with extra categories for non-metastatic, non-surgical and metastatic cases. ‡Inadequate negative sample = 1, 2, 3, or unknown number of nodes sampled, all negative. §Divide by the original number of cases to get the percentage for the known values.
Table 3. Distribution of cases (%) for the treatment combinations and type of surgery in the deprivation groups by age group for women with non-metastatic disease only.

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Total</th>
<th>No Hormone</th>
<th>Any Hormone</th>
<th>Any Hormone by ER Status</th>
<th>Hormone Given</th>
<th>No Hormone</th>
<th>ER Positive</th>
<th>ER Negative</th>
<th>ER Unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td><65</td>
<td>759</td>
<td>275</td>
<td>484</td>
<td>336</td>
<td>178</td>
<td>281</td>
<td>325</td>
<td>257</td>
<td>171</td>
</tr>
<tr>
<td>65–84</td>
<td>528</td>
<td>198</td>
<td>330</td>
<td>274</td>
<td>167</td>
<td>361</td>
<td>281</td>
<td>244</td>
<td>182</td>
</tr>
<tr>
<td>85+</td>
<td>399</td>
<td>116</td>
<td>283</td>
<td>214</td>
<td>104</td>
<td>295</td>
<td>243</td>
<td>162</td>
<td>160</td>
</tr>
</tbody>
</table>

*Neurocortin category could not be assigned to two cases. †p value of association.

Scotland. The size of this difference (8.7% at 5 years and 10.2% at 10 years) seems to be consistent across the age groups and over time. We confirmed this effect in women diagnosed over a single year in whom a detailed analysis of prognostic and treatment factors identified differences in ER status between deprivation categories. We were able to show, however, that the higher incidence of ER negative tumours in deprived women accounted only in part for the poorer outcome in these women.

The data supporting an effect of deprivation on survival in women with breast cancer are robust. Several other British studies, one national and the others from different cancer registries in England reported differences in survival between deprived and affluent women of a similar magnitude to that we describe. The differences in survival by deprivation group remain in the latest registry data available for Scotland. The suggestion that the effect of deprivation on survival varied by age and was larger for women aged over 65 is not supported by our results.

Questions have been raised regarding the reliability of cause of death information from death certificates. However, they seem not to constitute a bias here as differences between the affluent and deprived groups are of a similar order of magnitude whether all cause or breast cancer specific mortality is used as the end point. In this analysis we chose to look at breast cancer specific deaths.

Cancer registry data in Scotland are known to be of high quality both in terms of accuracy and completeness. The registry data complement each other and have different strengths. The registry data benefit from large numbers and accuracy; the audit studied fewer women but the additional data on demography, pathology and treatment provided more detailed information. Our audit data are based on the single year 1987. By contrast, the cancer registry data cover the period 1978 to 1987, accumulating a large number of cases to give a more precise estimate of differences in survival. This period was chosen as being prior to the introduction of the national breast screening programme, avoiding problems of lead and length time bias artefactually extending survival times.

Looking at the two datasets, an important issue is whether the difference between survival rates for affluent and deprived women obtained from the single year is representative of the precise estimate derived from the 10 year period. We confirmed this first by showing there was no evidence of an interaction between year of diagnosis and survival difference between the affluent and the deprived groups in the registry data. Secondly, the difference in survival derived from the audit data was extremely close to that from the registry data (9.2% and 8.7% at 5 years, respectively). We believe, therefore, that the audit is representative and an appropriate dataset in which to examine prognostic and treatment factors in detail.

Having confirmed the effect of deprivation on survival in the audit dataset, one concern is...
Variation in survival by socioeconomic status

Table 4 Relative hazard ratios (RHR) with 95% confidence intervals for the groups of deprivation when different factors are entered into separate Cox models, with the affluent group as the baseline for all relative hazard ratios. Breast cancer specific deaths as endpoint.

<table>
<thead>
<tr>
<th>Factors forced into model</th>
<th>Group</th>
<th>RHR for deprivation (95% CI)</th>
<th>p value* for analysis</th>
<th>RHR for deprivation (95% CI)</th>
<th>p value* for analysis</th>
<th>RHR for deprivation (95% CI)</th>
<th>p value* for analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(<65)</td>
<td></td>
<td>(65-84)</td>
<td></td>
<td>(0-84)</td>
<td></td>
</tr>
<tr>
<td>deprivation alone</td>
<td>Intermediate</td>
<td>1.23 (0.99, 1.53)</td>
<td>0.0367</td>
<td>1.13 (0.99, 1.54)</td>
<td>0.0812</td>
<td>1.12 (0.91, 1.39)</td>
<td>0.2703</td>
</tr>
<tr>
<td></td>
<td>Most Deprived</td>
<td>1.43 (1.08, 1.89)</td>
<td></td>
<td>1.22 (1.02, 1.45)</td>
<td></td>
<td>1.23 (1.01, 1.50)</td>
<td></td>
</tr>
<tr>
<td>+ Age group</td>
<td>Intermediate</td>
<td>1.23 (0.99, 1.52)</td>
<td>0.0467</td>
<td>1.14 (0.88, 1.49)</td>
<td>0.0926</td>
<td>1.09 (0.81, 1.45)</td>
<td>0.5000</td>
</tr>
<tr>
<td></td>
<td>Most Deprived</td>
<td>1.41 (1.06, 1.87)</td>
<td></td>
<td>1.38 (1.03, 2.01)</td>
<td></td>
<td>1.46 (1.15, 1.87)</td>
<td></td>
</tr>
<tr>
<td>+ ER status</td>
<td>Intermediate</td>
<td>1.18 (0.95, 1.47)</td>
<td>0.1272</td>
<td>1.16 (0.89, 1.52)</td>
<td>0.0826</td>
<td>1.11 (0.89, 1.41)</td>
<td>0.2500</td>
</tr>
<tr>
<td></td>
<td>Most Deprived</td>
<td>1.33 (1.00, 1.76)</td>
<td></td>
<td>1.46 (1.05, 2.04)</td>
<td></td>
<td>1.37 (1.11, 1.70)</td>
<td></td>
</tr>
<tr>
<td>+ Node status</td>
<td>Intermediate</td>
<td>1.18 (0.95, 1.47)</td>
<td>0.3839</td>
<td>1.15 (0.89, 1.52)</td>
<td>0.0401</td>
<td>1.14 (0.96, 1.34)</td>
<td>0.0399</td>
</tr>
<tr>
<td></td>
<td>Most Deprived</td>
<td>1.33 (1.00, 1.76)</td>
<td></td>
<td>1.46 (1.05, 2.04)</td>
<td></td>
<td>1.37 (1.11, 1.70)</td>
<td></td>
</tr>
<tr>
<td>+ Tumour size</td>
<td>Intermediate</td>
<td>1.18 (0.95, 1.47)</td>
<td>0.4733</td>
<td>1.16 (0.89, 1.51)</td>
<td>0.1315</td>
<td>1.15 (0.98, 1.36)</td>
<td>0.0780</td>
</tr>
<tr>
<td></td>
<td>Most Deprived</td>
<td>1.33 (1.00, 1.76)</td>
<td></td>
<td>1.46 (1.05, 2.04)</td>
<td></td>
<td>1.37 (1.11, 1.70)</td>
<td></td>
</tr>
<tr>
<td>+ Clinical stage</td>
<td>Intermediate</td>
<td>1.18 (0.95, 1.47)</td>
<td>0.2213</td>
<td>1.10 (0.84, 1.44)</td>
<td>0.4416</td>
<td>1.18 (1.00, 1.40)</td>
<td>0.0926</td>
</tr>
<tr>
<td></td>
<td>Most Deprived</td>
<td>1.33 (1.00, 1.76)</td>
<td></td>
<td>1.46 (1.05, 2.04)</td>
<td></td>
<td>1.37 (1.11, 1.70)</td>
<td></td>
</tr>
<tr>
<td>+ Interaction of nodes</td>
<td>Intermediate</td>
<td>1.18 (0.95, 1.47)</td>
<td>0.2605</td>
<td>1.10 (0.84, 1.44)</td>
<td>0.4163</td>
<td>1.18 (1.00, 1.40)</td>
<td>0.0977</td>
</tr>
<tr>
<td></td>
<td>Most Deprived</td>
<td>1.33 (1.00, 1.76)</td>
<td></td>
<td>1.46 (1.05, 2.04)</td>
<td></td>
<td>1.37 (1.11, 1.70)</td>
<td></td>
</tr>
</tbody>
</table>

*p values are the Wald statistics for the deprivation factor in the model, conditional on the other factors being present. †A deprivation category could not be assigned to two cases.
negative tumours generally have a worse prognosis and should receive different adjuvant treatment compared with those with ER positive tumours.

Two treatment factors also emerged that differed between the affluent and deprived women with non-metastatic disease, although neither of these factors seemed to be important in relation to older women. Firstly, affluent women under 65 years of age were more likely to receive conservation surgery compared with mastectomy. This may reflect in part the higher proportion of deprived women with large (>4 cm) tumours, although this association was not statistically significant (p = 0.17). However, in terms of survival, breast conservation is no more effective than mastectomy so the differential application of these two types of surgery to affluent and deprived women should have no effect on outcome. The second treatment difference observed in the audit dataset was that affluent women were more likely to receive endocrine therapy. This probably reflects the higher incidence of ER positive tumours in these women. Neither type of surgery nor use of endocrine therapy differed between affluent and deprived women in the separate West of Scotland study of women with early breast cancer aged under 75 years.

As differences in treatment between affluent and deprived women do not seem to account for their differing survival, can it be explained by the differences in ER status we observed? Survival for patients with ER negative tumours is poorer than for those with ER positive disease, differences of around 10% being reported. For women under 65 years, our own audit dataset indicates a larger difference in five year survival of 22% (81% and 59% for ER positive and negative patients, respectively). If we assume that ER status specific survival rates are the same for a given type of surgery, neither the type of surgery nor use of endocrine therapy differentiated between affluent and deprived women. This may reflect in part the higher proportion of ER positive tumours in affluent and deprived women (0.65) would equate to a five year survival of 73.3% (0.65 x 81 + 0.35 x 59). For the deprived women, with a lower incidence of ER positive tumours (0.48), this equates to a five year survival of 69.6% (0.48 x 81 + 0.52 x 59). This calculation estimates that the difference in survival rates attributable to the differing proportions of ER status would be just 3.7%; if the same calculation is repeated with a “not known” category included, the difference in survival is 2.2% (the five year survival for women with ER status unknown is 65%). These differences are substantially less than the differences in breast cancer specific survival seen in either the audit or registry datasets, suggesting that other factors also account for the poorer survival of deprived women with breast cancer.

This study has confirmed the adverse effect of deprivation on breast cancer specific survival in Scotland, which is equally large in women aged under and over 65 years of age. Deprived women under 65 are more likely than affluent women to have ER negative tumours but the difference in breast cancer specific survival we observed was much greater than could be explained by differences in ER status alone (9.2% and 3.7%, respectively). Likewise, in the audit dataset the age adjusted excess risk of death of 41% in women from deprived areas falls only to 33% with the inclusion of ER status in the multivariate model of survival. It is unlikely, therefore, that variations in the incidence of ER positive tumours are the major reason for survival differences between socioeconomic groups in Scotland. These differences in outcome between the affluent and deprived groups are substantially larger than the known benefit of adjuvant systemic therapy on survival, suggesting factors such as comorbidity, immunological competence and nutrition may be involved. Although Macleod et al suggested comorbidity may be important, these areas have received relatively little attention and warrant further investigation.

The authors would like to thank Dr Julie Kidd for helpful discussions and for providing some of the literature, and the SCOT data managers for their help with data validation and support.

Funding: The Scottish Cancer Therapy Network is funded by grants from the Clinical Resource and Audit Group and the Chief Scientist Office, both of the Scottish Executive Health Department. However, the views expressed are those of the authors.

Conflicts of interest: none.