Level of aggregation for optimal epidemiological analysis: the case of time to surgery and unnecessary removal of the normal appendix

S W Wen, K Demissie, D August, G G Rhoads

Abstract

Study objective—To illustrate the concept of “individualised fallacy”, the result of improper interpretation and inference about aggregate level associations on the basis of associations at the individual level, in epidemiology.

Design—Cohort study.

Setting—Canadian province of Ontario.

Patients—All patients who underwent primary appendicectomy in 175 Ontario hospitals from 1989 to 1992. The association between rate of normal appendix removal and time to surgery was analysed at two levels: (1) at individual patient level, in which, for each patient, the exact number of days to surgery was derived, and (2) at hospital level, in which hospital specific proportions of time to surgery was calculated.

Main results—Measured at individual level, compared with patients who had an operation on the same day of admission, the odds ratio was 2.41 (95% confidence intervals 2.28, 2.56) for patients who had an operation > 1 day after admission. Measured at hospital level, each 10% increase in the proportion of patients who had an operation > 1 day after admission resulted in a 15% reduction in the odds of normal appendix removal (odds ratio 0.85, 95% confidence intervals 0.82, 0.88).

Conclusions—In this case study, hospital level measure correctly predicted a reduction in the rate of normal appendix removal by delaying surgery, whereas individual level measure biased the direction of the relation to the opposite. This example illustrates that bias in across level inference can occur either at individual or ecological level. The preferred level of analysis is the one that minimises confounding; often, it must be selected on the basis of a priori knowledge of the subject area.

J Epidemiol Community Health 2001;55:198–203

Measurement of health outcomes and determinants may occur at various levels of aggregation (patient, physician, institution). Data collected from individual patients can also be aggregated at group level and form the basis for group level analysis. Individual and group level variables may capture different domains of the same construct or may represent a different construct. Across level inference is a phenomenon whereby inference about one level of analysis is made on the basis of associations observed at a different level. The most commonly discussed across level inference bias in epidemiology is “ecologic fallacy”, which is the result of improper interpretation and inference about individual level associations based on associations at the aggregate level. Theoretically, bias in across level inference can occur in either direction. Recently, the notion of “individualised fallacy”, the results of improper interpretation and inference about aggregate level associations on the basis of associations observed at the individual level, has gained some attention in epidemiology. However, concrete examples illustrating this phenomenon are lacking in the epidemiological literature.

In a study of risk factors for unnecessary normal appendix removal, based on a hospital discharge data from the Canadian province of Ontario, we hypothesised that the degree of aggressiveness towards performing surgery for a diagnosis of appendicitis is an important determinant of the rate of unnecessary normal appendix removal. Specifically, we expected the rate to be higher among patients who received immediate surgery after admission to a hospital, and the rate to be lower among patients whose surgery was delayed until the diagnosis become clearer.

In a preliminary analysis of the association between time to surgery and rate of normal appendix removal, when analysis was performed at patient level, we found the proportion of normal appendix removal was not lower but instead substantially higher among patients who waited longer in hospital. This finding was reversed when hospital level analysis was performed instead, with a higher proportion of normal appendix removal among hospitals that perform surgery on average shortly after the patient is admitted in comparison with those hospitals that have an average longer time to surgery.

The aim of this paper was to examine the reasons for this paradox and to emphasise the need for external criteria in selecting the optimal level for analysis.

Methods

In the Province of Ontario, records of all acute care hospital separations (discharges, transfers and in-hospital deaths) have been maintained on computer tapes by the Hospital Medical Records Institute (now called the Canadian Institute for Health Information). Discharge summaries, operative notes, and pathology
Level of aggregation in data analysis

Reports are routinely coded by trained coders. Diagnoses codes follow the International Classification of Diseases, Ninth Revision (ICD-9)15 and procedure codes follow the Canadian Classification of Diagnostic, Therapeutic and Surgical Procedures.16

Records were selected for all Ontario residents with full demographic data who underwent a primary appendicectomy for fiscal years 1989 to 1992 (1 April 1989 to 31 March 1990). Procedure and diagnosis codes were used to identify patients whose appendix was removed after the diagnosis of appendicitis. If a patient has a primary discharge diagnosis code for acute appendicitis (ICD-9: 540.0; 540.1; 540.9; 541) and at the same time a primary procedure code of 59.0 (for appendicectomy), then he or she is considered to have had appendicectomy for the diagnosis of acute appendicitis. Exploratory laparotomy or incidental appendicectomy were not included in this definition. The diagnosis of appendicitis was based on pathology reports or surgical notes, or both. Unnecessary appendicectomy is defined as primary appendicectomy for which surgical and pathology reports indicate a normal appendix after surgery. Patients with subacute, chronic or relapsing appendicitis for whom appendicectomy was performed were excluded from the analysis because of ambiguity about diagnostic criteria.17

Time to surgery (preoperative length of in-hospital stay) was calculated by subtracting the date of admission from the date of surgery. The variable time to surgery was validated by comparing its value with the postoperative length of stay (from date of surgery to date of discharge) and total length of stay (from date of admission to date of discharge). Variables used for the validation were recorded separately in the dataset. If the time to surgery was less than zero, or if the sum of time to surgery and postoperative length of stay was not equal to the total length of stay, time to surgery was assigned a missing value. According to this rule, 23 cases received a missing value for this variable.

The dependent variable of interest in this analysis was normal appendix removal and the independent (explanatory) variable was time to surgery. The explanatory variable (time to surgery) was measured at two levels: (1) at individual patient level, in which, for each patient, the exact number of days to surgery was derived, and (2) at hospital level, in which hospital specific proportions of time to surgery was calculated. We assumed the patient level variable reflects the ambiguity in clinical presentation while the hospital level variable is likely to measure the practice style and practice guidelines of the specific hospital. We were aware of the intra-hospital variations in surgical style among surgeons within the same hospital. However, on average, hospitals with larger proportion of delay to surgery would be more conservative.

The patient’s age, sex, and admission status were considered in the analysis as appropriate. A comorbidity index for each patient was calculated using Deyo’s method. This method adapts the Charlson’s index of comorbidity for ICD-9-cm based diagnoses.18,19 In the study of treatment outcomes, one potential confounding factor is the difference in secondary or pre-existing diseases among individuals and groups. The comorbidity index is designed to reflect these coexisting conditions, so that some adjustments can be made when comparing outcomes. In our study sample, comorbidity index related conditions were identified from up to seven additional discharge diagnoses (second to eighth diagnosis); the first diagnosis was used to define appendicitis status. Ontario discharge abstracts permit standard calculation of this comorbidity index in nearly all cases.20

Information on hospital bedsize and teaching status (presence or absence of house staff) was taken from the Canadian Hospital Directory, 1991–1992.21

Univariate and multiple logistic regression analysis was performed to examine the association between various hospital and patient factors with the rate of normal appendix removal. To assess the differential effect of time to surgery measured at the individual level compared with that measured at the hospital level, four logistic regression models were used: model including time to surgery at the individual level alone, model including time to surgery at the hospital level alone, model including simultaneous time to surgery at individual level and hospital level, and model including nested time to surgery at the individual level and the hospital level. To facilitate the interpretation of the results from the nested logistic regression model, dummy variables were created for the four hospital levels (<15% versus 15% to <18% versus 18% to <25% versus ≥25%) of prolonged time to surgery. As an initial analysis revealed no interaction between hospital and individual measures of time to surgery, and as the hospital effect of ≥15% overlapped in large extent, a dichotomised hospital measure of time to surgery (≥15% versus >15%) was used in the final nested logistic regression model. Regression analyses were repeated after excluding patients admitted to low volume hospitals (less than 20 primary appendicectomy cases during 1989–1992), or excluding patients admitted electively. Statistical Analysis System (SAS) software was used to perform the analysis.

Results

During the four years of study, 35 891 primary appendicectomies with acute appendicitis (positive) and 7170 primary appendicectomies with diagnoses unrelated to the appendix (negative) were performed in 175 Ontario hospitals. The overall rate of normal appendix removal was 16.7%.

All of the patient factors studied were related to the rate of normal appendix removal, with substantially increased rates in those patients admitted electively, or those of female or older patients, or those with comorbidity (table 1). The strongest predictor of normal appendix removal was the admission status. More than half of the patients admitted electively had a normal organ removed, compared with 13.8%
and 16.6% for those admitted emergently or urgently, respectively (table 1). The hospital primary appendicectomy volume, bed size, and teaching status, on the other hand, had only a modest effect on the rate of normal appendix removal (table 1). The effect of time to surgery on the rate of normal appendix removal was dependent on how it was measured; at the individual patient level, the rate in those who had an operation > 1 day after admission was more than double those who had an operation on the same day of admission. At the hospital level, the rate decreased as the percentage of patients who had an operation > 1 day after admission increased (table 1).

At either patient or hospital level analysis, adjustment for important patient and hospital factors did not change the results (table 2). The direction of the relation between time to surgery and rate of normal appendix removal depended on whether it was measured at the individual patient level or hospital level. Measured at the individual level, those patients who had an operation > 1 day after admission had a twofold higher rate of normal appendix removal than those who had an operation on the same day of admission. Measured at the hospital level, each 10% increase in the proportion of patients who had an operation > 1 day after admission resulted in an 8% increase.
reduction in the rate of normal appendix removal (table 2). When the two measures of time to surgery were analysed simultaneously, the effect for individual level measure increased to 2.41 while the effect for hospital level measure decreased to 0.85 (table 2). Nested logistic regression analysis obtained similar results: given the hospital level of time to surgery, those patients who had an operation ≥1 day after admission had a higher rate of normal appendix removal than those who had an operation on the same day of admission, and, given patient’s time to surgery, hospitals with ≥15% of patients who had an operation ≥1 day after admission had a substantially lower rate of normal appendix removal than the hospitals with <15% of patients who had an operation ≥1 day after admission (table 3).

Results obtained from analysis after excluding patients admitted to low volume hospitals or excluding patients admitted electively were similar (data not shown).

Discussion

Data at different levels of aggregation are common in epidemiology. For example, in studies of clinical progress, predictors can be measured at individual patient level such as age and sex, or at physician level such as specialty and attitude, or at institution level such as teaching status and policy. The distinction of the level of measurement is not clear under certain circumstances. Firebaugh suggested that variables be divided into two broad groups: those defined at individual levels and those defined at the aggregate level. He referred to the latter as macro-properties. Macro-properties may be aggregates of individual level data (for example, proportion of patients with certain features in a clinic or institute) or may be non-aggregated variables (for example, the presence of a policy). Often this concept becomes ill defined when the macro-properties are aggregates of individual level data. For example, physician’s attitude or practice style is seldom directly recorded in a medical chart and other clinical records. On the other hand, indirect measures of practice style can be derived from patients record through a summary index measure. However, this derived index at institution level may fundamentally differ from the original index measured at patient level, because the former measures practice style while the latter measures patient characteristics.

In the case study presented in this paper, we found an opposite effect of time to surgery when analysis was performed at patient and hospital levels. At the patient level analysis, the odds of normal appendix removal was increased almost twofold in those patients who had surgery at ≥1 day after admission in comparison with those who had an operation on the same day of admission. On the other hand, hospital level analysis revealed an 8% reduction in the odds of normal appendix removal with each 10% increase in the hospital specific proportion of patients who had an operation at ≥1 day after admission. This paradox may be the result of two forces that delay surgery in patients with suspected appendicitis: (1) the ambiguity in the clinical picture and the subsequent difficulty in making a rapid and accurate diagnosis, which was influential at patient level, and (2) the more conservative attitude towards surgical treatment of patients with suspected appendicitis, which was the subject of our hypothesis. The latter effect was confounded by the former at the individual level of analysis, but was shown more clearly at the aggregate level where such confounding was minimised. Because referral bias is not large for appendicitis cases, the hospital specific proportion of patients who had an operation ≥1 day after admission may be a good indicator of the conservative attitude towards surgical treatment and watchful waiting in hospitals where the patient is admitted. The argument that there might be two components causing delayed surgery was strengthened by the fact that, when the two measures of time to surgery were analysed simultaneously, the magnitude of effect was substantially increased in its own direction (odds ratios changed from 2.33 to 2.41 and from 0.92 to 0.85 for measures at the individual level and hospital level, respectively), indicating that the “independent” individual effect and “independent” hospital effect became more demonstrated when they were adjusted each other.

Table 3 Odds ratio obtained from multiple logistic regression analysis, nesting hospital and individual patient level measures of time to surgery

<table>
<thead>
<tr>
<th>Hospital level (% in ≥1 day to surgery of the admitted hospital)</th>
<th>Patient level</th>
<th>0 day</th>
<th>≥1 day</th>
</tr>
</thead>
<tbody>
<tr>
<td><15</td>
<td>1 (…)*</td>
<td>2.74 (2.39, 3.13)</td>
<td></td>
</tr>
<tr>
<td>≥15</td>
<td>0.78 (0.72, 0.85)</td>
<td>1.80 (1.65, 1.96)</td>
<td></td>
</tr>
</tbody>
</table>

*Reference group. Numbers in parentheses represent 95% confidence intervals.

KEY POINTS

- Measurement of health outcomes and determinants may occur at various levels of aggregation (patient, physician, institution).
- Across level inference is a phenomenon whereby inference about one level of analysis is made on the basis of associations observed at a different level.
- The most commonly discussed across level inference bias in epidemiology is “ecological fallacy”.
- In this study, we used a concrete example to illustrate “individualised fallacy”, the result of improper interpretation and inference about aggregate level associations on the basis of associations at the individual level.
- The study case emphasises that bias in across level inference can occur at either individual or ecological level in epidemiological studies with data measured at different levels of aggregation, and the preferred level of analysis is the one that minimises confounding; often, it must be selected on the basis of a priori knowledge of the subject area.

www.jech.com
Actually, all patient factors related to an increased rate of normal appendix removal, such as being admitted electively, being female, older age, or with coexisting diseases, have somehow reflected the ambiguity in the clinical picture and the difficulty in diagnosis and therefore the delay in surgery.22 The position that watchful waiting for patients with no clear cut symptoms and signs of appendicitis could reduce normal organ removal is also consistent with previous observation.23,24 and common wisdom. We realise that there may be substantial intra-hospital variations in surgical style among surgeons within the same hospital. The effect of surgical style would be more evident if we could calculate surgeon specific proportion of delayed surgery.

It may be useful to elaborate a little further on the issue of clinical management of patients with suspected appendicitis. Diagnostic accuracy may be improved through use of diagnostic algorithms,25 more reliance on watchful waiting,25 or conservative attitude to surgical exploration in uncertain cases, or all three.26 Reliance on watchful waiting may delay laparotomy and risk organ perforation. Previous studies have found that the perforation rate increased with diagnostic accuracy,27,28 and postoperative mortality was higher and length of in-hospital stay longer in perforated cases than non-perforated cases.29,30 Velanovich and Satava suggested a more aggressive surgical approach to patients with suspected appendicitis, despite more frequent removal of normal appendixes, because an increased diagnostic accuracy (presumably resulted from a delay in surgery) has been related to adverse postoperative outcomes such as perforation.31 On the other hand, Andersson and colleagues suggested that as perforating and non-perforating appendicitis seem to be separate entities, and because self resolution is common in appendicitis, more expectant management for suspected appendicitis is needed to reduce the toll from normal appendix removal.32 In a large population-based study, we also observed a positive relation between diagnostic accuracy and perforation, but diagnostic accuracy was unrelated to either in-hospital death rate or length of in-hospital stay.33 How can one interpret these seemingly contradictory findings? We hypothesised that there are two categories of perforation. The first is represented by the person who arrives for medical care with obvious peritonitis and signs of generalised infection. The appendix in these people may well have perforated some time before medical attention was sought. It is not surprising that peritonitis will lead to delayed discharge and even death in these people. The other category is represented by the person with abdominal pain and a less clear cut clinical picture who is watched closely in hospital. Some of these people may have appendicitis that resolves spontaneously; others may have a different diagnosis. However, when observation and investigations add support to the diagnosis of acute appendicitis, surgery can be undertaken promptly. This type of watchful waiting, with deliberately delayed surgery, could well lead to both higher accuracy and more perforation, but with modern antibiotics, the clinical consequences of "controlled perforation" would be small. The finding in this study, admission status was the strongest predictor of normal appendix removal, with a fourfold to fivefold increase in patients admitted electively as compared with patients admitted emergently or urgently provides further support for the safety of delaying surgery in certain cases. Appendicitis is an acute disease that should normally be admitted emergently or urgently. Two types of patients might be admitted electively: those with a slow onset and no clear cut symptoms or signs at the very beginning (in which case the appendix might be truly "normal"), and those with an acute onset that was somehow self resolved before seeking hospital care (in which case the appendix might become "normal" while waiting at home or during an office visit).

Analysis of data collected at both individual and ecological levels can be performed using two approaches: aggregating all the individual level data (dependent and independent variables) so that the entire analysis can be performed at the ecological level, or limiting the dependent variable to the level of individual, but attaching ecological covariates to each individual. In a previous study we performed two parallel analyses: aggregating all the individual level data and performing the analysis at the level of hospital, and individualising all hospital variables and performing the analysis at the level of individual, but attaching ecological covariates to each person.34 That study is much similar to the current one: same determinant (delay in surgery), same covariates (for example, age, sex, coexisting diseases), and same population. The only difference between that study and the current one is the outcome: mortality and complications for the previous study, and normal appendix removal for the current one. The results obtained from the two parallel analyses in the previous study were in the same direction and similar magnitude. However, by forcing all individual variables into hospital specific means or proportions, the power of the individual level variables in predicting outcomes was greatly reduced. Many of the clinically meaningful and strong outcome predictors, such as age, sex, and coexisting disorders, became non-significant in the models aggregating all individual level variables into hospital level variables.35 As a result, we elected to conduct the current analysis at patient level, and attaching hospital covariates to each individual.

When there is an obvious and natural order to the hierarchy of variables, multilevel analysis is often a preferred option. Without such a priori knowledge, however, the results obtained from multilevel analysis could be misleading. For this study, we have difficulty to construct a multilevel regression model, as we were not sure how the two sets of variables interact to each other. Despite the fact that we were unable to use a more sophisticated modelling such as multilevel analysis, our study results seemed valid. The estimated effects for important prognostic variables (for example, being
admitted electively, being female, older age, or with coexisting diseases) were in the right direction and of the expected magnitude. The regression models using different combinations of time to surgery yielded similar results, demonstrating the robust of the observed associations.

The empirical evidence presented in this paper argues strongly that analysis at the individual level is not always preferable, and that the selection of an appropriate level of aggregation should be guided by external information about the likelihood of confounding. As described by Bidwell and Kasard, issues of measurement cannot be considered apart from issues of theory and conceptualisation. When considering a specific research question the investigator should first conceptualise the probable sources of confounding that may operate at different levels of analysis. The choice of an appropriate level will minimise confounding but will also be influenced by the extent to which suspected confounding can be measured and controlled. In this regard, the earlier works of Entwisle and colleagues in sociology are exemplary.32,33

The authors wish to thank the help from the following persons: Mr Marc-Erick Theriault for computer programming, and Dr Catherine McCourt for her support for this study. Endorsement by the sponsoring agencies is not implied.

Funding: none.

Conflicts of interest: none.
