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Abstract
Objective—The attributable risk (AR),
which represents the proportion of cases
who can be preventable when we com-
pletely eliminate a risk factor in a popula-
tion, is the most commonly used
epidemiological index to assess the impact
of controlling a selected risk factor on
community health. The goal of this paper
is to develop and search for good interval
estimators of the AR for case-control
studies with matched pairs.
Methods—This paper considers five as-
ymptotic interval estimators of the AR,
including the interval estimator using
Wald’s statistic suggested elsewhere, the
two interval estimators using the logarith-
mic transformations: log(x) and log(1–x),
the interval estimator using the logit
transformation log(x/(1–x)), and the inter-
val estimator derived from a simple quad-
ratic equation developed in this paper.
This paper compares the finite sample
performance of these five interval estima-
tors by calculation of their coverage prob-
ability and average length in a variety of
situations.
Results—This paper demonstrates that
the interval estimator derived from the
quadratic equation proposed here can not
only consistently perform well with re-
spect to the coverage probability, but also
be more eYcient than the interval estima-
tor using Wald’s statistic in almost all the
situations considered here. This paper
notes that although the interval estimator
using the logarithmic transformation
log(1–x) may also perform well with
respect to the coverage probability, using
this estimator is likely to be less eYcient
than the interval estimator using Wald’s
statistic. Finally, this paper notes that
when both the underlying odds ratio (OR)
and the prevalence of exposure (PE) in the
case group are not large (OR <2 and PE
<0.10), the application of the two interval
estimators using the transformations
log(x) and log(x/(1–x)) can be misleading.
However, when both the underlying OR
and PE in the case group are large (OR >4
and PE >0.50), the interval estimator
using the logit transformation can actu-
ally outperform all the other estimators
considered here in terms of eYciency.
Conclusions—When there is no prior
knowledge of the possible range for the
underlying OR and PE, the interval
estimator derived from the quadratic
equation developed here for general use is

recommended. When it is known that both
the OR and PE in the case group are large
(OR >4 and PE >0.50), it is recommended
that the interval estimator using the logit
transformation is used.
(J Epidemiol Community Health 2001;55:885–890)

To assess the public health importance of con-
trolling a selected risk factor, the attributable
risk (AR), which represents the proportion of
cases who could be preventable if we com-
pletely eliminated this risk factor in a popula-
tion, is probably one of the most commonly
used epidemiological indices.1 When studying
a rare disease in the presence of nuisance con-
founders, we may often use matched pair case-
control study design to increase the eYciency.
In fact, the estimation of the AR using the ret-
rospective data has recently received intensive
discussions.2–19 There are, however, only a few
papers that discuss estimation of the AR in
matched case-control studies. Whittemore18

included a brief discussion on estimation of the
AR for frequency matching, but noted that her
approach would not be appropriate for the
matched pair study, in which each stratum
consisted of only one case and one control.
Using Wald’s statistic, Kuritz and Landis12

derived an asymptotic interval estimator of the
AR. Kuritz and Landis13 further extended their
result to the case of more than one matched
control per case, but found that the coverage
probability of their interval estimator might be
less than the desired confidence level by >2%
even when the number of matched pairs was as
large as 100.

The purpose of this paper is to search for
other better alternative interval estimators of
the AR to the one using Wald’s statistic for the
matched pair case-control study. This paper
considers five interval estimators of the AR,
including the estimator using Wald’s statistic,12

the two interval estimators using the logarith-
mic transformation6 17: log(x) and log(1–x), the
interval estimator using the logit transforma-
tion15: log(x/(1–x)), and the interval estimator
derived from a simple quadratic equation
developed here. To compare the finite sample
performance of these estimators, this paper
calculates the exact coverage probability and
the average length in a variety of situations.
Finally, this paper includes an example taken
from a study of oral conjugated oestrogens and
endometrial cancer20 21 to illustrate the use of
these interval estimators.

Methods
Consider a case-control study, in which we take
a random sample of n subjects from the case
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group and for each of these randomly selected
cases, we match a control with respect to some
nuisance confounders to form n matched pairs.
We then classify each pair according to the sta-
tus of exposure into one cell of the following
fourfold table:

where 0 < pij < 1 denotes the corresponding cell
probability, pi. = pi1 + pi2, p.j = p1j + p2j for i and
j = 1, 2. By definition, the AR is equal to12 22:
P(E|D)(RR–1)/RR, where P(E|D) (=p1.) de-
notes the prevalence of exposure (PE) in the
case group, and the RR denotes the relative risk
of possessing the underlying disease of interest
between the exposed and the unexposed. When
the underlying disease is rare, we can substitute
the odds ratio (OR=p12/p21) for the RR and use
p1.(p12–p21)/p12 to approximate the AR. Thus, in
the following discussion we assume that the
underlying disease is so rare that the diVerence
between the AR and p1.(p12–p21)/p12 is indistin-
guishable.

Let nij denote the observed frequency of
pairs falling into the cell with the probability pij,
where i and j = 1, 2. The random vector n' =
(n11, n12, n21, n22) then follows the multinomial
distribution with parameters n and p' = (p11,
p12, p21, p22). Note that the sample proportion p̂ij

= nij/n is the maximum likelihood estimator
(MLE) of pij, and so are p̂i. = ni./n and p̂.j = n.j/n,
where ni. = ni1 + ni2, and n.j = n1j + n2j, for pi. and
p.j, respectively. Therefore, the MLE of the AR
is simply ÂR = p̂1.(p̂12–p̂21)/p̂12. Define the ran-
dom vector p̂' = (p̂11, p̂12, p̂21, p̂22). By the Cen-
tral Limit Theorem, we know that the vector
√n(p̂–p)' asymptotically follows the normal
distribution with mean vector 0 and the covari-
ance matrix D(p)–p p', where 0' = (0, 0, . . ., 0)
and D(p) is a 4×4 diagonal matrix with diago-
nal elements equal to: p11, p12, p21, and p22. By
use of the delta method, we obtain the asymp-
totic variance of ÂR to be Var(AR̂) =
{(p12–p21)

2p11 + (p2
12 + p21p11)

2/p12 + p2
1.p21–

[p1.(p12–p21)]
2}/(np2

12), which we can estimate by
simply substituting the MLE p̂ij for the
unknown parameter pij. We denote this esti-
mated variance by V̂ar(ÂR). These lead us to
obtain the asymptotic 100(1–á)% confidence
interval proposed elsewhere12 for the AR to be:

Attempting to improve the normal approxi-
mation to the statistic ÂR, we follow Katz et
al23 and consider the logarithmic transforma-
tion. Using the delta method, we obtain the

estimated asymptotic variance V̂ar(log(ÂR))
= (ÂR)−2 V̂ar(ÂR). Hence, an asymptotic
100(1–á)% confidence interval for the AR is:

Following Leung and Kupper,15 we consider
the logit transformation log(ÂR/(1– ÂR)). By
the delta method again, we can easily show that
the estimated asymptotic variance V̂ar(log(ÂR/
(1– ÂR)) = (ÂR(1– ÂR))−2 V̂ar(ÂR). Hence, an
asymptotic 100(1–á)% confidence interval for
the AR using the logit transformation is:

Note that the logarithmic function log(x) is
defined only for x >0. When the resulting esti-
mate ÂR <0, neither interval estimator (2) nor
interval estimator (3) is applicable. Consider φ
= 1–AR = (p12p2. + p1.p21)/p12, which is always
>0. Thus, following Fleiss,6 we consider the
logarithmic transformation log(1– ÂR) =
log(φ̂) rather than log(ÂR) as used for deriving
interval estimator (2). Note that V̂ar(1– ÂR) =
V̂ar(ÂR). By use of the delta method, we

obtain the estimated asymptotic variance
V̂ar(log(φ̂)) to be V̂ar(ÂR)/φ̂2. Therefore, we

obtain an asymptotic 100(1–á)% confidence
interval of the AR to be:

Recall that the asymptotic variance

As n is large, the probability

These lead us to consider the following
quadratic equation of
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An asymptotic 100(1–á;)% confidence inter-
val of the AR is then

Note that the coeYcient A is >0 and hence
the above quadratic equation is convex.
Furthermore, when using the commonly used
adjustment procedure for sparse data (which is
described in the appendix and in the next sec-
tion), we can show that the inequality that
B2–AC >0 holds for all samples (appendix) and
thereby, the two distinct roots of confidence
limits (5) always exist.

Evaluation of interval estimators
To compare the performance of interval
estimators (1-5) of the AR, we calculate the
exact coverage probability and the average
length of the resulting confidence intervals on
the basis of the multinomial probability mass
function

By definition, we calculate the coverage
probability of a given interval estimator [ARl,
ARu] as

where 1(ARå[ARl, ARu]]) is an indicator func-
tion and = 1 if the underlying AR falls
into the interval [ARl, ARu], and = 0,
otherwise, and where the summation is over
all possible vectors n such that

Similarly, we calculate the average length as
Note that if nij were 0, the

sample proportion p̂ij would be on the
boundary of 0. Thus, as noted in the appendix,
whenever any nij is 0, we apply the commonly
used adjustment procedure for sparse data by
adding 0.50 to each cell and using (nij + 0.5)/(n
+ 2) to estimate pij. Recall that if the resulting
estimate ÂR (or equivalently, the estimate ÔR
<1) were <0, interval estimators (2 and 3)
would be inapplicable. Thus, for interval
estimators (2 and 3), we calculate the condi-
tional coverage probability and average length
of the resulting confidence intervals under the
truncated multinomial distribution, excluding

those random vectors n such that the corre-
sponding interval estimate does not exist. For
completeness, we also calculate the probability
of failing to produce an interval estimate using
(2 and 3).

Given the values of the underlying OR, p1.,
and p12, we can uniquely determine all the
other parameters through the following equa-
tions: p21 = p12/OR; p11 = p1.–p12; p22 =
1–p11–p12–p21; and AR = p1.(p12–p21)/p12. We
consider the situations, in which the OR = 1, 2,
4, 8, 32; the probabilities p1. and p12 equal: 0.01
and 0.005, 0.1 and 0.05, 0.5 and 0.25, 0.80
and 0.40, such that the combination of these
parameters leads to a valid set of probability
vector p for which pij >0 for all i and j; and n =
20, 50, 100, and 200. These cover the range of
the AR from 0.0 to 0.775. We write programs
in SAS24 to enumerate the probability of the
desired multinomial distribution in our calcu-
lation.

Results
Table 1 summarises the coverage probability
and the average length of the 95% confidence
interval in application of interval estimators
(1-5). Firstly, note that when the underlying
OR = 1 (that is, AR = 0), the coverage
probability of the 95% confidence interval for
both (2) and (3) is 0%. Note also that the cov-
erage probability of the asymptotic 95% confi-
dence interval using either (4) or (5) is almost
always larger than or approximately equal to
the desired confidence level in the situations
considered in table 1, whereas the coverage
probability of using (1) is occasionally less than
this desired confidence level by >2% to 3%
when n is not large (<100). When comparing
the average length of interval estimator (5) with
that of (1), as shown in table 1, we find that the
former is generally more eYcient than the lat-
ter. When both the OR and the PE in the case
group are moderate or large (OR >4, and p1.

>0.50), we find that interval estimator (3) can
even be slightly more eYcient than (5), while
maintaining the coverage probability >95%.
Note that when the PE is small (p1. <0.10), the

KEY POINTS

x When the disease is rare, case-control
studies with matched pairs is often used.
However, the research on interval estima-
tion of the AR under this design is
limited.

x This paper considers and compares the
performance of five asymptotic interval
estimators of the AR, including the one
proposed recently on the basis of Wald’s
statistic.

x This paper demonstrates that the interval
estimator derived from a quadratic equa-
tion developed here is generally prefer-
able to the one based on Wald’s statistic.

x This paper provides a general guideline
about the selection of better interval esti-
mators with respect to the coverage prob-
ability and the average length of the con-
fidence intervals.
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probability of failing to produce an interval
estimate using (2) and (3) can be substantial
(table 2). When the OR is large (>4), this
probability diminishes, however, to approxi-
mately 0 as p1. increases to 0.80.

AN EXAMPLE

To illustrate use of interval estimators (1-5), we
consider the data that are consisted of 183 pairs
taken from a case-control study of the use of
oral conjugated oestrogens and the endome-
trial cancer.12 20 21 We match each case with a
control on race, age (within five years), date of
admission (within 6 months), and hospital of
admission. We then classify these 183 matched
pairs according to their exposure status (ever
versus never) with regard to use of the
estrogens. We obtain n11 = 12, n12 = 43, n21 = 7,
and n22 = 121. Suppose that we are interested
in estimation of the AR of endometrial cancer
attributable to the use of the oestrogens. As
given elsewhere,12 we obtain the estimate ÂR to
be 0.252. Furthermore, when using interval
estimators (1-5), we obtain the asymptotic
95% confidence intervals to be: [0.172, 0.331],
[0.183, 0.345], [0.181, 0.339], [0.168, 0.327],
and [0.167, 0.325], respectively. We see that
the resulting 95% confidence intervals using
(2) and (3) tends to slightly shift to the right as
compared with the other three resulting
interval estimates (1), (4), and (5), which are
all similar to one another.

Discussion
To evaluate whether it is appropriate to apply
interval estimators (1-5) in the particular con-
figuration given by the example, we consider
the situations in which the parameters are
determined by the empirical estimates from the
data: ÂR = 6.14, p̂1. = 0.30, p̂12 = 0.24, and n =
183. In application of interval estimators (1-5),
we obtain the coverage probability and the

average length (in parentheses) of the corre-
sponding asymptotic 95% confidence intervals
to be: 0.948 (0.158), 0.953 (0.161), 0.956
(0.158), 0.949 (0.159), and 0.950 (0.157). We
can see that all interval estimators (1-5)
perform reasonably well with respect to the
coverage probability and interval (5) seems to
be slightly more eYcient than the others in
terms of the average length. This is certainly
consistent with the finding that interval estima-
tor (5) is generally more eYcient than the oth-
ers unless both the RR and the PE are moder-
ate or large (RR >4, p1. >0.50) as presented in
table 1.

Note that the functions exp(x) and exp(x)/[1
+ exp(x)] are always positive and so are both
the lower limits of interval estimators (2) and
(3). Thus, if the underlying AR were 0, the
coverage probability of these interval estimator
would obviously be 0. This explains the reason
why the coverage probability of (2) and (3) is 0
when the underlying OR = 1 regardless of the
sample size n (table 1). Furthermore, if the PE
were small (p1. <0.10), then both the probabili-
ties p12 and p21 (=p12/OR, where OR >1) would
even be close to 0. Thus, the probability that
the diVerence between the estimates p̂12 and p̂21

is <0 (and hence the resulting estimate ÂR <1)
can be substantial. This accounts for the find-
ing that the probability of failing to produce an
interval estimate using (2) and (3) can be quite
large in this case (table 2).

We find that except for a few cases where the
PE in the case group is large (p1. = 0.80), inter-
val estimator (1) using Wald’s statistic does
perform reasonably well. While applying inter-
val estimator (4) using the transformation
log(1–x) can improve the coverage probability
of applying (1), using the former is likely to lose
eYciency as compared with the latter. By con-
trast, applying interval estimator (5) can gener-
ally not only improve the coverage probability
of (1) but also increase the eYciency. Thus, we
recommend interval estimator (5) for general
use. When we know that both the underlying
RR and p1. are not small (RR >4 and p1. >0.50)
from our prior studies, however, we may wish
to use interval estimator (3) as well, especially
when n is not large.

Finally, note that although interval estima-
tors considered here are derived on the basis of
large sample theory, we note that interval esti-
mators (1, 4, and 5) can generally, as shown
here, perform well with respect to the coverage
probability even when the number of matched
pairs n is as small as 20 (table 1). Furthermore,
interval estimators (3 and 4) could also
perform well for n = 20 if the underlying OR
and PE were not small (OR >4 and p1. >0.10).
Because it would be quite rare for public health
administrators to estimate the AR based on
data with less than 20 cases, the situations con-
sidered here should cover most cases encoun-
tered in practice.

In summary, this paper considers five
interval estimators of the AR for the matched
pair case-control studies. This paper includes a
discussion that provides an insight into the
characteristics of the performance of these five
interval estimators. This paper shows that the

Table 2 The probability of failing to produce an interval
estimate in application of interval estimators (2) and (3)
for the situations, in which the RR=1, 2, 4, 8, 32; the
probabilities p1. and p11 equal: 0.01 and 0.005; 0.10 and
0.05; 0.50 and 0.25; 0.80 and 0.40; such that the
combination of these parameters leads to a valid set of
probabilities for which pij >0 for i and j=1, 2; and n=20,
50, 100, and 200

OR p1. p12 AR

n=

20 50 100 200

1 0.01 0.005 0.00 0.91 0.82 0.73 0.65
0.10 0.05 0.00 0.65 0.59 0.56 0.55
0.50 0.25 0.00 0.56 0.54 0.53 0.52

2 0.01 0.005 0.005 0.91 0.80 0.68 0.53
0.10 0.05 0.05 0.52 0.35 0.23 0.12
0.50 0.25 0.25 0.23 0.09 0.02 0.00

4 0.01 0.005 0.008 0.91 0.79 0.64 0.45
0.10 0.05 0.075 0.45 0.21 0.09 0.02
0.50 0.25 0.375 0.08 0.01 0.00 0.00
0.80 0.40 0.600 0.03 0.00 0.00 0.00

8 0.01 0.005 0.009 0.91 0.78 0.62 0.41
0.10 0.05 0.088 0.40 0.14 0.04 0.00
0.50 0.25 0.438 0.03 0.00 0.00 0.00
0.80 0.40 0.700 0.01 0.00 0.00 0.00

32 0.01 0.010 0.010 0.91 0.78 0.61 0.38
0.10 0.05 0.097 0.37 0.09 0.01 0.00
0.50 0.25 0.484 0.01 0.00 0.00 0.00
0.80 0.40 0.775 0.00 0.00 0.00 0.00
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interval estimator derived from a quadratic
equation suggested here can outperform the
interval estimator using Wald’s statistic pro-
posed elsewhere. This paper further notes that
interval estimators using the two logarithmic
transformations log(x) and log(1–x) generally
causes the loss of eYciency. Finally, this paper
notes that the interval estimator using the logit
transformation can be useful when both the
underlying RR and the PE in the case group are
large. The discussion and the findings pre-
sented here should have use for biostatisticians
and epidemiologists when they want to esti-
mate the AR using a matched pair case-control
study.

Appendix
Firstly, note that if we obtained the estimate p̂ij

to be 0 for some cell (i, j) from a given sample,
then p̂ij would be on the boundary. To avoid
this concern, if p̂ij should be 0 for some cell (i,
j), we would recommend using the commonly
used adjustment procedure for sparse data by
adding 0.50 to each cell and using (nij +
0.50)/(n + 2) to estimate pij. Thus, we may
assume that the resulting estimate p̂ij always
falls in 0 < p̂ij < 1.

Note that B2–AC = Z2
á/2(G*– ÂR2)/n + Z4

á/2

G*/n2, where G* = {(p̂12–p̂21)
2p̂11 + (p̂2

12 +
p̂21p̂11)

2/p̂12 + p̂2
1.p̂21}/p2

12. Note that the asymptotic
variance Var(ÂR), that equals {[(p12–p21)

2p11 +
(p2

12+ p21p11)
2/p12 + p2

1.p21]/p
2
21–AR2}/n, is always

>0, for any vector p' = (p11, p12, p21, p22), that

satisfies 0 < pij < 1 and Because we
can easily show that we can obtain G*– ÂR2 by
simply substituting the particular estimate p̂ij

(which obviously satisfies 0 < p̂ij < 1 and
for pij in nVar(ÂR), the inequality:

G*– ÂR
2
> 0 is always true. Furthermore, when

0 < p̂ij < 1, we can easily see that G* >0. These
results suggest that the condition B2

–AC = Z
2

á/2

(G*– ÂR
2
)/n + Z

4
á/2 G*/n

2
should be >0 for all

samples.
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