Marital status and suicide: some common methodological problems

Editor,—In a recent paper published in this journal, Kposowa’ reported that divorced and separated men had a higher risk of suicide than married men. Men and women of other unmarried status reportedly did not suffer any excess risk of suicide in comparison with their married counterparts. We have some reservation about the findings, and wish to point out two methodological problems that may have affected many studies in this area.

In this study marital status was enumerated at the beginning of the study period. Marital transitions between the baseline survey and death or end of follow up were unknown to the researcher. The author did mention this issue at the end of the discussion section, but seemed to suggest that the problem would not have seriously affected the findings. The failure to capture marital changes would lead to a misclassification of marital status during the follow up period and at death. The follow up period is from 1979 to 1989. Marital status would have changed during the 11 year period. For example, among the elderly, the married person would become widowed; the never married person among the age group 25–34 would have been married during the period, etc. As such, the hazard ratios based on the initial marital status would be biased towards the null value. One study in the USA and one in the UK have emphasised the importance of this misclassification error. Furthermore, there were only 545 suicide cases with a rate of approximately 10.5 per 100 000, which could be very sensitive to the possible misclassification. In this study both the models with and without adjustment for baseline factors contradict previous research results that used the information of the marital status at death.4 We should be very cautious about the insignificant results. Studies have demonstrated increased psychiatric disturbances in the first year of widowhood.5 Afterwards the widowed return to a usual level of psychological health. This strongly supports the plausibility that widowed people may have a higher risk of suicide shortly after the death of a spouse. Widowed persons available at the baseline survey were likely to be those who had survived the initial high risk period. The study design has a selection bias that favours the survivors. Much less is known about changes in psychiatric disturbances in divorced people. The same selection bias may exist in divorced people.

There has been a considerable number of studies on marital status and suicide since Durheim’s classic study.6 Unfortunately progress has been prevented by some common methodological problems that are often overlooked. Our first suggestion is that much more effort should be spent on updating the marital status of participants during a follow up period. A closely related suggestion is to study the suicide risk of participants married at baseline but who become unmarried during the follow up. This will avoid the selection bias in the studies of people divorced or widowed at baseline. Secondly, testing for non-proportionality should be routinely carried out and reported if the analysis is based on the Cox model. There are various methods for the testing, such as allowing break points in a hazard function and the use of Schoenfeld residuals. An initial hazardous effect that diminishes over time is partial evidence for the above mentioned problems. No information on the proportional hazard assumption was given in the paper under discussion.

Y B CHEUNG
PAUL S F YIP
Department of Statistics and Actuarial Science,
University of Hong Kong, Pokfulam, Hong Kong
Correspondence to: Dr Yip (dpypf@hkucc.hku.hk)

Table 1 Effect of marital status on suicide by selected years of follow up*

<table>
<thead>
<tr>
<th>Covariate</th>
<th>RR 95% CI</th>
<th>RR 95% CI</th>
<th>RR 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>After one year of follow up</td>
<td>After three years of follow up</td>
<td>After four years of follow up</td>
</tr>
<tr>
<td>Married</td>
<td>1.00 (Reference)</td>
<td>1.00 (Reference)</td>
<td>1.00 (Reference)</td>
</tr>
<tr>
<td>Single</td>
<td>1.16 (0.39, 3.47)</td>
<td>1.18 (0.73, 1.90)</td>
<td>1.28 (0.84, 1.96)</td>
</tr>
<tr>
<td>Divorced</td>
<td>2.82** (1.15, 6.92)</td>
<td>1.78** (1.12, 2.81)</td>
<td>1.85** (1.23, 2.79)</td>
</tr>
<tr>
<td>Widowed</td>
<td>1.22 (0.32, 4.65)</td>
<td>1.08 (0.57, 2.05)</td>
<td>1.02 (0.57, 1.82)</td>
</tr>
<tr>
<td>Unmarried</td>
<td>—</td>
<td>0.61 (0.07, 5.02)</td>
<td>0.68 (0.08, 5.47)</td>
</tr>
<tr>
<td>LRS</td>
<td>511.10</td>
<td>2 533.81</td>
<td>2 336.12</td>
</tr>
<tr>
<td></td>
<td>334.44**</td>
<td>471.85**</td>
<td></td>
</tr>
<tr>
<td>degrees of freedom</td>
<td>21</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>Number of suicides</td>
<td>170</td>
<td>230</td>
<td>285</td>
</tr>
<tr>
<td>Number of observations</td>
<td>4 209</td>
<td>12 680</td>
<td>17 293</td>
</tr>
</tbody>
</table>

*Adjusted for age, race, sex, education, income, and region. For the last year of follow up, see Kposowa.7 LRS = likelihood ratio statistic; **significant at p<0.01.
Neonatal mortality by place of delivery in São Paulo, Brazil

EDITOR,—In São Paulo, Brazil, 0.6% of all births do not occur in a hospital. Although neonatal mortality in home deliveries in the UK is higher than that in hospital deliveries, it is accepted that home births consist of two different groups: those who planned to deliver at home with higher average birth weight, low neonatal mortality, and those who either booked a hospital delivery or did not book, with lower birth weight and extremely high neonatal mortality. In São Paulo, home deliveries are not encouraged and there is no policy of booking in the state sector.

As part of a study of neonatal mortality in the city of São Paulo, a case-control study is being undertaken to investigate maternal and hospital risk factors. For the first six months of 1995, birth certificates were identified and linked to all neonatal deaths and a 10% sample of children who survived up to 28 days. Children with birth weight under 500 g were excluded.

The study included 9583 births with known place of birth, of which 64 did not occur in a hospital. In our data, children who were in a hospital at the time of birth and those whose birth was unknown had an increased risk of neonatal death (odds ratio 1.93 with 95% confidence interval 1.02, 3.63; \(\chi^2 = 4.88; p = 0.03 \)). A significantly higher proportion of mothers of children not born in a hospital were teenagers (<20 years) and had not completed primary education (eight years). There were no statistically significant differences according to the proportion of low birth weight, prematurity, and whether a father was named in the birth certificate, but the study may not have had enough power (table 1).

The risk associated with delivery not in a hospital was restricted to mothers of lower educational status and much more marked in younger mothers. In Chile, home deliveries presented a higher neonatal mortality and were more frequent in teenagers. Campbell et al suggests a pattern similar to ours in England and Wales and quotes the example of illegitimate births at home to women aged under 20, who had 5% chance neonatal death. It seems that the risk of neonatal mortality in deliveries not in a hospital is complex and further studies are needed before we can establish when home deliveries are safe in São Paulo.

MARCIA FURQUIM DE ALMEIDA
G PEREIRA ALENCAR
H M DUTILH NOVAES
Department of Epidemiology, Faculty of Public Health, University of São Paulo, Av Dr Arnaldo 715, São Paulo SP CEP 01246-904, Brazil

Correspondence to: Professor Furquim de Almeida (marfural@usp.br)

Family doctor advice and pneumococcal vaccine uptake

EDITOR,—Kyaw et al highlight the importance of advice from general practitioners in the immunisation of patients with pneumococcal vaccine. However, greater knowledge regarding pneumococcal immunisation is required among GPs and doctors in general before patients in the target groups are likely to be vaccinated. I performed a postal questionnaire survey of the awareness of the indications for, and practice of pneumococcal immunisation among GPs in one inner London borough. Questions explored knowledge of the guidelines for pneumococcal immunisation with six real and six fictitious indications of GPs’ immunisation practice. One hundred and fifty six and fifty six GPs were mailed the questionnaire. The response rate was 56 of 156. The responses are summarised in table 1.

Respondents may represent those GPs interested in immunisation. However, few GPs seem to have a clear understanding of the Department of Health guidelines and some seem to confuse indications with those for influenza and meningococcal vaccines. On the other hand some GPs are aware of the indications but do not immunise accordingly, possibly because of the workload implications, lack of remuneration for the service or because of doubt regarding the vaccine’s efficacy. 1 For some patients there may be uncertainty as to whether hospitals or primary care should be taking the lead. The guidelines may be difficult to integrate into routine practice; current indications vary from those for influenza immunisation and there is a need to avoid re-immunising in most patients. Communication between hospital departments and patients’ GPs is important in this regard.

Local immunisation campaigns can be effective but may not be secure enough as a strategy by health authorities. In the future the indications for pneumococcal immunisation will need to be reviewed as conjugate pneumococcal vaccines are further evaluated and licensed.

EDWARD JAMES
Department of Microbiology, Homerton Hospital NHS Trust, Homerton Row, London E9 6SR

Authors’ reply

We accept the point made by James that many GPs may be uncertain about the indications for pneumococcal vaccine. Indeed, earlier work we performed demonstrated the exist-

Table 1

| Perception of target groups for and practice of pneumococcal immunisation |
|-----------------------------|-----------------------------|-----------------------------|
| | Yes (%) | No (%) | No answer (%) |
| Adults living in residential or nursing homes | 17 (30.3) | 31 (55.3) | 8 (14.4) |
| All children under 5 years | 1 (1.7) | 46 (82.1) | 9 (16.2) |
| All adults over 65 years of age | 7 (12.5) | 40 (71.4) | 9 (16.1) |
| All adult diabetic patients | 35 (62.5) | 15 (26.8) | 6 (10.7) |
| All adult patients with chronic heart or lung disease* | 43 (76.8) | 8 (14.3) | 5 (8.9) |
| Patients over two years old with chronic renal disease* | 43 (76.8) | 6 (10.7) | 7 (12.5) |
| Adult patients with hypertension from whatever cause* | 53 (94.6) | 1 (1.8) | 1 (1.7) |
| Adults with HIV infection* | 37 (66.1) | 11 (19.6) | 8 (14.3) |
| All adults with previous pneumococcal meningitis | 6 (10.7) | 37 (66.1) | 13 (23.2) |
| Contacts of cases of pneumococcal meningitis | 11 (19.6) | 33 (58.9) | 12 (21.5) |
| Travellers to areas with a high incidence of pneumococcal disease | 5 (8.9) | 40 (71.4) | 11 (19.7) |
| Adults receiving immunosuppressive drugs* | 35 (62.5) | 12 (21.4) | 9 (16.1) |

For which of the following groups is it your current practice to carry out pneumococcal immunisation?

- Spleenectomy
- 52 (92.8) 0 (0) 4 (7.2)
- Hypoplasmenia from sicle cell disease*
- 48 (85.7) 2 (3.6) 6 (10.7)
- Hypoplasmenia from other causes, for example, colicoid disease* | 36 (64.2) | 11 (19.6) | 9 (16.2) |
- Chronic renal disease or nephrotic syndrome*
- 32 (57.1) | 15 (26.7) | 9 (16.2) |
- Chronic heart disease*
- 21 (37.5) | 25 (44.6) | 10 (17.9) |
- Chronic lung disease*
- 21 (37.5) | 24 (42.8) | 11 (19.7) |
- Chronic liver disease including cirrhosis* | 19 (33.9) | 27 (48.2) | 10 (17.9) |
- Adult diabetic patients* | 20 (35.7) | 26 (46.4) | 10 (17.9) |

*Patient group recommended for immunisation by the UK Department of Health.
ence of similar uncertainty in the early 1990s, regarding the indications for influenza vaccine. With regard to pneumococcal vaccine, the situation is probably worsened by the fact that the evidence in support of effectiveness in high risk elderly persons is restricted to the prevention of invasive disease (bacteraemia). We also agree that GPs face many issues around appropriate workload and remuneration. Nevertheless, we cannot accept that pneumococcal vaccination is too difficult to incorporate into routine practice. The indications for influenza and pneumococcal vaccines overlap considerably. The UK Department of Health recommends that patients recalled annually for influenza vaccination, are offered pneumococcal vaccine simultaneously (on a "once only" basis and at a different injection site), thereby delivering two preventive measures for the same consultation and administrative costs. We agree that the availability of new conjugate vaccines, which offer the hope of reducing nasopharyngeal carriage, may bring about the need to review policy. However, until these become available, efforts to improve the uptake of polysaccharide pneumococcal vaccine in high risk persons should continue.

J S NGUYEN-VAN-TAM
M H KYAW
J C G PEARSON
Division of Public Health Medicine and Epidemiology, School of Community Health Sciences, University of Nottingham Medical School, Queen’s Medical Centre, Nottingham NG7 2UH

BOOK REVIEW

The contradictory role played by mental health services in society has been progressively described by commentators and different interest groups since the beginning of the 1960s when mental health practice moved from an institutional to an increasingly larger community-based system of care. However, the complexity of the issues related to the acknowledgement and application of civil rights to mental patients on the one hand, and on the other hand, the disparate power and demands of involved parties—that is, relatives, users, professionals and agencies—have often hindered an objective joint outlook. In this sense, the Perkins and Repper book provides a valuable contribution because it entails a comprehensive up to date well documented overview of most of the underlying problems brought to surface by the application of the Community Mental Health Practice. Aimed at the defence of the full citizenship rights of the people with serious mental problems and anchored in this respect, it represents a meeting point for scientific literature, professional expertise and user experience where classically crucial and unresolved issues as the cure concept, the limits between madness and human condition, the interference of professional roles in mental health teams, the duty of patient protection, the treatment priorities, compliance and compulsory detention, or the different view of mental health difficulties in users, relatives and professionals, are thoroughly analysed and further discussed by means of the dilemma of choice or control. Reading this book will surely be of help to any professional in the community mental health field interested in deepening the understanding of the serious demands of mental patients to increase the quality of their service.

EMMA PASCUAL GÓMEZ
The Rehabilitation Unit, Dr Esquerdo Centre, Ramón de Campoamor 25, Sta Faz, Alicante, Spain