Short reports

Geographical clustering of acute adult leukaemia in the East Anglian region of the United Kingdom: a registry-based analysis

P Badrinath, N E Day, D Stockton

An ecological analysis by Alexander et al observed a small but significant excess of leukaemia excluding chronic lymphoid leukaemia in estuarine wards (relative risk=1.12, 95%CI 1.01, 1.25). This analysis was confined to cases diagnosed during 1984–1986. Using regional leukaemia incidence data for 1981–1994, we performed a clustering study based on postcode districts of address at diagnosis to test this hypothesis further. We did not have population denominator data by postcode district, age, sex, and calendar year for the study period. We therefore adopted a case-control approach within the East Anglian (EA) cancer registry, equivalent to proportional incidence analyses.

Methods
The EA cancer registry has collected population-based cancer incidence data in the region since 1971, with postcodes of residence given since 1981. From the registry we abstracted information on all cases of acute leukaemia (ICD 9: 2040, 2050, 2060, 2070, 2080), aged over 14 years diagnosed between 1981–1994. For each case we selected 10 non-haematological malignancies (ICD 9: 140–199) as controls matched for sex, age (+/− two years) and year of diagnosis (+/− five years). The null hypothesis was that leukaemia occurs with equal incidence across the postcode districts in the region. Conditional upon the total occurrence of cases and controls within a postcode district, the number of cases in a postcode district follows a binomial distribution with proportion parameter equal to the ratio of the number of cases to the total number of cases and controls in the study. We calculated the expected leukaemia cases in each postcode district and plotted the observed/expected ratios on a map and derived the test statistic (observed-expected/standard error) and two sided probabilities.

Results
Eight hundred and twenty six cases of acute leukaemia and 7711 matched controls were included in the analysis. Figure 1 shows the

![Map showing acute adult leukaemia clustering in East Anglia 1981–94.](http://jech.bmj.com/)

Figure 1 Acute adult leukaemia clustering in East Anglia 1981–94.

<table>
<thead>
<tr>
<th>Postcode</th>
<th>Observed</th>
<th>O/E</th>
</tr>
</thead>
<tbody>
<tr>
<td>CB6</td>
<td>17</td>
<td>1.77*</td>
</tr>
<tr>
<td>IP1</td>
<td>16</td>
<td>1.62*</td>
</tr>
<tr>
<td>IP4</td>
<td>17</td>
<td>1.85**</td>
</tr>
<tr>
<td>IP7</td>
<td>9</td>
<td>1.99*</td>
</tr>
<tr>
<td>IP8</td>
<td>7</td>
<td>2.89**</td>
</tr>
<tr>
<td>IP9</td>
<td>9</td>
<td>2.11*</td>
</tr>
<tr>
<td>IP12</td>
<td>16</td>
<td>2.40***</td>
</tr>
<tr>
<td>IP28</td>
<td>12</td>
<td>1.80*</td>
</tr>
</tbody>
</table>

*p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001

East Anglian Cancer Intelligence Unit, Department of Community Medicine, Institute of Public Health, University of Cambridge, Robinson Way, Cambridge CB2 2SR

Correspondence to: Professor Day.

Accepted for publication 31 October 1998
postcode districts with a nominally statistically significant excess of leukaemia cases in the region. Of the eight postcode districts thus identified with a nominal excess of leukaemia, there is a striking degree of geographical clustering of cases in the IP postcode districts (IP1,4,7,8,9,12). These postcode districts are adjacent to the estuaries of the Stour (IP9), the Orwell (IP1,4,8,9), Deben (IP12), and Ore (IP12). The excess in this cluster of postcode districts was seen equally in men (2.12), women (1.78), in those aged below (1.94) or above (2.00) 65 years and in both periods examined (<1988:1.61, ≥1988: 2.27). The later time period excluded the period considered by Alexander et al.1

Discussion
The major estuaries around the Norfolk and Suffolk coast are those of the Stour, Orwell, Deben, and Ore. The definition of an estuary used by Alexander et al2 is lacking in precision (“all river mouths with a substantial amount of mud marked on the OS map”), but it is doubtful whether the river mouths of the Yare, at Yarmouth or of the Waveney at Lowestoft satisfy the criterion. Our results therefore confirm the findings of an earlier ecological analysis that observed an estuarine excess. The relative excess, however, is markedly larger than was seen earlier, with O/E ratios of over 2, compared with the relative risk of 1.12 reported by Alexander et al.

The authors of the previous analysis attribute the estuarine excess to heavy metals and radio actinides found in the estuarine slit. There is no evidence that the population would suffer any appreciable exposure from such a source. The estuaries involved, however, are noteworthy for the extent of maritime activities, both recreational and occupational with boat building and repair being important forms of employment (Dr P Baxter, personal communication). Both recreational and occupational activity would involve potential exposure to resins, solvents, paints and petroleum products, which have been shown both in East Anglia1 and elsewhere3 to be risk factors for acute leukaemia. In conclusion our study has confirmed the previous finding, but we propose an alternative mechanism for this observed excess.

We would like to thank the staff of the East Anglian cancer registry for providing the data.