Public awareness of malignant melanoma risk factors in Germany

Annette Pfahlberg, Olaf Gefeller, Klaus F Kömel

Abstract

Study objective—To evaluate the effects of a German public education campaign which aimed to improve knowledge on risk factors for malignant melanoma.

Design—Comparison of data from two successive cross sectional surveys conducted before (spring 1993) and after (autumn 1994) the campaign.

Setting—All 56 nursery schools in Göttin- gen, the capital of southern Lower Saxony, Germany.

Participants—Parents of children attending the nursery schools. Altogether 1341 questionnaires from parents were included in the first survey (response rate 64.9%) and 1150 questionnaires in the sec- ond survey (response rate 61.4%).

Main results—The respondents in the sec- ond survey were much better at distin- guishing true melanoma risk factors from false ones. The distribution of scores measuring the degree of accurate knowl- edge about melanoma risks indicated that this had improved significantly (p<0.001). The most pronounced change with regard to knowledge of single risk factors could be observed for “sunburn during childhood,” which was correctly identified by 63.1% in the first survey and by 85.6% in the second. Substantial improvement in accu- rate knowledge about the influence of con- stitutional skin factors—number of naevi, skin type etc—was also found.

Conclusions—Notwithstanding the meth- odological problems in this analysis (non- randomised design, only before and after comparison, no control group, number of non-respondents), it is concluded that this campaign improved understanding of the risks of melanoma. Continuing public education activities should be imple- mented to sustain and improve further knowledge on prevention of malignant melanoma.

(Meta-Community Health 1997;51:698–700)

Malignant melanoma is increasing rapidly in incidence in fair skinned populations around the world.1 Numerous epidemiological studies in the past two decades have contributed to a better understanding of the aetiology of the disease (for overviews see 2, 3, for a bibliography of all 117 case-control studies on malignant melanoma published up to the end of 1995 see 4). There is now some agreement that constitutinal factors (such as skin type, number of naevi, hair colour5, 6) and exposure to ultravi- olet light (especially intermittent excessive sunlight exposure and sunburn during childhood7) play an important part in the aetiology of melanoma.

Public health campaigns which aim to educate the general population about the risk factors for malignant melanoma have been launched in several countries.8, 9 Because of the epidemiological evidence concerning the importance of melanoma prevention during childhood, these activities were not only addressed to the general population but were specifically targeted at the parents of young children. In Germany, such a campaign was launched in the summer of 1993: it was called “child and sun”10.

There is debate over whether or not these campaigns really improve preventive knowl- edge, attitudes and behaviour in the popula- tion. We describe the results of two cross sectional surveys in Göttin gen which were conducted before and after an intensive, nationwide public education campaign in Ger- many. The aim was to evaluate the effects of these activities on the knowledge about risk factors for malignant melanoma of parents of children in nursery schools.

Methods

The target population comprised parents with children aged 3-6 years living in Göttin gen. We approached all 56 nursery schools and distributed (with the help of the nursery school teachers) a standardised questionnaire to all parents via their children. This procedure was implemented first in spring 1993 and repeated, using an identical procedure, in autumn 1994. In the meantime, starting before the German summer holidays of 1993, an intensive educa- tion campaign devoted to the hazards of unprotected exposure to sunlight during child- hood took place nationwide in Germany. In both cross sectional surveys, the questionnaire contained a list of nine exposures and parents had to judge whether or not these would act as a melanoma risk factor. In addition to true risk factors, this list included exposures that have attracted public awareness, but have not been identified as risk factors for melanoma (such as presence of allergies, rising air pollution, unhealthy diet). From the individual answers a “knowledge score” was created and this was classified into three broad categories (“low”, “medium”, and “high”).

Results

Although the parents were approached via their children in this study, the family

Departments of
Medical Statistics,
A Pfahlberg
O Gefeller

and Dermatology,
University of
Göttingen,
Humboldtallee 32,
D-37073 Göttingen,
Germany
A Pfahlberg
Klaus F Kömel

Correspondence to:
Ms A Pfahlberg.

Accepted for publication
20 January 1997
Table 1 Detailed overview of sample sizes and response calculations in two cross sectional surveys in Gottingen

<table>
<thead>
<tr>
<th>Components of the response calculation</th>
<th>1st survey</th>
<th>2nd survey</th>
</tr>
</thead>
<tbody>
<tr>
<td>A: distributed questionnaires*</td>
<td>2536</td>
<td>2302</td>
</tr>
<tr>
<td>B: total number of children the 56 nursery schools are in charge of</td>
<td>2306</td>
<td>2092</td>
</tr>
<tr>
<td>C: estimated “double counts” and “no show”*</td>
<td>241</td>
<td>219</td>
</tr>
<tr>
<td>D: returned questionnaires</td>
<td>1341</td>
<td>1150</td>
</tr>
<tr>
<td>E: “not” response rate (%)</td>
<td>64.9</td>
<td>61.4</td>
</tr>
</tbody>
</table>

*Due to typical short term fluctuations in the population covered by the nursery school, a 10% “reserve” was added to B.
Based on telephonic information by the nursery school 1 month before the survey.
Number of children who are living in households in which another child also attends a nursery school (“double counts”) or who were absent during the entire period of the survey (“no shows”); estimation is based on the information of a subsample of 12 nursery schools in the second survey.
Calculated as D / (B - C).

Table 2 Proportions of study subjects judging different exposures as risk factors for melanoma in two cross sectional surveys in Gottingen

<table>
<thead>
<tr>
<th>Exposure</th>
<th>1st survey</th>
<th>2nd survey</th>
<th>Statistical evaluation of differences</th>
<th>p value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunburn during childhood</td>
<td>63.1</td>
<td>85.6</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>Chronic sun exposure (eg farmers)</td>
<td>70.4</td>
<td>66.9</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>Sunburn during life</td>
<td>63.5</td>
<td>62.2</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>High number of naevi</td>
<td>47.4</td>
<td>56.8</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>Fair skin, fair hair</td>
<td>44.5</td>
<td>53.5</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>Intermittent sun exposure (eg during holidays)</td>
<td>45.2</td>
<td>42.7</td>
<td>0.22</td>
<td></td>
</tr>
<tr>
<td>Rising air pollution</td>
<td>50.3</td>
<td>39.9</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>Presence of allergies</td>
<td>16.5</td>
<td>15.7</td>
<td>0.62</td>
<td></td>
</tr>
<tr>
<td>Unhealthy diet</td>
<td>13.3</td>
<td>13.0</td>
<td>0.86</td>
<td></td>
</tr>
</tbody>
</table>

*p values derived from Fisher’s exact test.

Table 3 Comparison of the score distributions measuring preventive knowledge on melanoma risk factors between two cross sectional surveys in Gottingen

<table>
<thead>
<tr>
<th>Knowledge score</th>
<th>1st survey</th>
<th>2nd survey</th>
<th>Statistical evaluation of differences</th>
<th>p value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean (SD)*</td>
<td>4.9 (4.7)</td>
<td>6.4 (4.5)</td>
<td><0.001†</td>
<td></td>
</tr>
<tr>
<td>Categories (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>20.2</td>
<td>31.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medium</td>
<td>63.8</td>
<td>59.0</td>
<td><0.001‡</td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>15.9</td>
<td>9.9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Score distributions in both surveys are rather symmetric. Nevertheless, standard deviations (SD) are hard to interpret for arbitrarily valued scores but have been reported to indicate that variability of the score is stable over the two surveys.
†p value derived from Wilcoxon-Mann-Whitney test.
‡p value derived from χ² test.

Discussion
Based on large samples of participants, our study provides evidence that knowledge of the risk factors for malignant melanoma is increasing among parents of young children. This has followed intensive educational efforts devoted to the prevention of malignant melanoma in Germany. The design of our investigation—that of two successive cross sectional surveys—has a major limitation with regard to its ability to prove the efficacy of the public education campaign. Since we have neither a (randomly selected) control group nor an individual follow up of study participants, changes in the response patterns cannot directly be attributed to the campaign.13 16

The observed improvement may also reflect temporal changes in other areas relevant for health education (eg, information about the topic through the media, the physicians, health insurance companies, etc). Such an effect cannot be ruled out unless the development of knowledge is studied simultaneously in a

KEY POINTS
- Two cross sectional surveys were conducted among parents of nursery school children—one before and one after a German public education campaign on risk factors for malignant melanoma.
- Respondents in the second survey were much better at distinguishing between true and false risk factors.
- The most pronounced change was in the number who identified sunburn in childhood as an important risk factor—this had been a particular focus of the education campaign.
- Despite some methodological problems, it is concluded that the campaign improved understanding of the risk factors for malignant melanoma.
Thus, based on variables lead matically results. me prov-ative measures do often the aspect participants changes; and the direct "children.'8 such analyses, edge many cases.2'

improvement is due sunburns). of individual aspects to activities supporting group. This was impossible to imple-

The lack of individual follow up of study participants may also have disturbed our results. Different selection biases might have operated during the first and second surveys and these might have resulted in a changed sample composition concerning relevant vari-ables influencing the parents' answering behav-iour. As we have no information about non-respondents we cannot analyse this issue completely. We achieved a similar response rate of above 60% in both years. In addition, the distribution of standard sociodemographic variables among responding parents (age, sex, education) was nearly identical in the two sur-vays. Thus, we believe that this design defi-ciency had no substantial impact on our results.

In this paper we investigated only changes in the knowledge about risk factors for malignant melanoma. This assessment of information was based on questionnaires which are an appropri-ate source for this purpose. Preventive knowl-edge does not necessarily translate into behav-ioural changes; an increased level of accurate knowledge on melanoma risks would not automatically lead to parents taking better protective measures against sunburn in their children.19 Assessing the preventive be-haviour of the parents with regard to protecting their children from the harmful effects of sun is, however, difficult.2 Data from question-naires do often not provide a valid basis for such analyses, because the parents' answers do not correspond to their actual behaviour in many cases.21 A complete evaluation of the effects of our public education campaign should comprise analysis of the changes in knowledge, attitudes, behaviour, and the direct consequences of the behaviour (for example, the frequency of sunburns). This investigation aimed to clarify the first point, other analyses are needed to complete the picture. But even at this stage, we feel confident in concluding that the German campaign had some salient effects on the level of understanding of the risks of melanoma. Thus public education activities should be implemented as a continuing process to sustain and, it is hoped, further improve preventive knowledge on this issue.

The study has been partially supported by a grant of the Nied-ersächsische Krebsgesellschaft. The authors thank Ms U Cliffe-mann, Mrs B Köp, Ms H Thölling and all nursery school teachers in Götingen for their help during the field phase of the study. The two reviewers deserve special thanks for their valuable comments on an earlier version of this paper.