Comment

The use of family health services authority registers as a sampling frame in the UK: a review of theory and practice

H R Roberts, L Rushton, K R Muir, R Dengler, C A C Coupland, C M Jenkinson, A Ruffell, C E D Chilvers

In epidemiological and social scientific studies the choice of an appropriate, accurate sampling frame listing eligible subjects is a methodological decision which will influence the representativeness of the sample selected, and hence the generalisability of findings. The most widely used population sampling frame of adult individuals in the UK is the electoral roll. Telephone listings have become more popular in recent years while other studies use sampling frames related to property by which to identify individuals.

An increasingly used population sampling frame is the list of persons registered with UK general practitioners (GP) held by family health services authorities (FHSAs). These registers were developed so that FHSAs (previously Family Practitioner Committees and Executive Councils) could arrange payment of GPs for National Health Service patients. FHSAs are usually based on counties or metropolitan boroughs, and are accountable to regional health authorities and so to the NHS Executive. Recent major developments in FHSA registers mean that they have a number of important advantages over more usual sampling frames.

- Everyone registered with a GP is registered with an FHSA. Approximately 95% of the population is included.
- Data are computerised and so relatively easy to manipulate. Patients may be readily stratified by one or more characteristics. Computerised searches may be made, for example, by surname to identify some ethnic groups.
- Registers routinely contain three demographic details of use to researchers: gender, age, and postcode.
- They provide doctors’ reference numbers and patients’ NHS numbers. Thus, patients may be linked to other health service data.
- Lists are updated regularly, although there are inevitable delays in adding new patients and removing those no longer eligible.
- Sponsorship of a survey by an FHSA may increase survey response.

This review reports our experience in using FHSA registers as a sampling frame in three different types of epidemiological and social scientific studies. We draw some general conclusions on the characteristics of FHSA registers which may be of use to others contemplating their use. We also comment on future developments in the use of these registers.

Summaries of three studies using FHSA registers

Nottingham University’s Department of Public Health Medicine and Epidemiology is undertaking three major projects that utilise FHSA registers: a region-wide population “lifestyle” survey: the Trent region’s component of a national case-control study of childhood cancer, and a randomised controlled trial of prevention of osteoporosis. In this section each study is described briefly, emphasising the role of FHSA registers, before reviewing collective experiences in approaching FHSA registers.

STUDY A: TRENT HEALTH LIFESTYLE SURVEY (THLS)
The THLS is a series of cross sectional population surveys (1991–1994). The study is funded by Trent Regional Health Authority and collects information which is essential to its strategic policies, planning, and practice in health promotion across the region. Data are collected by post, using a 16 page, self-completion questionnaire.

In 1992, all eight FHSA s within Trent used their registers to provide samples of 1800 adults for each of Trent’s 12 district health authorities. Samples were stratified by gender and, in all but one case, age (16–34, 35–54 and 55–70 years) before systematic selection of samples using software developed by the Family Health Services (FHS) Computer Unit at Exeter. The age, gender, forename, surname, address, and postcode of individuals in the sample were down-loaded to ASCII files.

STUDY B: UNITED KINGDOM CHILDHOOD CANCER STUDY (UKCCS)
The UKCCS is an interview based, case-control study which aims to identify causative
factors in childhood cancer. The study is organised on a regional basis by the United Kingdom Co-ordinating Committee on Cancer Research (UKCCCR), comprising the major cancer charities and the Medical Research Council. The study is funded by the UKCCCR and directly by its members.

Cases are identified primarily through consultant paediatric oncologists. Control children are selected from FHSA computerised registers. Twice a year all FHSA in England and Wales are asked to down-load either their complete registers of children under 15 years of age (as in Trent) or a random sample if this is impractical (as is done in several other health authority regions). Software used during down-loading data to magnetic tape was written for the UKCCS by the FHS Computer Unit. The program arranges records in ascending date of birth order. It can exclude patient’s names and addresses, conferring a high degree of anonymity to data files which comprise NHS number, date of birth, sex, date of registration at FHSA, and GP details.

For each case, 10 controls are selected with the same sex, month, and year of birth from the most recent FHSA listing obtained before diagnosis of that case and on which the case appears. The NHS number is used as the only identifier. Every month FHSA supply the names and addresses of parents or guardians of the controls selected from the lists so that GPs can be approached for permission to contact control families.

STUDY C: EARLY POSTMENOPAUSAL INTERVENTIONAL COHORT (EPIC) STUDY
The EPIC study is a randomised, double blind, population based trial of early intervention to prevent bone loss. It compares a new bisphosphonate drug with hormone replacement therapy and placebo. Nottingham is one of four research centres taking part, and the only one in the UK. Each centre has recruited a random sample of 400 local postmenopausal women aged 45 to 59 years. In Nottingham, two stage sampling was employed, based on the Nottinghamshire FHSA register. Firstly, a random sample of 60 general practices was drawn from all those in the Nottingham Health District. The practices were sampled with probabilities in proportion to the number of women aged 45 to 59 on the practice lists supplied by Nottinghamshire FHSA. Senior partners of the randomly selected practices were asked to give permission in principle for their patients to be contacted about the study. At the second stage, for each participating practice, a random sample of approximately 150 women aged 45 to 59 was selected, stratified to obtain approximately equal numbers of postmenopausal women in the three age groups 45–49, 50–54, and 55–59. The large numbers selected from each practice were needed to achieve the total sample size for the trial.

Collective experiences in approaching FHSA for access to registers
Each of the three studies first sought approval of all relevant local ethics committees and this experience will form the basis of a separate report. Applications to use registers were received and vetted by FHSA chief executives, usually in association with their medical and computing advisory teams. Issues of study design, confidentiality, and ethics were subsequently discussed at meetings of interested parties. Factors used by at least one FHSA in screening applications to access registers, as well as those embedded in the Data Protection Act included:

- Whether relevant local or national ethical committee and local medical committee support had been obtained;
- Whether direct patient contact would be involved and, if so, who would make that contact;
- How GPs would be involved, for example, by giving their prior explicit agreement to approaches to individual patients, personal contact with researchers, or being provided with briefing materials;
- Implications for FHSA in data handling; for example, the range of data required and whether samples or whole down-loads were required. Associated issues of confidentiality were important; for example, security of data, who would hold and access data, and the disposal of listings no longer required; and
- Whether written assurance of handling according to agreed protocols would be given.

Access and ease of manipulation of data
In each study a good working relationship was quickly established with all FHSA information departments. All were willing to assist in producing data, although there were delays in doing so in all three studies. These delays were caused firstly by inexpediency in procedures requested. For example, one FHSA was unable to provide a sample stratified by age by a jointly agreed date. Secondly, there was a delay in the delivery of specialised software from the FHSA Computer Unit at Exeter in two instances. Finally, there was a down-load error in the Exeter Random Sampling program. Despite pressure of work several FHSA volunteered to produce data files using alternative commercial software. These offers were not usually taken up to ensure direct equivalence of data from all sources. Data files were, however, ultimately produced and subsequently imported into Dbase IV (Ashton Tate), to allow further manipulation of data.

Completeness and accuracy
Checks on the accuracy or completeness, or both, of received information were carried out for all three studies. Different problems and constraints were found in each study.
STUDY A: TRENT HEALTH LIFESTYLE SURVEY

Accurate names and addresses were essential as data collection was postal. Inaccuracies in these could lead to failure to contact study subjects. Of the 21,603 addresses in the sample, 2-4% (510) of postcodes were missing and 0-2% (49) were incomplete. The distribution of missing or incomplete postcodes varied between the eight FHSA's (0-1% to 4-8%). Those FHSA's which mainly covered cities had a lower rate of missing or incomplete postcodes (0-1% to 1-0%) than FHSA's with a mainly rural population (2-8% to 4-8%). Overall, 6-4% of all questionnaires were returned as undeliverable, ranging by district from 4-6% to 8-7%. A higher proportion of addresses without or with incomplete postcodes (56 of 559=10-0%) than with postcodes (1318 of 21,044=6-3%) was returned as undeliverable. Of the 12,338 questionnaires completed, 92% (11,349) of respondents reported both their age and gender in accordance with that indicated by FHSA records with 5% showing lack of accord. The remaining 3% did not report these data.

STUDY B: UNITED KINGDOM CHILDHOOD CANCER STUDY

Checks on the completeness of down-loaded data were performed after failure to locate several case children on various Trent region FHSA tapes. It was apparent that not all details of eligible children were being down-loaded. Careful audit showed that because of a software error, a systematic omission of whole groups of records on certain dates of birth every month throughout the 15 years of registrations had occurred. Approximately 7% of children were missing from each down-loaded FHSA register, equivalent to missing 1 in 14 eligible children in Trent. This error has now been rectified.

STUDY C: EPIC TRIAL

The FHSA first provided details of all relevant general practices and the numbers of women on practice lists aged 45 to 59 years. Of the 60 practices selected, 8% (5) refused to participate. One listed senior partner had retired before the list was produced. During the first 3 months of recruitment, 2593 women were sampled from 26 practice lists. Altogether 0-2% (5) of postcodes were missing from their addresses. Lists of names and addresses of women were sent to their GPs before contacting them. GPs excluded 3% (79) of women for a variety of justifiable reasons, usually based on clinical grounds. Six GPs made a thorough check of names and addresses, although they were not specifically asked to do so. They reported two incorrect names and 11 incorrect addresses.

Letters were sent to the remaining 97% (2514) of women who were asked to indicate on a reply form whether their name and address was correct. A total of 56-4% (1418 of 2514) of all forms were returned. Of these, 4-2% (60) of the women reported that the title used was incorrect (in most cases Ms or Miss had been used instead of Mrs) and 1-1% (15) reported that the name was incorrect, most being minor errors. Some 5-7% (81) of addresses were reported as being incorrect or incomplete and 2-9% (41) of postcodes were incorrect.

Discussion

The projects outlined in this paper together cover survey, case-control, and clinical trial methodology. They focus on various sections of the population: adults aged 16-70, children under 15 years, and women aged 45-59 years and require different data to identify study populations, such as name and address and/or NHS number and/or GP code. Despite the different characteristics of the three studies, permission to use FHSA registers was readily granted after application to FHSA chief executives, usually followed by a visit from senior study personnel. Electoral rolls and telephone and housing listings are more accessible than FHSA registers, being in the public domain, but have the major disadvantage of being less comprehensive and in a printed, rather than computerised format. Computerised electoral rolls are available only in exceptional circumstances. However, software used by FHSA's for sampling caused time consuming difficulties in two of the studies: a general problem in down-loading and the systematic omission of records in the UKCC study. The latter software error might easily have gone unnoticed had a sample rather than a complete list been supplied, as was the practice in other participating regions. All identified software problems have now been solved but highlight the importance of quality checks on data received from FHSA's. For example, checks against an independent register may be made. Alternatively, it is possible to search for obvious systematic omissions by age or name.

FHSA registers cover at least 95% of the total population and cover all ages. Unlike more usual sampling frames they gave all the necessary information for the studies discussed here, such as age, gender, and NHS numbers linking individuals to GPs' records. In addition FHSA lists are more complete than more common sampling frames. Electoral rolls exclude, for example, those under 18 and, of more importance, those who choose not to register, despite non-registration being an offence in law. Non-registration by eligible electors seems to have increased to about 10%, although a pattern is patchy, and it may reach 19% (Riste, MacGregor, Hazes and Silman, personal communication, 1991). FHSA registers are also more complete than telephone listings which are estimated to cover 87% of households in the UK, although 25% of these households are ex-directory. A major problem with telephone listings is that they give no information about household composition and usually list only one household.
Future developments in the use of FHSA registers

Because of their advantages there will probably be increasing future demand for FHSA registers to supply samples or complete lists from their registers for research projects, as an alternative to other less flexible sampling frames. At present there is no unified approach by the FHSA registers to these requests. Standardised practice and procedures in submitting and dealing with requests need to be developed by both FHSA registers and research workers. These should cover issues such as the efficacy of the proposed research; ethical considerations including confidentiality; practicalities of the supply of data, including timing and checks on the accuracy of software and data; and possible charges by the FHSA for this service. The experience of the three projects has shown that the use of FHSA registers as a sampling frame is not only a viable alternative to the electoral rolls or a telephone listing in all these studies but has considerable advantages over both, particularly in studies of children who are not listed on telephone lists or electoral rolls.

The authors gratefully acknowledge the positive and ongoing support of FHSA registers across Trent region for the projects described in this paper. HRR and RD are supported by Trent Regional Health Authority. ACC by Mertck, Sharp and Dohme, and CMJ by the UK Co-Ordinating Committee on Cancer Research.