smokers of low tar cigarettes have an estimated "intake" of tar some 25% lower than that of smokers of higher yielding brands.

They emphasise, as has been previously reported, that when making interproduct comparisons and extrapolating from one smoke marker to another, it is important to take into account differing ratios of these markers (as measured under standard conditions) for the products being compared.

In a very different study of demographically representative samples of regular middle tar and regular low tar smokers, I found that estimates of mouth tar intake (derived from 24 hour butt nicotine analyses) indicated a 32% lower intake for the low tar smokers. The results also showed a similar reduction in tar intake (30%) for the middle tar smokers when they were asked to smoke a low tar cigarette. The indirect methodology employed in that report has now been validated through a detailed experimental study (RGR, in preparation).

Russell’s study examined the tar intake of heavy smokers (around 30 cigarettes per day) and he was cautious in extrapolating his findings to lighter smokers. However, the low tar smokers in my study consumed on average 17.5 cigarettes a day, which indicates that consumption is not a critical factor in determining smoking patterns.

Russell’s results are thus supported in studies of (a) widely differing design and methodology, (b) both representative and non-representative populations of smokers, and (c) both habitual low tar versus habitual middle tar smoking and acute switching between middle tar and low tar smoking.

The fact that these studies indicate comparable results supports the validity of the overall conclusion that low tar means less tar.

ROGER G RAWBONE
Research Division
Gallaher Limited
Virginia House
Henry Street
Belfast BT15 1JE

References
2 Rawbone RG. Switching to low tar cigarettes: are the tar league tables relevant? Thorax 1984; 39: 657–62

Occupation and testicular cancer
SIR—In their paper, McDowall and Balarajan (Journal of Epidemiology and Community Health. 1986; 40, 26–9) were trying to determine whether an observed association between occupation and testicular cancer could highlight aspects of modern living that may contribute to an increased incidence of the disease. Deriving their data from mortality statistics (ICD:9 186), they were unable to differentiate between the two main histological categories of testicular cancer: seminoma and teratoma. The very different pathologies of seminoma and teratoma and the differences in their epidemiological characteristics probably suggest different aetiological factors. (Seminomas occur more frequently than teratomas, their incidence peaks earlier, and a larger percentage occur in social classes I and II). Although the authors did mention the possible confounding influence of survival time, this was in relation to testicular cancer en masse, and they did not indicate what type of cancer patient was surviving. The treatment of seminomas has remained fairly constant over their study period (1971–80), orchidectomy and/or orchidectomy with radiotherapy constituting standard procedure. It is likely therefore that the type of seminoma patient dying has also been remained constant. The same is not true, however, for teratoma patients. In 1975, marked progress in cytotoxic chemotherapy, particularly in the use of cisplatin in the treatment of germ cell tumours, increased the percentage of those surviving from malignant teratoma (and seminoma with extralymphatic metastatic disease) from 8% to 90%. Thus, in the study period the composition of patients will have altered appreciably.

A scrutiny of the death certificates to identify the occupations separately for patients with teratomas and seminomas would be an important next step.

FLR WILLIAMS
Wolfson Institute of Occupational Health,
Department of Community Medicine,
Level 3, Medical School, Ninewells,
Dundee

References
1 Waterhouse JAH. Epidemiology of testicular tumours in management of testicular tumours. 1985; Supp 6, 78; 3–7.