An analysis of the efficiency of a Rhesus haemolytic disease prophylaxis programme

P. M. CROWLE
Department of Paediatrics, Birmingham Maternity Hospital

SUMMARY
A method of implementing the anti-D prophylaxis programme is described and its efficiency is studied by examination of the records of 889 Rhesus-negative mothers. During one calendar year only eight (0.9%) cases were found where there was failure to follow the correct procedure and to administer anti-D. Sixty-two point five per cent of the mothers who were given anti-D received it within 24 hours and all but 3% within 48 hours. Methods of improving the programme are discussed.

INTRODUCTION
The original suggestion that injection of passive anti-D might prevent Rhesus immunization (Finn, 1960) has been amply justified in practice (Clarke et al., 1966; Freda, Gorman, and Pollack, 1966; Chown et al., 1969). Anti-D must be given in a dose appropriate to the volume of fetomaternal transfusion of Rhesus-positive blood, and also within 24 hours. An apparent failure of anti-D prophylaxis may be seen following fetomaternal haemorrhage at therapeutic or spontaneous abortion (Bowman, 1970a), and it is now the policy to give Rhesus-negative women anti-D at the time of such abortions. True failure of anti-D to protect from immunization does occur. Using the data collected by Clarke (1970), 13 (1.1%) of 1,139 women were immunized, despite receiving anti-D at the end of the second pregnancy. The reason for this could be either an exceptionally large transplacental haemorrhage, or that the mother has been primed by the baby but that antibodies are not yet detectable at the time of delivery.

The chief remaining reasons for a woman to develop Rhesus D antibodies are now failure to identify a patient at risk and/or failure to give anti-D. This aspect of 'failure' has received little attention, but Bowman (1970b) found that 13% of urban and 73% of rural women at risk failed to receive anti-D, giving an estimated overall failure rate in Manitoba of around 25%.

It was therefore decided to evaluate the efficiency of the anti-D programme in this hospital, which handles a quarter of the deliveries in a city where over 90% of the total births occur in hospital.

MATERIALS AND METHODS
All women attending the Birmingham Maternity Hospital for booking for the first time have blood tested for group and the presence of antibodies, and the results are written in a prominent place on the first page of the clinical notes. When a woman is admitted in labour, the blood group is one of the items of information extracted from the notes and put in the midwives' nursing records. The importance of ensuring that the whole delivery team knows the patient's blood group has been repeatedly emphasized as this first step is essential for the subsequent smooth running of the programme.

At the time of delivery, cord blood is obtained and a maternal venous specimen is taken from all Rhesus-negative women as soon after delivery as is practicable, normally about 20 minutes afterwards. The specimens and a request card are sent to the laboratory. Should cord blood not be obtained, the card and the maternal blood are still sent to the laboratory, but capillary blood is subsequently obtained by the haematology staff from the baby. In the case of non-booked emergencies, maternal blood is withdrawn on admission for blood grouping in all cases and the above procedure is followed if the mother is Rhesus-negative. In stillbirths, where it is not possible to obtain fetal blood, anti-D is given in the dose described below.

Tests on the blood samples are performed each day (including public holidays) except Sunday, and the baby's blood group is established and a Coombs' test done. If the baby is Rhesus-negative, no further action is taken. If the baby is Rhesus-positive, the maternal blood is subjected to Shepherd's modification of the Kleihauer test. Should less than two fetal cells be seen in each low-power field on scanning, then 100 μg of anti-D are given to the mother,
If more than two cells are seen, a larger fetomaternal haemorrhage is assumed and an accurate count of fetal cells in 50 low-powered fields is made according to the method of Woodrow and Donohoe (1968). In larger haemorrhages the amount of anti-D is increased in proportion to the volume of bleeding.

When anti-D therapy is indicated, the appropriate number of vials of anti-D, together with a special form, are sent to the ward. This form, which is in triplicate, shows the blood group of the mother and baby, the time and date of both the delivery and injection of anti-D, as well as identification details. Of three copies, one is retained in the patient’s notes, one is sent to the general practitioner, and one is sent to the Regional Blood Transfusion Service.

In this survey the records computer produced a list of 742 Rhesus-negative women who were delivered in 1972. A further 147 names were obtained from the haematology records, making a total of 889. This represents 17·6% of the 5,054 deliveries in this hospital in 1972, and compares well with the national figure of 17% (Race and Sanger, 1962) for Rhesus D negative people in the general population. In each case the patient’s notes were examined to ensure that

1. the woman was Rhesus negative,
2. the appropriate maternal and infant samples were obtained,
3. the samples received the correct investigatory procedures,
4. anti-D was given when appropriate,
5. anti-D was administered within 72 hours.

RESULTS

Table I shows the total number of women receiving, or not receiving, anti-D and lists the reasons when no anti-D was given. The postpartum sterilizations were usually performed six weeks after delivery.

Table I

<table>
<thead>
<tr>
<th>Treatment</th>
<th>No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Received anti-D injection</td>
<td>456</td>
</tr>
<tr>
<td>Did not receive anti-D because:</td>
<td></td>
</tr>
<tr>
<td>already immunized</td>
<td>58</td>
</tr>
<tr>
<td>Rhesus-negative baby</td>
<td>350</td>
</tr>
<tr>
<td>sterilized at Caesarean section</td>
<td>7</td>
</tr>
<tr>
<td>postpartum sterilization</td>
<td>5</td>
</tr>
<tr>
<td>Rhesus-negative husband</td>
<td>4</td>
</tr>
<tr>
<td>refused anti-D (husband sterilized)</td>
<td>1</td>
</tr>
<tr>
<td>failure in anti-D programme</td>
<td>8</td>
</tr>
<tr>
<td>Total</td>
<td>889</td>
</tr>
</tbody>
</table>

Table II

<table>
<thead>
<tr>
<th>Patient</th>
<th>Age (yr)</th>
<th>No. of Previous Pregnancies</th>
<th>Reason for not receiving Anti-D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>29</td>
<td>0</td>
<td>A Rh-positive baby. Specimens received in laboratory 9 days after delivery.</td>
</tr>
<tr>
<td>2</td>
<td>34</td>
<td>5</td>
<td>No cord blood obtained.</td>
</tr>
<tr>
<td>3</td>
<td>22</td>
<td>4</td>
<td>A Rh-positive baby. Mother took own discharge with baby and against advice.</td>
</tr>
<tr>
<td>4</td>
<td>26</td>
<td>0</td>
<td>Antepartum haemorrhage at 34 weeks. Stillbirth after section. No cord blood obtained. Subsequent pregnancy: Rh-positive baby, Coombs’ negative.</td>
</tr>
<tr>
<td>6</td>
<td>22</td>
<td>1</td>
<td>No cord blood obtained.</td>
</tr>
<tr>
<td>7</td>
<td>39</td>
<td>6</td>
<td>Specimen to Blood Transfusion Service in error. Received in our laboratory 4 days after delivery.</td>
</tr>
<tr>
<td>8</td>
<td>18</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Table II gives the clinical details of the eight ‘failures’ in the implementation of the programme, although it is possible that some of the babies may have been Rh-negative or, even if positive, have failed to cause immunization. The two mothers (cases 3 and 6) who took their own and their babies’ discharge against medical advice could have received anti-D injections at home, given by a domiciliary midwife or general practitioner, if the problem had been identified early enough. In two cases (1 and 8) specimens were misdirected and failed to reach the appropriate laboratory in time, while in the remaining four cases there was failure to appreciate that the mother was Rh-negative and so obtain the appropriate specimens. These eight failures in implementing the anti-D programme represent 0.9% of the 889 Rh-negative mothers who were delivered in this hospital in one calendar year.

Table III

<table>
<thead>
<tr>
<th>Time Interval Between Delivery and Injection</th>
<th>No.</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-12</td>
<td>54</td>
<td>12·0</td>
</tr>
<tr>
<td>13-24</td>
<td>228</td>
<td>50·6</td>
</tr>
<tr>
<td>25-36</td>
<td>89</td>
<td>19·7</td>
</tr>
<tr>
<td>37-48</td>
<td>66</td>
<td>14·6</td>
</tr>
<tr>
<td>49-72</td>
<td>14</td>
<td>3·1</td>
</tr>
<tr>
<td>Total</td>
<td>451</td>
<td>100·0</td>
</tr>
</tbody>
</table>

Table III shows the time between delivery and injection in 451 out of 456 mothers where such information was obtained or could be derived.
assuming the anti-D is given before 17.30 hours on
the day it is issued. As can be seen, 62.5% of the
mothers received the injection in the first 24 hours,
and a further 34.5% in the second 24 hours. Only
3% were given anti-D in the third 24 hours.

DISCUSSION

Woodrow and Donohoe (1968) have shown that
only 8.5% of Rhesus-negative mothers have
antibodies six months after delivery of a Rhesus-
positive fetus. A further 8.5% develop antibodies
during the second pregnancy, probably as a result
of priming in the first, so it is not surprising that
our mothers (patients 4 and 5) who failed to receive
anti-D in this programme have not developed anti-
body in their subsequent Rhesus-positive preg-
nancy. Nevertheless this good fortune does not
alter the fact that failure occurred in an important
aspect of preventive medicine.

In view of the possibility of changing her intention,
a mother planning to have a postpartum sterilization
at six weeks should probably receive anti-D,
especially if the infant has difficulties in the first few
hours of life. In these permissive days, and particu-
larly in primiparous with paternity is often in doubt
in infants conceived before marriage (Edwards,
1957), it might be inadvisable to assume that a
Rhesus-negative husband is, in fact, the father.

Examination of the reasons for 'failure' in
implementing the programme suggests various
methods of presentation. Improved liaison between
ward, haematology department, and general prac-
titioner would permit women who leave hospital
early and contrary to advice to receive anti-D
at home. Clarity in the instructions given by senior
staff to porters and ward clerks should prevent
blood samples being lost (case 1) or sent to the
wrong laboratory (case 8). In the latter case, con-
fusion probably arose because cord blood of babies
born to immunized mothers is routinely sent to the
Blood Transfusion Service.

The results show that increased vigilance in
identifying Rhesus-negative women in labour would
produce most benefit (cases 2, 4, 5, and 6). Mothers
of stillbirths are proportionately more at risk,
probably because no cord blood is obtained, and the
mother tends to be discharged home as soon as
possible. When a patient in labour has blood cross-
matched, the haematology staff may be able to
ensure that correct samples are obtained from
Rhesus-negative women. Nevertheless, it is the
admitting clinician who is primarily responsible
for ensuring that the whole delivery team knows the
Rhesus status of each mother in labour.

We should also consider other potential causes
of immunization. With increasing use of diagnostic
amniocentesis for the identification of genetic
disease, it might be wise to give Rhesus-negative
mothers anti-D at the time of the procedure in
the case the fetus is Rhesus-positive.

In conclusion, the anti-D programme described
here should do much to lower the incidence of
Rhesus haemolytic disease of the newborn, and
the modifications suggested should improve matters
further to the mutual benefit of clinicians and
parents of the future.

I should like to thank Dr. J. Insley for helping criti-
cisms of the manuscript and Dr. J. Stuart, Miss A.
Hudson, and Mr. A. Picken, of the Haematology
Department, for their help in the preparation of this
paper. The study forms part of a project financed by the
Endowment Fund of the United Birmingham Hospitals.

REFERENCES

—— (1970b). Prevention of haemolytic disease of the

Chown, B. et al. (1969). Prevention of primary Rh
immunisation: first report of the Western Canadian

Clarke, C. A. (1970). Prevention of rhesus isoimmuniza-

——, Finn, R., Lehane, D., McConnell, R. B., Shep-
pard, P. M., and Woodrow, J. C. (1966). Dose of
anti-D gamma-globulin in prevention of Rh-haemo-

reputed primary influence of ABO phenotype on
fertility and sex ratio. *Brit. J. prev. soc. Med.*, 11,
79.

Rh factor: prevention of isoimmunization and

Publications, Oxford.

immunization by pregnancy: results of a survey of
their relevance to prophylactic therapy. *Brit. med. J.*, 4, 139.