of financing regional and national specialties, and also the particular requirements of the teaching hospitals.

With the formation of the AHA:s in 1974, with defined areas and with responsibility for both hospital and community services, it seemed appropriate to see if it were possible to derive an allocation formula, the main element of which is an 'equal spend per head of population at risk'. Taking one of the new English regions, models of inpatient flows across boundaries for hospital services were derived from HIPF and the notional catchment populations of the AHA:s were calculated. Little variation was found in morbidity or social structure between the areas, but a small adjustment was made for area distribution. The allocation for community services was based on actual populations, with weighting both for the age-sex bands using each service and for relative importance of each service to total expenditure.

This formulation reveals the implications of an equitable distribution of funds and so enables adjustments to be made in the future, while allowing the RHA to use explicit weights for different services. At the same time, AHA:s are free to spend their 'fair' share as they choose.


Since iodine-131 treatment was introduced for thyrotoxicosis the development of cancers among patients to whom it has been given has been monitored. Between 1949 and 1967 some 35,000 patients were notified to the National Cancer Registry as having received this treatment. Mortality in this group, 3,937 of whom died by the end of 1967, has been compared with that in England and Wales. Patients with thyrotoxicosis treated by other means were not registered; the analyses thus do not distinguish effects of the disease from those of the therapy.

The analyses were presented not only to show what happened to the patients but to demonstrate methodological aspects of multiple cause coding. Analysing all the conditions mentioned on death certificates yields much additional information, even for rapidly fatal diseases which would not be expected to appear on death certificates except as the underlying cause.

Thyroid cancer mortality was greatly increased, but investigation of these cases showed that the majority were thyroid cancers registered in error or diagnostic errors; the true excess was small. Breast cancer mortality was also substantially increased, and as cervical cancer mortality was slightly in excess of expected it seems unlikely that this was due to an atypical distribution of reproductive histories. Mortality from lymphatic leukaemia was increased; this showed particularly in the multiple cause analyses.

Four hundred and fifty three deaths were attributed to thyrotoxicosis which was also mentioned on a further 399 death certificates but not as the underlying cause.

Mortality from ischaemic heart disease was approximately doubled, and deaths from embolism increased many times; many of the latter certificates mentioned atrial fibrillation.

Person-to-Person Transmission of Hodgkin's Disease. P. G. SMITH, M. C. PIKE, L. J. KINLEN, and ALISON JONES (Department of Health and Social Security Cancer Epidemiology and Clinical Trials Unit, Oxford)

Vianna and his colleagues1-2 have recently described situations in which Hodgkin's disease appears to have been contagious with a long and variable latent period between 'transmission' of the disease and the onset of symptoms.

Space-time clustering of the disease has not been detected3 but this is not surprising if a long and variable latent period exists. A generalization of Knox's method4 has been applied to data from the Oxford Cancer Registry. This method overcomes the problems associated with a long latent period but does not cope with a variable latent period unless there is an a priori way of assigning a specific latent period to each patient. Assuming a similar latent period for each patient, a slight excess was found of pairs of patients with clinical onsets between 9 months and 18 months apart, which would be compatible with a latent period of this length, but the excess is not convincing.

A case-control study is under way in Oxford in which all Hodgkin's disease patients, aged under 40 years and resident in a defined area, diagnosed in the period 1962 to 1971 have been identified. Patients and their matched controls (matched for age, sex, social class, area of residence, and admission to hospital in the year of diagnosis of the patient) are being interviewed to obtain a history of their place of residence, schooling, work, and any social activities which may have brought them into regular contact with other people. To date 91 patients and 66 controls have been interviewed. A number of 'links' have been established between pairs of patients (some pairs attended the same school at the same time, others worked in the same factory at the same time, etc.) but a preliminary analysis suggests that a similar number of links is present among the matched controls.

REFERENCES


Occurrence of Childhood Neoplasms in Sibships. G. J. DRAFER, M. M. HEAF, and J. F. BITHELL (Department of Social Medicine, University of Oxford)

The Oxford Survey of Childhood Cancers now covers both registrations and deaths from neoplastic disease in Britain. Between 1953 and 1971 about 18,000 cases have been included, and interviews have been obtained with nearly 80% of the parents of these children.

Information has been collected about the occurrence of both malignant and benign neoplasms among relatives; more than 100 families have been identified in which one or more sibs of an affected child are also affected. In 17 of these sibships the affected children have each had a retinoblastoma, a disease in which it is recognized that a proportion of cases have a simple genetic origin. The remaining sibships include a wide range of different