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ABSTRACT
Systems models, which by design aim to capture multi-
level complexity, are a natural choice of tool for bridging
the divide between social epidemiology and causal
inference. In this commentary, we discuss the potential
uses of complex systems models for improving our
understanding of quantitative causal effects in social
epidemiology. To put systems models in context, we will
describe how this approach could be used to optimise the
distribution of COVID-19 response resources to minimise
social inequalities during and after the pandemic.

INTRODUCTION
The health and well-being of the public are deter-
mined by complex interactions between biological,
individual, societal and environmental factors.1

These often intertwine in dynamic and context-
specific ways that can make studying any one com-
ponent in isolation misleading or limiting. Feedback
loops; leverage, tipping points or other non-linear
relationships; interference, transmission, or spil-
lover; and emergent properties such as social orga-
nisation can make traditional regression-based
analyses of observational, or even randomised trial,
data insufficient for understanding the causes and
determinants of public health.2–9 Social epidemiol-
ogy has long grappled with this complexity and
emphasises the need for formulating and formalis-
ing a clear theoretical framework before attempting
to untangle these forces.1 10 Agent-based models or
compartmental models have been proposed as
a solution for understanding complex systems in
social epidemiology.4–6 11 12

In this paper, we review the use of these systems
models in social epidemiology and link them to
quantitative estimation of causal effects under the
potential outcomes framework in the hopes of
further advancing the use of complex systems meth-
ods in social epidemiology.

Brief introduction to complex systems models
Complex systems are those with a large number of
interacting components.5 Complex systems models
encompass a broad range of methodologies that
generally use computational simulation of relation-
ships between features in a pre-specified structure to
understand the ways in which these features inter-
act. In the context of public health, two major
classes of models are of particular interest: group-
level and unit-level systems models.

Group-level models include infectious disease
transmission models such as SIR and SEIR models;

health policy models, such as Markov cohort mod-
els; and compartmental models of disease progres-
sion. The common feature of these models is that
they simulate the evolution of the point prevalence
of one or more conditions of interest within groups
or strata of individuals. For example, in an SIR
model, the strata of interest are ‘Susceptible’,
‘Infectious’, and ‘Recovered’, whereas in a policy
model, strata of interest might include
‘Symptomatic’, ‘Diagnosed’, and ‘Connected to
Care’. These strata are often referred to as ‘states’.
Group-level models can be dynamic or static. In
dynamic models, such as the SIR model, the number
of people within a given state at a particular time
point influences the rate of movement through the
system of individuals in other states. In static mod-
els, such as a Markov cohort model, the rate of
movement through the system depends only on an
individual’s current state (possibly including an indi-
cator for some key features such as age or gender),
but not on the current states of other individuals.
Group-level models have the advantage of being
relatively low complexity and requiring minimal
computational resources—indeed they can gener-
ally be solved numerically without simulation.
However, the trade-off for computational simplicity
is that these models can be challenging to design and
parameterise. Limiting the number of states requires
strong assumptions about which strata are meaning-
ful to include and what factors govern the rate of
progression between strata,13 and determining
appropriate values for these progression rates can
be challenging especially when the population of
interest has not been well-studied.

Unit-level models include agent-based models
(often called ‘ABMs’) and individual-level simula-
tion models (also called microsimulation
models).14–16 The defining feature of these models
is that each simulated unit represents a single indi-
vidual in a (virtual) population, as opposed to
a group of individuals as modelled in the group-
level models. The chief benefit of simulating indivi-
duals rather than groups is the ability to track and
include aspects of an individual’s personal history,
location in space and time relative to other indivi-
duals, and interactions between individuals. The
main difference between agent-based models and
individual-level simulation models is whether the
individual units are simulated in isolation from
each other (individual-level models), or whether
units can transmit information (eg, education or
infection) between one another (agent-based mod-
els); although this distinction is not always consis-
tently defined in the literature.14 This transmission
allows for the possibility of interference, also called
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spillover or dependent happenings, which occurs when the out-
comes of one or more individuals in the population affect the
exposure and/or outcome of other individuals.17–19 In addition
to the interaction between agents, agent-based models can con-
sider heterogeneity, or differences, among agents and types of
agentswithin an environment.Heterogeneity is necessary to repre-
sent the complex populations that exist in the real-world and is
incorporated by including in the agent-based model the types of
actors thatmay exist in a system.Heterogeneity can bemodelled at
the exposure, outcome, covariate, or probability levels.19

Complex systems models are designed to represent key states,
characteristics, or decisions that individuals or groups pass
through over time. One common way of visualising the structure
of a systems model is to create a decision-tree that depicts the
relevant variables, the possible pathways, and the potential
downstream consequences for an agent in the simulation. This
structure can be used to depict both group-level and individual-
level systems models, although group-level models are often
more commonly depicted with compartment or flow diagrams.
For simple systems models, the decision tree can also be used to
run the simulation.20

Figure 1 depicts a possible systems model for COVID-19 using
the decision-tree framework. This tree describes five possible
states at any given time for an individual with COVID-19: (1)
currently symptomatic, but not yet diagnosed or hospitalised; (2)

currently symptomatic and diagnosed, but not yet hospitalised;
(3) currently symptomatic, diagnosed and hospitalised; (4) recov-
ered; and (5) dead. In order to evaluate the impact of social
factors on the progression of individuals between these states,
the decision tree allows the probability of transitioning between
these states to depend on the individual’s underlying health
status, insurance status and access to testing.

Social epidemiologic example: inequity and COVID-19
To put systems models in context, we use an example based on
COVID-19 and related social inequalities that both exacerbate
and are exacerbated by the 2020 pandemic (figure 2). Recent
COVID-19 research has found large disparities in COVID-19
morbidity and mortality between minoritized and majority
communities around the world.21–24 The relationship between
social epidemiology and infectious disease is a well-established
one,1 25–27 and many of the complexities encountered in social
epidemiology have been studied in the infectious disease con-
text. We hope to provide social epidemiologists with a toolkit to
both understand the growing number of COVID-19 models and
apply those modelling skills to other important social epidemio-
logic questions by using COVID-19 as an example.

A substantial body of literature exists highlighting the dispropor-
tionate impact of COVID-19 on People of Colour including Black
and Indigenous communities, both internationally28 29 and across

Figure 1 Decision tree for a systems model evaluating the role of access to testing on COVID-19 morbidity and mortality. Testing access in the model is
represented in the conditional probability of diagnosis given age, comorbidities, insurance status, and location. Letters represent variables and
subscripts represent time-point and are included to allow the reader to gain intuition about how individuals move through the system: Y is vital status
(0=alive, 1=dead); S is symptom status (0=no symptoms; 1= symptoms); H is hospital status (0=not hospitalised; 1=hospitalised); D is diagnostic status
(0=not diagnosed, 1=diagnosed).
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the United States.30–32 In the US, Black and Indigenous commu-
nities have been particularly negatively affected by COVID-19
compared to non-Hispanic whites,30–40 with exacerbated dispari-
ties at the intersection of age and race/ethnicity.34 41–45

Although some have argued that variation in underlying health
status is to blame,46 it is more likely the disparities in both health
status and COVID-19 stem from wide-spread structural pro-
blems, including systemic and structural racism; racial capitalism,
in which racial oppression is crucial for the accumulation of
capital rooted in American culture,47 and medical racism, in
which minoritized individuals receive lower quality care and
experience greater delays and barriers to accessing
healthcare.48–60

For example, in the US racial and ethnic minorities make up
a significant proportion of essential workers who cannot work
from home57 and often rely heavily on public transportation.58

These factors put them at greater risk for acquiring the virus than
those who can quarantine completely. Furthermore, 25% of the
essential workers in the US live in low-income households, and
18% have at least one uninsured household member.59 The
differences in the allocation of public health infrastructure and
resources create vulnerable communities that may not be well-
supported to deal with the pandemic.60–65

For the remainder of this article, we explore how complex
systems models could aid in answering the social epidemiologic
question: ‘How can we best distribute limited COVID-19 testing
resources in order to minimise social inequities?’

DESIGNING SYSTEMS MODELS FOR CAUSAL INFERENCE
Systems models have long been used to generate hypotheses about
possible causal relationships, triangulate information on potential
mechanisms, and identify potentially important leverage points.66

When our question of interest requires a quantitative estimate of
a causal effect for decision making, systems models can also be
useful but need to be defined to clearly and carefully specify the
causal assumptions. The use of quantitativemethods for estimating
causal effects in social epidemiology has been the subject of much,
sometimes heated, debate.10 67–80However, many of these debates
revolve around the problem of specifying sufficiently complex
causal questions to capture many levels at which social determi-
nants of health operate. We argue that systems models, which by
design aim to capturemulti-level complexity, are in fact the natural
choice of tool for bridging the divide between these two sub-
disciplines, especially as the use of these models for estimating
counterfactual outcomes is becoming more formalised.6 9 81–84

The key feature of designing systems models for quantitative
causal effect estimation is to design the model with a clear set of
causal assumptions. The required assumptions are similar to
those required for any causal effect estimation using randomised
trials or observational data,81 with the additional caveat that we
must now be sure to design and parameterise our model correctly,
not just measure and adjust appropriately. We briefly review the
required causal assumptions for traditional methods and describe
special considerations for systems models.

The first assumption is the Stable Unit Treatment Value
Assumption, or SUTVA. This assumption can roughly be decom-
posed into two components: consistency and no interference.

Consistency requires that the counterfactual world we think
we are making inference about is the one we are actually making
inference about. In practice, this is typically supported by the
need for a clear causal question, reflecting a comparison between
two or more interventions or exposure states applied to a specific
group of individuals,85 although the appropriate formulation of
these questions in social epidemiology has been questioned.86 In
the context of a complex system, observational data and/or ran-
domised trials are often unlikely to be sufficient to establish
consistency since the data requirements for unravelling complex-
ity increase rapidly. In contrast, complex systems models can
allow us to be more creative in our specification of causal con-
trasts, more easily apply multi-level interventions, and assess
multi-level outcomes. Creating and using a systems model
requires clearly specifying a framework under which key char-
acteristics are related, and an algorithm by which the desired
contrasting exposure levels can be obtained. Although these
may not always clearly represent real-world policies, the algo-
rithm must be detailed enough for the computer (and by exten-
sion the researcher) to thoroughly understand the counterfactual
scenarios of interest. This detailed algorithm provides
a specification for the meaning of the counterfactuals we aim to
compare—that is, it allows us to assume that our results are at
minimum consistent for the exposure contrast we have specified
in the simulated world which the model represents.

For example, if we are interested in understanding whether
a COVID testing strategy based on prioritising individuals in
high-incidence neighbourhoods helps to reduce racial and eth-
nic disparities in COVID-19 hospitalisation, using observa-
tional or trial data may be difficult due to the complex
interplay between structural racism, COVID risk and vulner-
ability, residential neighbourhood, and healthcare access. In
a complex systems model, we explicitly describe how we

Figure 2 Causal directed acyclic graph for the relationships between individual and neighbourhood characteristics, SARS-CoV-2 testing, and COVID-19
morbidity and mortality.
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believe these relationships work, and then assess the impact of
our testing strategy conditional on our assumptions about the
model structure and rules.

SUTVA also relies on the assumption of no interference—that
is, that the exposures and outcomes of two or more individuals
are independent of one another. By nature, many of the questions
of interest that are assessed using systems models explicitly vio-
late this assumption. However, there is a growing body of work
that describes how to estimate causal effects in the presence of
interference,17 18 87 88 and these can be extended to complex
systems models.89

The second key assumption of causal inference is positivity;
all individuals in our population must have some probability of
being in either group—no individual can be a ‘never treat’ or
‘always treat’ without a clear rule specifying this behaviour in
the model. This can be difficult to achieve in observational
data, but is built into the creation of systems models—all
individuals must have a pre-specified probability of receiving
an exposure, and researchers can assess the model to ensure
there are no groups for which exposure will always or never
be assigned. The requirement for positivity is a challenge for
the use of the potential outcomes framework in social epide-
miology—under this framework we can only estimate causal
effects when data exist and exposures are possible. However,
the use of complex systems models can allow us to somewhat
relax this assumption by changing the rules of our simulated
model universe to change the probability of exposure in
a group for which exposure is actually always or never avail-
able. Note however that this requires strong assumptions
about the impact of exposure in this group that may be
difficult or impossible to justify.

The third key assumption is that of exchangeability—that
is, the counterfactual distributions (and thus the distribution
of covariates that cause confounding) for individuals who are
in the exposed or treated group must be the same as those in
the reference category.90 91 These assumptions require being
clear about the population of interest, and understanding all
shared causes of our exposure and outcome of interest. In
observational studies, exchangeability is supported via the
collection of rich covariate data to ensure all confounding
paths between exposure and outcome can be blocked.90 The
same principle can be applied to systems models with a slight
modification: we must model all covariates necessary to
ensure that all confounding paths between all pairs of vari-
ables already in the systems model can be blocked.81 In addi-
tion, systems models require the additional assumption that
the parameter inputs used to build the model are estimates of
causal effects and were obtained from populations where
these effects have the same value as in the population of
interest.81 82 This last assumption amounts to requiring the
causal inference assumptions for every pair of variables in the
systems model, and is often the most challenging to
establish.82

One useful way of clarifying the above assumptions when
designing a systems model is to employ the Target Trial
Framework.92–94 This framework asks the researcher to detail
the protocol of an ideal (and sometimes unrealistic) rando-
mised trial for the research question of interest. This helps
define the specific features of the population, the specific
comparison of two or more intervention or exposure groups,
and the outcome(s) measurements of interest. This protocol
then serves as the base on which to build a model, and allows
other researchers to more easily assess whether they believe

the assumptions required are sufficient to interpret the results
causally.

Target trials in the presence of interference
An important consideration for systems models is that the ideal
trial for many of the questions of interest would be one that asks
complex questions such as ‘how do we best distribute limited
testing supplies to minimise social inequalities?’. Questions such
as this involve understanding that resources, information and
exposure are shared between individuals, but their complexity
does not prevent us from evaluating them using systems models,
nor does it prevent us from specifying clearly defined, although
complex, causal questions. For example, in the setting of SARS-
CoV-2 testing, when a test is used on one individual it cannot be
used on another individual. This problem can lead to challenges
with the consistency assumption unless the causal question is
specified in a way that accounts for the concepts of interference,
transmission, spillover, or dependent happenings.

Fortunately, there are many existing solutions for how to ask
complex causal questions under these settings. For example, com-
plex trial designs have been developedwhich can allow researchers
to answer these questions, including cluster-randomised, network-
randomised, and ring vaccination trials.17 87 95 In addition, the
recently developed auto-g-computation algorithm could be
extended to improving causal effect estimation with ABMs
when the no interference assumption is violated.96 Systems
models can be designed to incorporate transmission of informa-
tion (disease or resources) between individuals, and emulate the
results of these more complex randomised trials to obtain an
estimate of the causal effect under transmission scenarios.84

These models are commonly used in infectious disease epide-
miology where researchers can model outbreaks and the spread
of disease due to the interaction between agents. This is espe-
cially relevant for COVID-19 models, and numerous research
groups have already released models describing the extent and
duration of the pandemic based on varying transmission
assumptions.97 98 But agent-based models can also be
a valuable tool for understanding social epidemiologic ques-
tions. There are many features of the social environment,
which transmit between individuals (eg, education, or violence),
and many ways in which the outcomes or exposures of one
individual can affect the exposure or outcome of another
individual.

As an example, let’s revisit our decision-tree model depicted in
figure 1. There, we allowed the availability of tests to influence
the probability that an individual with COVID19 symptoms
would be diagnosed. If our population of interest has access to
only a fixed amount of tests over time, then we can incorporate
this into our model by allowing the probability of testing to
decrease over time, or by explicitly modelling the availability of
tests—decreasing the number of tests as they are used, and
increasing them when new supply is available. This second
approach would require building an additional layer into our
model that simulates the supply of tests over time. If relevant,
a third layer could be added with information on location of tests
or individuals to allow test access to vary over space as well as
time.

We provide a step-by-step guide on how to build asystems
model to answer our research question ‘How can we best dis-
tribute limited COVID-19 testing resources in order to minimise
social inequities?’ in the online appendix. The first step to creat-
ing a systems model is to define a clear research question of
interest, including a well-specified population, exposure and
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reference groups, time period and location information, and
a well-defined outcome of interest. The next step is to use the
target trial framework to design a hypothetical trial protocol to
answer the research question. Step 3 entails specifying variables
and assumptions that will govern how agents interact and move
through time/space, including potential confounders, colliders,
mediators or effect modifiers. After this information has been
agreed upon, the next step (Step 4) is to build themodel to answer
the research questions (from Step 1) using the trial protocol
created in Step 2. Finally, Step 5 is to design and run additional
analyses to test the accuracy and estimate the uncertainty of the
model online appendix. At all steps when building a systems
model, it is important to keep in mind the parameters and rules
to ensure a good fit.

CONCLUSION
Systems models are a valuable tool for understanding the com-
plexity of public health as it relates to societal factors and dis-
tribution of disease.6 15 16 19 These models provide us with a tool
for assessing relationships betweenmulti-level features, including
both individual, community and societal factors. Importantly,
other methods, such as DAG-based regression modelling, can
and should also tackle these issues when data exist or can be
directly collected. The chief benefit of systems models is that
they can be used in the absence of a complete or rich dataset on
the specific target population of interest. Recently, methodologi-
cal developments have increased the ease with which these mod-
els can be designed and implemented when estimation of causal
effects is of interest. With this commentary, we hope to provide
readers with an overview of how these recent developments work
and can be applied to sociological questions.

We presented an example of a model assessing a social epide-
miological question about COVID-19 mortality: how do we best
distribute SARS-CoV-2 test access in order to minimise social
inequities. This question could be further refined to require that
we not only identify the lowest disparities based on race and
ethnicity but also by other demographic variables—including
age, gender, disability status or employment type. The model
we discussed focussed only on identifying and treating those
who were already ill with COVID-19, but it could also be
extended to consider the transmission of SARS-CoV-2 between
individuals, or account for geographical variations in transmis-
sion, access to care, or access to testing resources.

Systems models are being increasingly used for social and
chronic disease epidemiology, and their use entails many benefits
to the researcher. Unlike observational data analyses, systems
models can be increased in complexity with relatively little addi-
tional data requirements. However, these lower data require-
ments come at the cost of requiring more assumptions in order
to imbue the resulting numeric answer with a meaningful causal
interpretation. It is important that researchers are clear and
explicit about the assumptions they are making when designing
and using these models. The target trial framework, coupled with
the use of causal directed acyclic graphs, provides a relatively
simple toolkit for specifying these assumptions and providing
reproducible and reliable answers from systems models.
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