Article Text

Download PDFPDF
Complex systems models for causal inference in social epidemiology


Systems models, which by design aim to capture multi-level complexity, are a natural choice of tool for bridging the divide between social epidemiology and causal inference. In this commentary, we discuss the potential uses of complex systems models for improving our understanding of quantitative causal effects in social epidemiology. To put systems models in context, we will describe how this approach could be used to optimise the distribution of COVID-19 response resources to minimise social inequalities during and after the pandemic.

  • Disease modelling
  • Epidemiological methods
  • Epidemiology
  • Social epidemiology

Statistics from

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.