Article Text
Abstract
Background Summary measures of population health (SMPH) combine information about morbidity and mortality as a means of describing the health of a population and allow for the comparison between otherwise incomparable health problems. Despite the widespread use of SMPHs in global public health policy, the uncertainty in their calculation, inherent due to the variable quality and availability of data from different sources required to calculate SMPHs, is generally ignored.
Methods and results Using the example of the expected effect of a smoking cessation mass-media campaign on ischaemic heart disease in the UK expressed in DALYs (disability adjusted life years)-averted, a transparent and straightforward probabilistic methodology to incorporate uncertainty in the calculation of population impact measures of health, to better inform the public health debate, is described. In addition, a rationale on how this additional information can be utilised to further improve the use of quantitative data for SMPH is presented, and public health policy makers are provided with additional tools for prioritisation of interventions and cost-effective prioritisation of data collection campaigns for the improvement of the calculation of future SMPH.
Conclusion Systematic use of these tools will provide a stronger evidence base for public health policy in the future and will further direct a drive towards the use of quantitative tools.
- Health impact assessment
- measurement theory
- public health policy
- smoking
- statistics
Statistics from Altmetric.com
Footnotes
Competing interests None.
Provenance and peer review Not commissioned; externally peer reviewed.