Article Text

Download PDFPDF
Childhood cancers and atmospheric carcinogens
  1. E G Knox
  1. Correspondence to:
 Professor E G Knox
 Mill Cottage, Front Street, Great Comberton, Pershore, Worcestershire WR10 3DU, UK


Study objectives: To retest previous findings that childhood cancers are probably initiated by prenatal exposures to combustion process gases and to volatile organic compounds (VOCs); and to identify specific chemical hazards.

Design: Birth and death addresses of fatal child cancers in Great Britain between 1966 and 1980, were linked with high local atmospheric emissions of different chemical species. Among migrant children, distances from each address to the nearest emissions “hotspot” were compared. Excesses of outward over inward migrations show an increased prenatal or early infancy risk.

Setting and subjects: Maps of emissions of many different substances were published on the internet by the National Atmospheric Emissions Inventory and “hotspots” for 2001 were translated to map coordinates. Child cancer addresses were extracted from an earlier inquiry into the carcinogenic effects of obstetric radiographs; and their postcodes translated to map references.

Main results: Significant birth proximity relative risks were found within 1.0 km of hotspots for carbon monoxide, PM10 particles, VOCs, nitrogen oxides, benzene, dioxins, 1,3-butadiene, and benz(a)pyrene. Calculated attributable risks showed that most child cancers and leukaemias are probably initiated by such exposures.

Conclusions: Reported associations of cancer birth places with sites of industrial combustion, VOCs uses, and associated engine exhausts, are confirmed. Newly identified specific hazards include the known carcinogens 1,3-butadiene, dioxins, and benz(a)pyrene. The mother probably inhales these or related materials and passes them to the fetus across the placenta.

  • VOC, volatile organic compound
  • NMVOC, non-methane volatile organic compound
  • NAEI, National Atmospheric Emissions Inventory

Statistics from

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.


  • Funding: the postcoding of the cancer records was supported by the Medical Research Council and by the Three Mile Island Public Health Fund (USA).

  • Conflicts of interest: none declared.

  • The author is Emeritus Professor, University of Birmingham, UK

Linked Articles