Article Text
Abstract
Objective: To test whether the sudden infant death syndrome (SIDS) rate displays the universal winter maximum and summer minimum in Hawaii where there is no appreciable seasonal variation of temperature.
Design: The null hypothesis is tested that there is no seasonal variation of necropsied SIDS in Hawaii. The numbers of live births and SIDS cases by month for the years 1979 to 2002 were collected and the monthly SIDS distribution is predicted based on the age at death distribution.
Setting: The state of Hawaii, located in the midst of the Pacific Ocean, has a semi-tropical climate with temperatures fluctuating diurnally as 25 ± 5°C throughout the year. Therefore homes are unheated and infants are not excessively swaddled. The Hawaii State Department of Health maintains vital statistics of all infant births and deaths.
Main results: The results reject the null hypothesis of no seasonal variation of SIDS (p = 0.026). An explanation for the seasonal effect of the winter maximum and summer minimum for Hawaiian SIDS is that it arises from the cycle of the school session and summer vacation periods that represent variable intensity of a possible viral infection vector. SIDS rates in both Hawaii and the United States increase with parity, also indicating a possible role of school age siblings as carriers.
Conclusions: The winter peak of the SIDS in Hawaii is support for the hypothesis that a low grade viral infection, insufficient by itself to be a visible cause of death at necropsy, may be implicated as contributing to SIDS in vulnerable infants.
- SIDS, sudden infant death syndrome
- URI, upper respiratory infection
- SIDS
- Hawaii
- viral infection
- school year
- temperature
Statistics from Altmetric.com
Footnotes
-
Funding: none
-
Conflicts of interest: none declared.