Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Sick and tired: does sleep have a vital role in the immune system?

Key Points

  • The relationship between sleep and immunity is important because in recent decades there has been a documented decrease in the mean duration of sleep and an increase in shift work. With ever-increasing pressures to work longer hours, sleep loss and sleep disruption have become occupational hazards. As well as those who are ill with infections, chronic disease, depression or sleep apnoea, sleep disturbance is also suffered by shift workers, military personnel, new parents and carers.

  • There is good evidence, mainly from animal studies, that various infections are associated with increased sleep. This has been shown for both infection with whole microorganisms or exposure to their component virulence factors, such as lipopolysaccharide.

  • The host immune response (specifically, the production of cytokines) is responsible for the increased sleep associated with infection. Certain pro-inflammatory cytokines, in particular tumour-necrosis factor (TNF) and interleukin-1β (IL-1β), usually increase sleep, and anti-inflammatory cytokines inhibit sleep.

  • Certain cytokines are regulated endogenously during sleep. The fact that some cytokines show circadian rhythm indicates that they have a role in physiological sleep. This is supported by experiments using knockout mice, showing that both TNF- and type 1 IL-1 receptor-deficient mice have either decreased baseline sleep or do not show enhanced sleep after administration of TNF or IL-1β, respectively.

  • Sleep-deprivation experiments in both animals and humans provide the best evidence for a crucial role of sleep in the immune response. The results of these experiments show some inconsistencies, thereby underlining the complexities of measuring the interaction between different durations of sleep deprivation and different immune components. However, in humans, general patterns emerge, indicating that sleep deprivation has detrimental effects on immune-cell number, function and cytokine production.

  • There is also emerging evidence that chronic partial sleep loss might be more detrimental to immune function than short-term total sleep loss. This is important because it is chronic partial sleep loss that burdens the current population, through shift work, pressured lifestyles, and other stresses and changes in society.

  • The final piece of evidence for a reciprocal relationship between sleep and immunity is provided by clinical situations (for example, depression or narcolepsy) in which sleep disorders are associated with changes in the immune system.

  • The effects of sleep deprivation on the immune response might have important implications for protecting the population against infection and malignancy.

Abstract

It is a common belief that we are more susceptible to infections when deprived of sleep. Consistent with this, there is increasing evidence that sleep deprivation has detrimental effects on the immune response, indicating that sleep should be considered a vital part of the immune system and that there is a reciprocal relationship between sleep and immunity. This relationship is important because, over recent decades, there has been a documented decrease in the mean duration and quality of sleep in the population. The concept that lack of sleep might be compromising immunity in the population has far-reaching public-health implications for both individuals and society.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stages of sleep in humans.
Figure 2: Putative pathways of immune-system involvement in sleep.
Figure 3: Relationship between sleep, circadian rhythm, and the neuroendocrine, autonomic nervous and immune systems.

Similar content being viewed by others

References

  1. Girardin, J. L., Kripke, D. F., Ancoli-Israel, S., Klauber, M. R. & Sepulveda, R. S. Sleep duration, illumination, and activity patterns in a population sample: effects of gender and ethnicity. Biol. Psychiatry 47, 921–927 (2000).

    Article  Google Scholar 

  2. Leger, D. The cost of sleep-related accidents: a report for the National Commission on Sleep Disorders Research. Sleep 17, 84–93 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. Mandai, O., Guerrien, A., Sockeel, P., Dujardin, K. & Leconte, P. REM sleep modifications following a Morse code learning session in humans. Physiol. Behav. 46, 639–642 (1989).

    Article  CAS  PubMed  Google Scholar 

  4. Edinger, J. D., Glenn, D. M., Bastian, L. A. & Marsh, G. R. Slow-wave sleep and waking cognitive performance II: findings among middle-aged adults with and without insomnia complaints. Physiol. Behav. 70, 127–134 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Toth, L. A. & Krueger, J. M. Alteration of sleep in rabbits by Staphylococcus aureus infection. Infect. Immun. 56, 1785–1791 (1988). The first paper in a large body of work by this author, investigating the effects of infection with various microorganisms on sleep in animals.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Toth, L. A., Rehg, J. E. & Webster, R. G. Strain differences in sleep and other pathophysiological sequelae of influenza virus infection in naive and immunized mice. J. Neuroimmunol. 58, 89–99 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Toth, L. A., Gardiner, T. W. & Krueger, J. M. Modulation of sleep by cortisone in normal and bacterially infected rabbits. Am. J. Physiol. 263, R1339–R1346 (1992).

    CAS  PubMed  Google Scholar 

  8. Toth, L. A. Immune-modulatory drugs alter Candida albicans-induced sleep patterns in rabbits. Pharmacol. Biochem. Behav. 51, 877–884 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Toth, L. A., Tolley, E. A., Broady, R., Blakely, B. & Krueger, J. M. Sleep during experimental trypanosomiasis in rabbits. Proc. Soc. Exp. Biol. Med. 205, 174–181 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Shoham, S., Ahokas, R. A., Blatteis, C. M. & Krueger, J. M. Effects of muramyl dipeptide on sleep, body temperature and plasma copper after intracerebral ventricular administration. Brain Res. 419, 223–228 (1987).

    Article  CAS  PubMed  Google Scholar 

  11. Lancel, M., Cronlein, J., Muller-Preuss, P. & Holsboer, F. Lipopolysaccharide increases EEG delta activity within non-REM sleep and disrupts sleep continuity in rats. Am. J. Physiol. 268, R1310–R1318 (1995).

    CAS  PubMed  Google Scholar 

  12. Schiffelholz, T. & Lancel, M. Sleep changes induced by lipopolysaccharide in the rat are influenced by age. Am. J. Physiol. Regul. Integr. Comp. Physiol. 280, R398–R403 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Smith, A. in Sleep, Arousal and Performance (eds Broughton, R. J. & Ogilvie, R. D.) 233–242 (Birkhauser, Boston, 1992).

    Google Scholar 

  14. Drake, C. L. et al. Effects of an experimentally induced rhinovirus cold on sleep, performance, and daytime alertness. Physiol. Behav. 71, 75–81 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Mullington, J. et al. Dose-dependent effects of endotoxin on human sleep. Am. J. Physiol. Regul. Integr. Comp. Physiol. 278, R947–R955 (2000). Shows that LPS has differential dose effects in humans and demonstrates the dissociation of its effects on sleep from its effects on other aspects of the acute-phase response.

    Article  CAS  PubMed  Google Scholar 

  16. Haack, M., Schuld, A., Kraus, T. & Pollmacher, T. Effects of sleep on endotoxin-induced host responses in healthy men. Psychosom. Med. 63, 568–578 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Gourmelon, P., Briet, D., Clarencon, D., Court, L. & Tsiang, H. Sleep alterations in experimental street rabies virus infection occur in the absence of major EEG abnormalities. Brain Res. 554, 159–165 (1991).

    Article  CAS  PubMed  Google Scholar 

  18. Hemachudha, T., Laothamatas, J. & Rupprecht, C. E. Human rabies: a disease of complex neuropathogenetic mechanisms and diagnostic challenges. Lancet Neurol. 1, 101–109 (2002).

    Article  PubMed  Google Scholar 

  19. Buguet, A. et al. Sleep-wake cycle in human African trypanosomiasis. J. Clin. Neurophysiol. 10, 190–196 (1993).

    Article  CAS  PubMed  Google Scholar 

  20. Buguet, A., Tapie, P. & Bert, J. Reversal of the sleep/wake cycle disorder of sleeping sickness after trypanosomicide treatment. J. Sleep Res. 8, 225–235 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. White, J. L. et al. Early central nervous system response to HIV infection: sleep distortion and cognitive-motor decrements. AIDS 9, 1043–1050 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Darko, D. F., Mitler, M. M. & White, J. L. Sleep disturbance in early HIV infection. Focus 10, 5–6 (1995).

    CAS  PubMed  Google Scholar 

  23. Gould, J. B., Lee, A. F., Cook, P. & Morelock, S. Apnea and sleep state in infants with nasopharyngitis. Pediatrics 65, 713–717 (1980).

    CAS  PubMed  Google Scholar 

  24. Toth, L. A., Tolley, E. A. & Krueger, J. M. Sleep as a prognostic indicator during infectious disease in rabbits. Proc. Soc. Exp. Biol. Med. 203, 179–192 (1993).

    Article  CAS  PubMed  Google Scholar 

  25. Kripke, D. F., Simons, R. N., Garfinkel, L. & Hammond, E. C. Short and long sleep and sleeping pills. Is increased mortality associated? Arch. Gen. Psychiatry 36, 103–116 (1979).

    Article  CAS  PubMed  Google Scholar 

  26. Kripke, D. F., Garfinkel, L., Wingard, D. L., Klauber, M. R. & Marler, M. R. Mortality associated with sleep duration and insomnia. Arch. Gen. Psychiatry 59, 131–136 (2002). A prospective longitudinal study involving more than one million participants, which demonstrates that increased mortality is associated with sleep duration of less than or greater than 7 hours.

    Article  PubMed  Google Scholar 

  27. Dew, M. A. et al. Healthy older adults' sleep predicts all-cause mortality at 4 to 19 years of follow-up. Psychosom. Med. 65, 63–73 (2003).

    Article  PubMed  Google Scholar 

  28. Opp, M. R. & Toth, L. A. Neural-immune interactions in the regulation of sleep. Front. Biosci. 8, d768–d779 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Vitkovic, L., Bockaert, J. & Jacque, C. 'Inflammatory' cytokines: neuromodulators in normal brain? J. Neurochem. 74, 457–471 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Shoham, S., Davenne, D., Cady, A. B., Dinarello, C. A. & Krueger, J. M. Recombinant tumor necrosis factor and interleukin 1 enhance slow-wave sleep. Am. J. Physiol. 253, R142–R149 (1987).

    CAS  PubMed  Google Scholar 

  31. Dickstein, J. B., Moldofsky, H., Lue, F. A. & Hay, J. B. Intracerebroventricular injection of TNF-α promotes sleep and is recovered in cervical lymph. Am. J. Physiol. 276, R1018–R1022 (1999).

    CAS  PubMed  Google Scholar 

  32. Opp, M. R. & Imeri, L. Rat strains that differ in corticotropin-releasing hormone production exhibit different sleep-wake responses to interleukin 1. Neuroendocrinology 73, 272–284 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Takahashi, S., Kapas, L., Fang, J. & Krueger, J. M. An anti-tumor necrosis factor antibody suppresses sleep in rats and rabbits. Brain Res. 690, 241–244 (1995).

    Article  CAS  PubMed  Google Scholar 

  34. Opp, M. R., Postlethwaite, A. E., Seyer, J. M. & Krueger, J. M. Interleukin 1 receptor antagonist blocks somnogenic and pyrogenic responses to an interleukin 1 fragment. Proc. Natl Acad. Sci. USA 89, 3726–3730 (1992).

    Article  CAS  PubMed  Google Scholar 

  35. Opp, M. R., Smith, E. M. & Hughes, T. K. Jr. Interleukin-10 (cytokine synthesis inhibitory factor) acts in the central nervous system of rats to reduce sleep. J. Neuroimmunol. 60, 165–168 (1995).

    Article  CAS  PubMed  Google Scholar 

  36. Walter, J. S., Meyers, P. & Krueger, J. M. Microinjection of interleukin-1 into brain: separation of sleep and fever responses. Physiol. Behav. 45, 169–176 (1989).

    Article  CAS  PubMed  Google Scholar 

  37. Opp, M. R. & Krueger, J. M. Anti-interleukin-1β reduces sleep and sleep rebound after sleep deprivation in rats. Am. J. Physiol. 266, R688–R695 (1994).

    CAS  PubMed  Google Scholar 

  38. Takahashi, S., Kapas, L., Fang, J. & Krueger, J. M. Somnogenic relationships between tumor necrosis factor and interleukin-1. Am. J. Physiol. 276, R1132–R1140 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Fang, J., Wang, Y. & Krueger, J. M. Effects of interleukin-1β on sleep are mediated by the type I receptor. Am. J. Physiol. 274, R655–R660 (1998). Shows the importance of IL-1β to physiological sleep and, together with reference 40, the reciprocal relationship between TNF and IL-1β in sleep.

    CAS  PubMed  Google Scholar 

  40. Fang, J., Wang, Y. & Krueger, J. M. Mice lacking the TNF 55 kDa receptor fail to sleep more after TNF-α treatment. J. Neurosci. 17, 5949–5955 (1997).

    Article  CAS  PubMed  Google Scholar 

  41. Kubota, T., Kushikata, T., Fang, J. & Krueger, J. M. Nuclear factor-κB inhibitor peptide inhibits spontaneous and interleukin-1β-induced sleep. Am. J. Physiol. Regul. Integr. Comp. Physiol. 279, R404–R413 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Kubota, T., Brown, R. A., Fang, J. & Krueger, J. M. Interleukin-15 and interleukin-2 enhance non-REM sleep in rabbits. Am. J. Physiol. Regul. Integr. Comp. Physiol. 281, R1004–R1012 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Kubota, T., Fang, J., Brown, R. A. & Krueger, J. M. Interleukin-18 promotes sleep in rabbits and rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 281, R828–R838 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Kubota, T., Majde, J. A., Brown, R. A. & Krueger, J. M. Tumor necrosis factor receptor fragment attenuates interferon-γ-induced non-REM sleep in rabbits. J. Neuroimmunol. 119, 192–198 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Krueger, J. M. et al. Interferon-α2 enhances slow-wave sleep in rabbits. Int. J. Immunopharmacol. 9, 23–30 (1987).

    Article  CAS  PubMed  Google Scholar 

  46. Kushikata, T., Fang, J. & Krueger, J. M. Interleukin-10 inhibits spontaneous sleep in rabbits. J. Interferon Cytokine Res. 19, 1025–1030 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Kubota, T., Fang, J., Kushikata, T. & Krueger, J. M. Interleukin-13 and transforming growth factor-β1 inhibit spontaneous sleep in rabbits. Am. J. Physiol. Regul. Integr. Comp. Physiol. 279, R786–R792 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Kushikata, T., Fang, J., Wang, Y. & Krueger, J. M. Interleukin-4 inhibits spontaneous sleep in rabbits. Am. J. Physiol. 275, R1185–R1191 (1998).

    CAS  PubMed  Google Scholar 

  49. Hogan, D., Morrow, J. D., Smith, E. M. & Opp, M. R. Interleukin-6 alters sleep of rats. J. Neuroimmunol. 137, 59–66 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Krueger, J. M. & Majde, J. A. Microbial products and cytokines in sleep and fever regulation. Crit. Rev. Immunol. 14, 355–379 (1994).

    Article  CAS  PubMed  Google Scholar 

  51. Spath-Schwalbe, E. et al. Acute effects of recombinant human interleukin-6 on endocrine and central nervous sleep functions in healthy men. J. Clin. Endocrinol. Metab. 83, 1573–1579 (1998).

    CAS  PubMed  Google Scholar 

  52. Borbely, A. A., Achermann, P., Trachsel, L. & Tobler, I. Sleep initiation and initial sleep intensity: interactions of homeostatic and circadian mechanisms. J. Biol. Rhythms 4, 149–160 (1989).

    Article  CAS  PubMed  Google Scholar 

  53. Krueger, J. M. & Majde, J. A. Humoral links between sleep and the immune system: research issues. Ann. NY Acad. Sci. 992, 9–20 (2003). A recent review of how the endocrine system might be involved in mediating sleep and immunity.

    Article  CAS  PubMed  Google Scholar 

  54. Armstrong, M. D. & Klein, J. R. Immune-endocrine interactions of the hypothalamus–pituitary–thyroid axis: integration, communication and homeostasis. Arch. Immunol. Ther. Exp. (Warsz.) 49, 231–237 (2001).

    CAS  Google Scholar 

  55. Obal, F. Jr, Bodosi, B., Szilagyi, A., Kacsoh, B. & Krueger, J. M. Antiserum to growth hormone decreases sleep in the rat. Neuroendocrinology 66, 9–16 (1997).

    Article  CAS  PubMed  Google Scholar 

  56. Obal, F. Jr, Fang, J., Payne, L. C. & Krueger, J. M. Growth-hormone-releasing hormone mediates the sleep-promoting activity of interleukin-1 in rats. Neuroendocrinology 61, 559–565 (1995).

    Article  CAS  PubMed  Google Scholar 

  57. Redwine, L., Hauger, R. L., Gillin, J. C. & Irwin, M. Effects of sleep and sleep deprivation on interleukin-6, growth hormone, cortisol, and melatonin levels in humans. J. Clin. Endocrinol. Metab. 85, 3597–3603 (2000).

    CAS  PubMed  Google Scholar 

  58. Cupps, T. R. & Fauci, A. S. Corticosteroid-mediated immunoregulation in man. Immunol. Rev. 65, 133–155 (1982).

    Article  CAS  PubMed  Google Scholar 

  59. Gala, R. R. Prolactin and growth hormone in the regulation of the immune system. Proc. Soc. Exp. Biol. Med. 198, 513–527 (1991).

    Article  CAS  PubMed  Google Scholar 

  60. Maestroni, G. J., Conti, A. & Pierpaoli, W. Role of the pineal gland in immunity. Circadian synthesis and release of melatonin modulates the antibody response and antagonizes the immunosuppressive effect of corticosterone. J. Neuroimmunol. 13, 19–30 (1986).

    Article  CAS  PubMed  Google Scholar 

  61. Born, J., Lange, T., Hansen, K., Molle, M. & Fehm, H. L. Effects of sleep and circadian rhythm on human circulating immune cells. J. Immunol. 158, 4454–4464 (1997). An impressive number of measurements of immune cells, plasma cytokines and in vitro responses to LPS and PHA, measured during both normal sleep and sleep deprivation. The results show a correlation between cytokine responses and the number of circulating immune cells.

    CAS  PubMed  Google Scholar 

  62. Heiser, P. et al. White blood cells and cortisol after sleep deprivation and recovery sleep in humans. Eur. Arch. Psychiatry Clin. Neurosci. 250, 16–23 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. Born, J. et al. Cytokine production and lymphocyte subpopulations in aged humans. An assessment during nocturnal sleep. Mech. Ageing Dev. 84, 113–126 (1995).

    Article  CAS  PubMed  Google Scholar 

  64. Moldofsky, H., Lue, F. A., Shahal, B., Jiang, C. G. & Gorczynski, R. M. Diurnal sleep/wake-related immune functions during the menstrual cycle of healthy young women. J. Sleep Res. 4, 150–159 (1995).

    Article  CAS  PubMed  Google Scholar 

  65. Entzian, P., Linnemann, K., Schlaak, M. & Zabel, P. Obstructive sleep apnea syndrome and circadian rhythms of hormones and cytokines. Am. J. Respir. Crit. Care Med. 153, 1080–1086 (1996).

    Article  CAS  PubMed  Google Scholar 

  66. Moldofsky, H., Lue, F. A., Eisen, J., Keystone, E. & Gorczynski, R. M. The relationship of interleukin-1 and immune functions to sleep in humans. Psychosom. Med. 48, 309–318 (1986).

    Article  CAS  PubMed  Google Scholar 

  67. Gudewill, S. et al. Nocturnal plasma levels of cytokines in healthy men. Eur. Arch. Psychiatry Clin. Neurosci. 242, 53–56 (1992).

    Article  CAS  PubMed  Google Scholar 

  68. Lissoni, P., Rovelli, F., Brivio, F., Brivio, O. & Fumagalli, L. Circadian secretions of IL-2, IL-12, IL-6 and IL-10 in relation to the light/dark rhythm of the pineal hormone melatonin in healthy humans. Nat. Immun. 16, 1–5 (1998).

    Article  CAS  PubMed  Google Scholar 

  69. Moldofsky, H. et al. in Sleep '88 (ed. Horne, J.) 1 (Gustav Fischer, New York, 1989).

    Google Scholar 

  70. Redwine, L., Dang, J., Hall, M. & Irwin, M. Disordered sleep, nocturnal cytokines, and immunity in alcoholics. Psychosom. Med. 65, 75–85 (2003).

    Article  CAS  PubMed  Google Scholar 

  71. Lancel, M., Mathias, S., Faulhaber, J. & Schiffelholz, T. Effect of interleukin-1β on EEG power density during sleep depends on circadian phase. Am. J. Physiol. 270, R830–R837 (1996).

    CAS  PubMed  Google Scholar 

  72. Mohren, D. C. et al. Prevalence of common infections among employees in different work schedules. J. Occup. Environ. Med. 44, 1003–1011 (2002).

    Article  PubMed  Google Scholar 

  73. Dinges, D. F. et al. Leukocytosis and natural killer cell function parallel neurobehavioral fatigue induced by 64 hours of sleep deprivation. J. Clin. Invest. 93, 1930–1939 (1994). A well-conducted sleep-deprivation study measuring changes in immune-cell number and function in humans. The first study to find alterations in immune parameters with different durations of sleep deprivation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ozturk, L. et al. Effects of 48 hours sleep deprivation on human immune profile. Sleep Res. Online 2, 107–111 (1999).

    CAS  PubMed  Google Scholar 

  75. Boyum, A. et al. The effect of strenuous exercise, calorie deficiency and sleep deprivation on white blood cells, plasma immunoglobulins and cytokines. Scand. J. Immunol. 43, 228–235 (1996).

    Article  CAS  PubMed  Google Scholar 

  76. Palmblad, J., Petrini, B., Wasserman, J. & Akerstedt, T. Lymphocyte and granulocyte reactions during sleep deprivation. Psychosom. Med. 41, 273–278 (1979).

    Article  CAS  PubMed  Google Scholar 

  77. Irwin, M. et al. Partial night sleep deprivation reduces natural killer and cellular immune responses in humans. FASEB J. 10, 643–653 (1996).

    Article  CAS  PubMed  Google Scholar 

  78. Moldofsky, H., Lue, F. A., Davidson, J. R. & Gorczynski, R. Effects of sleep deprivation on human immune functions. FASEB J. 3, 1972–1977 (1989).

    Article  CAS  PubMed  Google Scholar 

  79. Irwin, M. et al. Partial sleep deprivation reduces natural killer cell activity in humans. Psychosom. Med. 56, 493–498 (1994).

    Article  CAS  PubMed  Google Scholar 

  80. Palmblad, J. et al. Stressor exposure and immunological response in man: interferon-producing capacity and phagocytosis. J. Psychosom. Res. 20, 193–199 (1976).

    Article  CAS  PubMed  Google Scholar 

  81. Bergmann, B. M., Rechtschaffen, A., Gilliland, M. A. & Quintans, J. Effect of extended sleep deprivation on tumor growth in rats. Am. J. Physiol. 271, R1460–R1464 (1996).

    CAS  PubMed  Google Scholar 

  82. Brown, R., Price, R. J., King, M. G. & Husband, A. J. Interleukin-1β and muramyl dipeptide can prevent decreased antibody response associated with sleep deprivation. Brain Behav. Immun. 3, 320–330 (1989).

    Article  CAS  PubMed  Google Scholar 

  83. Renegar, K. B., Floyd, R. & Krueger, J. M. Effect of sleep deprivation on serum influenza-specific IgG. Sleep 21, 19–24 (1998).

    CAS  PubMed  Google Scholar 

  84. Uthgenannt, D., Schoolmann, D., Pietrowsky, R., Fehm, H. L. & Born, J. Effects of sleep on the production of cytokines in humans. Psychosom. Med. 57, 97–104 (1995).

    Article  CAS  PubMed  Google Scholar 

  85. Shearer, W. T. et al. Soluble TNF-α receptor 1 and IL-6 plasma levels in humans subjected to the sleep deprivation model of spaceflight. J. Allergy Clin. Immunol. 107, 165–170 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Mackiewicz, M., Sollars, P. J., Ogilvie, M. D. & Pack, A. I. Modulation of IL-1β gene expression in the rat CNS during sleep deprivation. Neuroreport 7, 529–533 (1996).

    Article  CAS  PubMed  Google Scholar 

  87. Takahashi, S., Kapas, L., Seyer, J. M., Wang, Y. & Krueger, J. M. Inhibition of tumor necrosis factor attenuates physiological sleep in rabbits. Neuroreport 7, 642–646 (1996).

    Article  CAS  PubMed  Google Scholar 

  88. Everson, C. A. Sustained sleep deprivation impairs host defense. Am. J. Physiol. 265, R1148–R1154 (1993).

    CAS  PubMed  Google Scholar 

  89. Rechtschaffen, A., Gilliland, M. A., Bergmann, B. M. & Winter, J. B. Physiological correlates of prolonged sleep deprivation in rats. Science 221, 182–184 (1983).

    Article  CAS  PubMed  Google Scholar 

  90. Landis, C. A. & Whitney, J. D. Effects of 72 hours sleep deprivation on wound healing in the rat. Res. Nurs. Health 20, 259–267 (1997).

    Article  CAS  PubMed  Google Scholar 

  91. Horohov, D. W., Pourciau, S. S., Mistric, L., Chapman, A. & Ryan, D. H. Increased dietary fat prevents sleep deprivation-induced immune suppression in rats. Comp. Med. 51, 230–233 (2001).

    CAS  PubMed  Google Scholar 

  92. Brown, R., Pang, G., Husband, A. J. & King, M. G. Suppression of immunity to influenza virus infection in the respiratory tract following sleep disturbance. Reg. Immunol. 2, 321–325 (1989).

    CAS  PubMed  Google Scholar 

  93. Renegar, K. B., Crouse, D., Floyd, R. A. & Krueger, J. Progression of influenza viral infection through the murine respiratory tract: the protective role of sleep deprivation. Sleep 23, 859–863 (2000).

    Article  CAS  PubMed  Google Scholar 

  94. Renegar, K. B., Floyd, R. A. & Krueger, J. M. Effects of short-term sleep deprivation on murine immunity to influenza virus in young adult and senescent mice. Sleep 21, 241–248 (1998).

    CAS  PubMed  Google Scholar 

  95. Toth, L. A. & Rehg, J. E. Effects of sleep deprivation and other stressors on the immune and inflammatory responses of influenza-infected mice. Life Sci. 63, 701–709 (1998).

    Article  CAS  PubMed  Google Scholar 

  96. Spiegel, K., Sheridan, J. F. & Van Cauter, E. Effect of sleep deprivation on response to immunization. JAMA 288, 1471–1472 (2002). The first demonstration of the detrimental functional effects of sleep deprivation on immunization in humans.

    Article  PubMed  Google Scholar 

  97. Lange, T., Perras, B., Fehm, H. L. & Born, J. Sleep enhances the human antibody response to hepatitis A vaccination. Psychosom. Med. 65, 831–835 (2003).

    Article  PubMed  Google Scholar 

  98. Gabor, J. Y., Cooper, A. B. & Hanly, P. J. Sleep disruption in the intensive care unit. Curr. Opin. Crit. Care 7, 21–27 (2001).

    Article  CAS  PubMed  Google Scholar 

  99. Moldofsky, H. Fibromyalgia, sleep disorder and chronic fatigue syndrome. Ciba Found. Symp. 173, 262–271 (1993).

    CAS  PubMed  Google Scholar 

  100. Mullington, J. M., Hinze-Selch, D. & Pollmacher, T. Mediators of inflammation and their interaction with sleep: relevance for chronic fatigue syndrome and related conditions. Ann. NY Acad. Sci. 933, 201–210 (2001).

    Article  CAS  PubMed  Google Scholar 

  101. Borish, L. et al. Chronic fatigue syndrome: identification of distinct subgroups on the basis of allergy and psychologic variables. J. Allergy Clin. Immunol. 102, 222–230 (1998).

    Article  CAS  PubMed  Google Scholar 

  102. Gupta, S., Aggarwal, S., See, D. & Starr, A. Cytokine production by adherent and non-adherent mononuclear cells in chronic fatigue syndrome. J. Psychiatr. Res. 31, 149–156 (1997).

    Article  CAS  PubMed  Google Scholar 

  103. Krouse, H. J., Davis, J. E. & Krouse, J. H. Immune mediators in allergic rhinitis and sleep. Otolaryngol. Head Neck Surg. 126, 607–613 (2002).

    Article  PubMed  Google Scholar 

  104. Song, C. et al. The inflammatory response system and the availability of plasma tryptophan in patients with primary sleep disorders and major depression. J. Affect. Disord. 49, 211–219 (1998).

    Article  CAS  PubMed  Google Scholar 

  105. Savard, J. et al. Association between subjective sleep quality and depression on immunocompetence in low-income women at risk for cervical cancer. Psychosom. Med. 61, 496–507 (1999).

    Article  CAS  PubMed  Google Scholar 

  106. Hall, M. et al. Sleep as a mediator of the stress–immune relationship. Psychosom. Med. 60, 48–51 (1998).

    Article  CAS  PubMed  Google Scholar 

  107. Cover, H. & Irwin, M. Immunity and depression: insomnia, retardation, and reduction of natural killer cell activity. J. Behav. Med. 17, 217–223 (1994).

    Article  CAS  PubMed  Google Scholar 

  108. Bauer, J. et al. Induction of cytokine synthesis and fever suppresses REM sleep and improves mood in patients with major depression. Biol. Psychiatry 38, 611–621 (1995). Shows the effects on sleep and lifting-of-mood in depression following the induction of pro-inflammatory cytokine expression (TNF, IL-1β and IL-6) mediated by the administration of LPS.

    Article  CAS  PubMed  Google Scholar 

  109. Ringel, B. L. & Szuba, M. P. Potential mechanisms of the sleep therapies for depression. Depress. Anxiety 14, 29–36 (2001).

    Article  CAS  PubMed  Google Scholar 

  110. Irwin, M., Clark, C., Kennedy, B., Gillin, J. C. & Ziegler, M. Nocturnal catecholamines and immune function in insomniacs, depressed patients, and control subjects. Brain Behav. Immun. 17, 365–372 (2003).

    Article  CAS  PubMed  Google Scholar 

  111. Savard, J., Laroche, L., Simard, S., Ivers, H. & Morin, C. M. Chronic insomnia and immune functioning. Psychosom. Med. 65, 211–221 (2003).

    Article  PubMed  Google Scholar 

  112. Sakami, S. et al. Coemergence of insomnia and a shift in the TH1/TH2 balance toward TH2 dominance. Neuroimmunomodulation 10, 337–343 (2002).

    Article  CAS  PubMed  Google Scholar 

  113. Alberti, A. et al. Plasma cytokine levels in patients with obstructive sleep apnea syndrome: a preliminary study. J. Sleep Res. 12, 305–311 (2003). Describes cytokine changes in patients with obstructive sleep apnoea. Patients show differences in T H 2-cell-type cytokine patterns, compared with controls at baseline, and these become more pronounced after an obstructive episode.

    Article  PubMed  Google Scholar 

  114. Mignot, E. Perspectives in narcolepsy research and therapy. Curr. Opin. Pulm. Med. 2, 482–487 (1996).

    CAS  PubMed  Google Scholar 

  115. Lin, L., Hungs, M. & Mignot, E. Narcolepsy and the HLA region. J. Neuroimmunol. 117, 9–20 (2001).

    Article  CAS  PubMed  Google Scholar 

  116. Nishino, S., Ripley, B., Overeem, S., Lammers, G. J. & Mignot, E. Hypocretin (orexin) deficiency in human narcolepsy. Lancet 355, 39–40 (2000).

    Article  CAS  PubMed  Google Scholar 

  117. Waleh, N. S., Apte-Deshpande, A., Terao, A., Ding, J. & Kilduff, T. S. Modulation of the promoter region of prepro-hypocretin by α-interferon. Gene 262, 123–128 (2001).

    Article  CAS  PubMed  Google Scholar 

  118. Tafti, M., Chollet, D., Valatx, J. L. & Franken, P. Quantitative trait loci approach to the genetics of sleep in recombinant inbred mice. J. Sleep Res. 8 (Suppl. 1), 37–43 (1999). Defines genes that might greatly influence sleep amount and the immune system.

    Article  PubMed  Google Scholar 

  119. Dement, W. C. & Gelb, M. Somnolence: its importance in society. Neurophysiol. Clin. 23, 5–14 (1993).

    Article  CAS  PubMed  Google Scholar 

  120. Weatherstone, K. B., Franck, L. S. & Klein, N. J. Are there opportunities to decrease nosocomial infection by choice of analgesic regimen? Evidence for immunity and pain interactions. Arch. Pediatr. Adolesc. Med. 157, 1108–1114 (2003).

    Article  PubMed  Google Scholar 

  121. Plata-Salaman, C. R. Brain cytokines and disease. Acta Neuropsychiatr. 14, 262–278 (2002). A thorough review of cytokines in the brain, their relationship to peripheral cytokines and how this might lead to disease.

    Article  PubMed  Google Scholar 

  122. Krueger, J. M., Obal, F. Jr. & Fang, J. Humoral regulation of physiological sleep: cytokines and GHRH. J. Sleep Res. 8 (Suppl 1), 53–59 (1999).

    Article  PubMed  Google Scholar 

  123. Quan, N., Whiteside, M. & Herkenham, M. Time course and localization patterns of interleukin-1β messenger RNA expression in brain and pituitary after peripheral administration of lipopolysaccharide. Neuroscience 83, 281–293 (1998).

    Article  CAS  PubMed  Google Scholar 

  124. Cartmell, T., Luheshi, G. N. & Rothwell, N. J. Brain sites of action of endogenous interleukin-1 in the febrile response to localized inflammation in the rat. J. Physiol. 518, 585–594 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Laye, S. et al. Endogenous brain IL-1 mediates LPS-induced anorexia and hypothalamic cytokine expression. Am. J. Physiol. Regul. Integr. Comp. Physiol. 279, R93–R98 (2000).

    Article  CAS  PubMed  Google Scholar 

  126. Schoning, B., Elepfandt, P., Lanksch, W. R., Volk, H. D. & Woiciechowsky, C. Continuous infusion of proinflammatory cytokines into the brain to study brain cytokine induced local and systemic immune effects. Brain Res. Brain Res. Protoc. 4, 217–222 (1999).

    Article  CAS  PubMed  Google Scholar 

  127. Woiciechowsky, C. et al. Sympathetic activation triggers systemic interleukin-10 release in immunodepression induced by brain injury. Nature Med. 4, 808–813 (1998).

    Article  CAS  PubMed  Google Scholar 

  128. Thibeault, I., Laflamme, N. & Rivest, S. Regulation of the gene encoding the monocyte chemoattractant protein 1 (MCP-1) in the mouse and rat brain in response to circulating LPS and proinflammatory cytokines. J. Comp. Neurol. 434, 461–477 (2001).

    Article  CAS  PubMed  Google Scholar 

  129. Dantzer, R. et al. Cytokines and sickness behavior. Ann. NY Acad. Sci. 840, 586–590 (1998).

    Article  CAS  PubMed  Google Scholar 

  130. Elenkov, I. J., Wilder, R. L., Chrousos, G. P. & Vizi, E. S. The sympathetic nerve—an integrative interface between two supersystems: the brain and the immune system. Pharmacol. Rev. 52, 595–638 (2000).

    CAS  PubMed  Google Scholar 

  131. Hattori, N. et al. GH, GH receptor, GH secretagogue receptor, and ghrelin expression in human T cells, B cells, and neutrophils. J. Clin. Endocrinol. Metab. 86, 4284–4291 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank R. Robins-Browne, J. McCluskey and D. Ventor for helpful comments on the manuscript. P.A.B. is the recipient of a European Society of Paediatric Infectious Diseases Fellowship Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nigel Curtis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Gene

ACTH

CRH

GHRH

growth hormone

IL-1β

orexin

prolactin

TNF

FURTHER INFORMATION

National Sleep Foundation

Sleep Research Society

European Sleep Research Society

American Academy of Sleep Medicine

Glossary

ELECTROENCEPHALOGRAM

Graphical representation of the electrical activity of the brain, recorded by attaching electrodes to the scalp. The shape, frequency and amplitude of the waveforms provide information about the stage and intensity of sleep.

MURAMYL PEPTIDES

Fragments of peptidoglycans, from the cell walls of Gram-positive bacteria, that are thought to have a crucial role in the generation of the immune response to Gram-positive bacterial infection.

LIPOPOLYSACCHARIDE

A constituent of the cell walls of Gram-negative bacteria that is thought to be important for eliciting the immune response to Gram-negative bacterial infection. Also known as endotoxin.

PYROGENIC RESPONSE

The response to infection that leads to fever. Cytokines induced by microbial products — particularly tumour-necrosis factor and interleukins — function to increase the 'set point' for body temperature (through eliciting prostaglandin synthesis in the hypothalamus) and consequently produce fever.

ACUTE-PHASE RESPONSE

The early immune response to infection, which results in the production of cytokines and other mediators and an increase in the number of peripheral leukocytes.

CIRCADIAN RHYTHMICITY

Having an approximately 24-hour variation. This can be a property of biological or behavioural processes. It can be a direct consequence of an endogenous circadian mechanism or be secondary to other processes, such as the sleep–wake cycle. From the Latin words circa meaning 'about' and dies meaning 'day'.

OBSTRUCTIVE SLEEP APNOEA

A medical condition in which the obstruction of upper airways causes episodes of breathing cessation during sleep, leading to recurrent arousals from sleep and other complications.

CIRCADIAN OSCILLATOR

The biological clock responsible for organizing many of the circadian rhythms of the body. It is a function of the suprachiasmatic nucleus in the brain.

CACHEXIA

Severe weight loss, muscle wasting and debility caused by prolonged disease. It is thought to be mediated through neuroimmunoendocrine interactions.

CHRONIC FATIGUE AND FIBROMYALGIA

Clinical conditions characterized by debilitating fatigue, often following a viral illness. In the latter, fatigue occurs together with chronic pain and tenderness in muscles.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bryant, P., Trinder, J. & Curtis, N. Sick and tired: does sleep have a vital role in the immune system?. Nat Rev Immunol 4, 457–467 (2004). https://doi.org/10.1038/nri1369

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1369

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing