Skip to main content
Log in

Use of Poisson regression and Box–Jenkins models to evaluate the short-term effects of environmental noise levels on daily emergency admissions in Madrid, Spain

  • Published:
European Journal of Epidemiology Aims and scope Submit manuscript

Abstract

The relationship between environmental factors and hospital admissions has usually been analysed without taking into account the influence of a factor closely related to traffic in big cities, that is, environmental noise levels. We analysed the relationship between environmental noise and emergency admissions, for all causes and specific causes in Madrid (Spain), for the study period 1995–1997, using two statistical methods for the analysis of epidemiological time series data: Poisson autoregressive models and Box–Jenkins (ARIMA) methodology. Both methods produce a clear association between emergency admissions for all and specific causes and environmental noise levels. We found very similar results from both methods for all and circulatory causes, but slightly different for respiratory causes. Around 5% of all emergency admissions can be attributed to high noise levels, with a lower figure for specific causes. Current levels of environmental noise have a considerable epidemiological impact on emergency admissions in Madrid. A reduction of environmental noise levels could be accompanied by a possible reduction in the number of emergency admissions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Organisation de Cooperation et de Dévelopment Economiques. Les Politiques de Lutte Contre le Bruit. Paris: CEDO, 1980.

    Google Scholar 

  2. Organisation Mondiale de la Sante. Critéres d'Hygiéne de l'Environment-12. Le Bruit. Geneve: OMS, 1980.

  3. Agencia del Medio Ambiente. El Ruido Como Problema Ambiental. Madrid: AMA, 1993.

    Google Scholar 

  4. Smith A. A review ofthe e.ects of noise on human performance. Scand J Psychol 1989; 30: 185–206.

    Google Scholar 

  5. Stansfeld S, Gallacher WB, Shipley M. Road traffic noise and psychiatric disorder: Prospective findings from Caerphilly study. Br Med J 1996; 313: 266–267.

    Google Scholar 

  6. Staples SL. Human response to environmental noise. Psychological research and public policy. Am Psychol 1996; 51: 143–150.

    Google Scholar 

  7. Tomei F, Papaleo B, Baccolo TP, Persechino B, Spano G, Rosati M. Noise and gastric secretion. Am J Ind Med 1994; 26: 367–372.

    Google Scholar 

  8. Perego L, Bertoni G, Goglio F, Giovanelli G. Children and noise. Eur J Epidemiol 1996; 12: 549–550.

    Google Scholar 

  9. Babish W, Ising H, Gallacher JEJ, Elwood PC. Traffic noise and cardiovascular risk. The Caerphilly study, first phase. Outdoor noise levels and risk factors. Arch Environ Health 1988; 43: 407–414.

    Google Scholar 

  10. Tomei F, Tomao E, Papaleo B, Baccolo TP, Al. P. Study ofsome cardiovascular parameters after chronic exposure to noise. Int J Cardiol 1991; 33: 393–399.

    Google Scholar 

  11. Lang T, Fouriaud C, Jacquinet-Salord MC. Length of occupational noise exposure and blood pressure. Int Arch Occup Environ Health 1992; 63: 369–372.

    Google Scholar 

  12. Wu TN, Chiang HC, Huang JT, Chang PY. Comparison ofblood pressure in deaf–mute children and children with normal hearing: Association between noise and blood pressure. Int Arch Occup Environ Health 1993; 65: 119–123.

    Google Scholar 

  13. Kirstensen TS. Cardiovascular diseases an the work environment: A critical review ofthe epidemiologic literature on nonchemical factors. Scand J Work Environ Health 1989; 15: 165–179.

    Google Scholar 

  14. Hatzakis A, Katsouyanni K, Kalandidi A, Day N, Trichopoulos D. Short-term e.ects ofair pollution on mortality in Athens. Int J Epidemiol 1986; 15: 73–81.

    Google Scholar 

  15. Sunyer J, Sáez M, Murillo C, Castellsagué J, Martínez J, Antó JM. Air pollution and emergency room admissions for chronic obstructive pulmonary diseases. Am J Epidemiol 1993; 137: 701–705.

    Google Scholar 

  16. Katsouyanni K. The APHEA project. Short-term effects of air pollution on health: A European approach using epidemiological time series data. J Epidemiol Commun H 1996; 50(Suppl 1): S1–S80.

    Google Scholar 

  17. Diaz J, García R, Ribera P, Alberdi JC, Pajares MS, Otero A. Modelling ofair pollution and its relationship with mortality and morbidity in Madrid, Spain. Int Arch Occup Environ Health 1999; 72: 366–376.

    Google Scholar 

  18. Osada Y, Ogawa S, Hirokawa A, Haruta K. Physiological e.ects oflong-term exposure to low-level noise. Bull Inst Public Health 1973; 22: 61–67.

    Google Scholar 

  19. Air Quality Guidelines for Europe. World Health Organisation. Copenhagen: Regional Office for Europe, 1987. WHO regional publications; European series 23.

  20. Mackenbach JP, Knust AE, Looman CWN. Seasonal variation in mortality in the Netherlands. J Epidemiol Commun H 1992; 46: 261–265.

    Google Scholar 

  21. Katsouyanni K, Schwartz J, Spix C, et al. Short term e.ects ofair pollution on health: A European approach using epidemiological time series data: The APHEA project. J Epidemiol Commun H 1996; 50(Suppl 1): S12–S18.

    Google Scholar 

  22. Schwartz J, Spix C, Touloumi G, et al. Methodological issues in studies ofair pollution and daily counts of deaths or hospital admissions. J Epidemiol Commun H 1996; 50(Suppl 1): S3–S11.

    Google Scholar 

  23. Schwartz J. Non-parametric smoothing in the analysis ofair pollution and respiratory illness. Can J Stat 1994; 4: 471–487.

    Google Scholar 

  24. Kelsall JE, Samet JM, Zeger SL, et al. Air pollution and mortality in Philadelphia, 1974–1988. Am J Epidemiol 1997; 146: 750–762.

    Google Scholar 

  25. Box GEP, Jenkins GM, Reinsel C. Time Series Analysis, Forecasting and Control. Englewood Cliffs: Prentice Hall, 1994.

  26. Sáez M, Sunyer J, Castellsaguá J, Antó JM. Relation between temperature and mortality. Int J Epidemiol 1995; 24: 576–582.

    Google Scholar 

  27. Alberdi JC, Díaz J, Montero JC, Mirón IJ. Daily mortality in Madrid community 1986–1992: Relationship with metrorological variables. Eur J Epidemiol 1998; 14: 571–578.

    Google Scholar 

  28. Alberdi JC, Díaz J, Montero JC, Mirón IJ, Pajares MS. Air pollution and mortality in Madrid (Spain): A time series analysis. Int Arch Occup Environ Health 1998; 71: 543–549.

    Google Scholar 

  29. Ballester F, Corella D, Perez-Hoyos S, Hervas A. Air pollution and mortality in Valencia, Spain: A study using the APHEA methodology. J Epidemiol Commun H 1996; 50: 527–534.

    Google Scholar 

  30. Tenias JM, Ballester F, Rivera ML. Association between hospital emergency admissions for asthma and air pollution in Valencia, Spain. Occup Environ Med 1998; 55: 541–547.

    Google Scholar 

  31. Ballester F, Sáez M, Alonso ME, et al. The EMECAM project: Spanish multi-centric study on the relationship between air pollution and the mortality. Background, participants, objectives and methods (in Spanish). Rev Española Salud Pública 1999; 73(2):165–176.

    Google Scholar 

  32. Tobías A, Campbell MJ, Sáez. Modelling asthma epidemics in the relationship between air pollution and asthma emergency admissions in Barcelona, Spain. Eur J Epidemiol 1999; 15: 799–803.

    Google Scholar 

  33. Akaike, H. A new look at statistical model identification. IEEE T Automat Contr, 1974; 19: 716–722.

    Google Scholar 

  34. McCullagh P, Nelder JA. Generalised Linear Models. London: Chapman and Hall, 1989.

    Google Scholar 

  35. Coste J. Spira A. Le proportion de cas attributable en Santé Publique: definition(s), estimation(s) et interprétation. Rev Epidemiol Santé Publique 1991; 51: 399–411.

    Google Scholar 

  36. Tobías A, Campbell MJ. Time series regression for counts allowing for autocorrelation. Stata Tech Bull 1998; 46: 33–37.

    Google Scholar 

  37. Helfestein U. The use of transfer function models, intervention analysis and related time series methods in epidemiology. Int J Epidemiol 1991; 20: 808–815.

    Google Scholar 

  38. Helfestein U. Box–Jenkins modelling in medical research. Stat Methods Med Res 1996; 5: 3–22.

    Google Scholar 

  39. Campbell MJ, Tobías A. Causality and temporality in the study ofshort-term e.ects of air pollution on health. Int J Epidemiol 2000; 29: 271–273.

    Google Scholar 

  40. Sunyer J, Schwartz J, Tobías A, Macfarlane D, Garcia J, Antó JM. Patients with chronic obstructive pulmonary disease are a susceptible population ofdying due to urban particles: A case-crossover analysis. Am J Epidemiol 2000; 151: 50–56.

    Google Scholar 

  41. Buchdahl R, Parker A, Stebbings T, Babiker A. Association between air pollution and acute childhood wheezy episodes: Prospective observational study. Br Med J 1996; 312: 661–665.

    Google Scholar 

  42. Campbell MJ. Time series regression for counts: An investigation into the relationship between sudden infant death syndrome and environmental temperature. J Roy Stat Soc A 1994; 157: 191–208.

    Google Scholar 

  43. Schwartz J, Levin R, Hodge K. Drinking water turbidity and pediatric hospital use for gastrointestinal illness in Philadelphia. Epidemiology 1997; 8: 615–620.

    Google Scholar 

  44. Tobías A, Sunyer J, Samoli E, Katsouyanni K. Air pollution and mortality. A sensitivity analysis (in Spanish). Gac Sanit 1999; 13: 73.

    Google Scholar 

  45. Kuhn L, Davidson LL, Durkin MS. Use ofPoisson and time series analysis for detecting changes over time in rates ofchild injury following a prevention programme. Am J Epidemiol 1994; 140: 943–955.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tobías, A., Díaz, J., Saez, M. et al. Use of Poisson regression and Box–Jenkins models to evaluate the short-term effects of environmental noise levels on daily emergency admissions in Madrid, Spain. Eur J Epidemiol 17, 765–771 (2001). https://doi.org/10.1023/A:1015663013620

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015663013620

Navigation