Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Comparison of different exposure settings in a case–crossover study on air pollution and daily mortality: counterintuitive results

A Corrigendum to this article was published on 16 February 2011

Abstract

Because of practical problems associated with measurement of personal exposures to air pollutants in larger populations, almost all epidemiological studies assign exposures based on fixed-site ambient air monitoring stations. In the presence of multiple monitoring stations at different locations, the selection of them may affect the observed epidemiological concentration–response (C-R) relationships. In this paper, we quantify these impacts in an observational ecologic case–crossover study of air pollution and mortality. The associations of daily concentrations of PM10, O3, and NO2 with daily all-cause non-violent mortality were investigated using conditional logistic regression to estimate percent increase in the risk of dying for an increase of 10 μg/m3 in the previous day air pollutant concentrations (lag 1). The study area covers the six main cities in the central-western part of Emilia-Romagna region (population of 1.1 million). We used four approaches to assign exposure to air pollutants for each individual considered in the study: nearest background station; city average of all stations available; average of all stations in a macro-area covering three cities and average of all six cities in the study area (50 × 150 km2). Odds ratios generally increased enlarging the spatial dimension of the exposure definition and were highest for six city-average exposure definition. The effect is especially evident for PM10, and similar for NO2, whereas for ozone, we did not find any change in the C-R estimates. Within a geographically homogeneous region, the spatial aggregation of monitoring station data leads to higher and more robust risk estimates for PM10 and NO2, even if monitor-to-monitor correlations showed a light decrease with distance. We suggest that the larger aggregation improves the representativity of the exposure estimates by decreasing exposure misclassification, which is more profound when using individual stations vs regional averages.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Anderson H.R., Atkinson R.W., and Peacock J.L., et al. Meta-analysis of time-series studies and panel studies of particulate matter (PM) and ozone (O3). Report of a WHO task group. Copenhagen: WHO Regional Office for Europe 2004. Available at http://www.euro.who.int/document/e82792.pdf.

  • Bell M.L., McDermott A., Zeger S.L., Samet J.M., and Dominici F. Ozone and short-term mortality in 95 US urban communities, 1987–2000. JAMA 2004: 292 (19): 2372–2378.

    Article  CAS  Google Scholar 

  • Biggeri A., Baccini M., Accetta G., Bellini A., and Grechi D. Quality assessment of air pollutants concentration in epidemiologic time series on short-term effects of pollution on health. Epidemiol Prev 2003: 27: 365–375.

    PubMed  Google Scholar 

  • Biggeri A., Bellini P., and Terracini B. Meta-analysis of the Italian studies on short-term effects of air pollution. Epidemiol Prev 2004: 28 (Suppl.): S1–100.

    Google Scholar 

  • Bland J.M., and Altman D.G. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986: 1: 307–310.

    Article  CAS  Google Scholar 

  • Bureau Veritas. UK Equivalence Programme for Monitoring of Particulate Matter. BV/AQ/AD202209/DH/2396 2006 2006.

  • Carroll R.J, Ruppert D, and Stefanski L.A Measurement Error in Nonlinear Models. Chapman and Hall, London, 1995.

    Book  Google Scholar 

  • Forastiere F., Stafoggia M., and Berti G., et al. Particulate matter and daily mortality a case-crossover analysis of individual effect modifiers. Epidemiology 2008: 19 (4): 571–580.

    Article  Google Scholar 

  • Halonen J.I., Lanki T., Yli-Tuomi T., Tiittanen P., Kulmala M., and Pekkanen J. Particulate air pollution and acute cardiorespiratory hospital admissions and mortality among the elderly. Epidemiology 2009: 20 (1): 143–153.

    Article  Google Scholar 

  • Hänninen O.O., Alm S., Katsouyanni K., Künzli N., Maroni M., Nieuwenhuijsen M.J., Saarela K., Srám R.J., Zmirou D., and Jantunen M.J. The EXPOLIS study: implications for exposure research and environmental policy in Europe. J Expo Anal Environ Epidemiol 2004: 14 (6): 440–456.

    Article  Google Scholar 

  • Hastie T.J., and Tibshirani R.J. Generalized Additive Models. Chapman and Hall, London, UK, 1990.

    Google Scholar 

  • Ito K., De Leon S., Thurston G.D., Nádas A., and Lippmann M. Monitor-to-monitor temporal correlation of air pollution in the contiguous US. J Expo Anal Environ Epidemiol 2005: 15 (2): 172–184.

    Article  CAS  Google Scholar 

  • Ito K., Thurston G.D., Nádas A., and Lippmann M. Monitor-to-monitor temporal correlation of air pollution and weather variables in the North-Central US. J Expo Anal Environ Epidemiol 2001: 11 (1): 21–32.

    Article  CAS  Google Scholar 

  • Janssen N.A., Hoek G., Brunekreef B., Harssema H., Mensink I., and Zuidhof A. Personal sampling of particles in adults: relation among personal, indoor, and outdoor air concentrations. Am J Epidemiol 1998: 147: 537–547.

    Article  CAS  Google Scholar 

  • Kalkstein L.S., and Valimont K.M. An evaluation of summer discomfort in the United States using a relative climatological index. Bull Am Meteorol Soc 1986: 67: 842–848.

    Article  Google Scholar 

  • Katsouyanni K., Schwartz J., and Spix C., et al. Short term effects of air pollution on health: a European approach using epidemiologic time series data: the APHEA protocol. J Epid Comm Health 1996: 50 (Suppl. 1): 12–18.

    Article  Google Scholar 

  • Koistinen K.J., Hänninen O.O., Rotko T., Edwards R.D., Moschandreas D., and Jantunen M.J. Behavioral and environmental determinants of personal exposures to PM2.5 in EXPOLIS-Helsinki, Finland. Atmos Environ 2001: 35 (14): 2473–2481.

    Article  CAS  Google Scholar 

  • Kousa A., Oglesby L., Koistinen K., Kunzli N., and Jantunen M. Exposure chain of urban air PM2.5—associations between ambient fixed site, residential outdoor, indoor, workplace, personal exposures in four European cities in the EXPOLIS-study. Atmos Environ 2002: 36: 3031–3039.

    Article  CAS  Google Scholar 

  • Lee D., and Shaddick G. Time-varying coefficient models for the analysis of air pollution, health outcome data. Biometrics 2007: 63 (4): 1253–1261.

    Article  Google Scholar 

  • Lin L. A concordance correlation coefficient to evaluate reproducibility. Biometrics 1989: 45: 255–268.

    Article  CAS  Google Scholar 

  • Lipfert F.W., and Wyzga R.E. Air pollution and mortality: the implications of uncertainties in regression modeling and exposure measurement. J Air Waste Manag Assoc 1997: 47 (4): 517–523.

    Article  CAS  Google Scholar 

  • Maclure M. The case-crossover design: a method for studying transient effects on the risk of acute events. Am J Epidemiol 1991: 133: 144–153.

    Article  CAS  Google Scholar 

  • Michelozzi P., De Sario M., Accetta G., de′Donato F., Kirchmayer U., D’Ovidio M., Perucci C.A., and HHWWS Collaborative Group Temperature and summer mortality: geographical and temporal variations in four Italian cities. J Epidemiol Community Health 2006: 60 (5): 417–423.

    Article  Google Scholar 

  • Nawrot T.S., Torfs R., Fierens F., De Henauw S., Hoet P.H., Van Kersschaever G., De Backer G., and Nemery B. Stronger associations between daily mortality and fine particulate air pollution in summer than in winter: evidence from a heavily polluted region in western Europe. J Epidemiol Community Health 2007: 61 (2): 146–149.

    Article  CAS  Google Scholar 

  • Ostro B., Broadwin R., Green S., Feng W-Y., and Lipsett M. Fine particulate air pollution and mortality in nine California counties: results from CALFINE; environ. Health Perspect 2006: 114: 29–33.

    Article  Google Scholar 

  • Peng R.D., Dominici F., Pastor-Barriuso R., Zeger S.L., and Samet J.M. Seasonal analyses of air pollution and mortality in 100 US cities. Am J Epidemiol 2005: 161 (6): 585–594.

    Article  Google Scholar 

  • Pope C.A., and Dockery D. Health effects of fine particulate air pollution: lines that connect. J Air Waste Manag Assoc 2006: 56: 709–742.

    Article  CAS  Google Scholar 

  • Samet J.M., Dominici F., Zeger S., Schwartz J., and Dockery D.W. The National Morbidity, Mortality, and Air Pollution Study (NMMAPS). Part 1. Methods and Methodological Issues. Health Effects Institute, Cambridge, MA, 2000a.

    Google Scholar 

  • Samet J.M, Zeger S., and Dominici F. et al. The National Morbidity, Mortality, and Air Pollution Study (NMMAPS). Part 2. Morbidity, Mortality, and Air Pollution in the United States. Health Effects Institute, Cambridge, MA, 2000b.

    Google Scholar 

  • Samoli E., Aga E., Touloumi G., Nisiotis K., Forsberg B., Lefranc A., Pekkanen J., Wojtyniak B., Schindler C., Niciu E., Brunstein R., Dodic Fikfak M., Schwartz J., and Katsouyanni K. Short-term effects of nitrogen dioxide on mortality: an analysis within the APHEA project. Eur Respir J 2006: 27 (6): 1129–1138.

    Article  CAS  Google Scholar 

  • Schwartz J. The distributed lag between air pollution and daily deaths. Epidemiology 2000: 11: 320–326.

    Article  CAS  Google Scholar 

  • Thomas D., Stram D., and Dwyer J. Exposure measurement error: influence on exposure-disease relationships and methods of correction. Annu Rev Public Health 1993: 14: 69–93.

    Article  CAS  Google Scholar 

  • Wallace L. Indoor particles: a review. J Air Waste Manag Assoc 1996: 46: 98–126.

    Article  CAS  Google Scholar 

  • WHO Working Group. Health Aspects of Air Pollution with Particulate Matter, Ozone and Nitrogen Dioxide. WHO, Bonn, Germany, 2003 EUR/03/5042688. Available at http://www.euro.who.int/document/e79097.pdf.

  • WHO. 2006. WHO Air Quality Guidelines, Global Update 2005. Copenhagen, Denmark, WHO Regional Office for Europe. Available at: www.euro.who.int/Document/E90038.pdf (accessed 10 June 2010).

  • Wilson W.E., and Brauer M. Estimation of ambient and non-ambient components of particulate matter exposure from a personal monitoring panel study. Appendix B1 B1: quality assurance. J Expo Sci Environ Epidemiol 2006: 16: 264–274.

    Article  CAS  Google Scholar 

  • Wilson W.E., and Suh H.H. Fine particles and coarse particles: concentration relationships relevant to epidemiologic studies. J Air Waste Manag Assoc 1997: 47: 1238–1249.

    Article  CAS  Google Scholar 

  • Zauli Sajani S., Tibaldi S., Scotto F., and Lauriola P. Bioclimatic characterisation of an urban area: a case study in Bologna (Italy). Int J Biometeorol 2008: 52 (8): 779–785.

    Article  Google Scholar 

  • Zeger S.L., Thomas D., and Dominici F., et al. Exposure measurements error in time-series studies of air pollution: concepts and consequences. Environ Health Perspect 2000: 108 (5): 419–426.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Zauli Sajani.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zauli Sajani, S., Hänninen, O., Marchesi, S. et al. Comparison of different exposure settings in a case–crossover study on air pollution and daily mortality: counterintuitive results. J Expo Sci Environ Epidemiol 21, 385–394 (2011). https://doi.org/10.1038/jes.2010.27

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jes.2010.27

Keywords

This article is cited by

Search

Quick links