2.2 USING COHORTS TO STUDY LIFECOURSE EPIDEMIOLOGY

Chair: Prof Cyrus Cooper, UK
Discussant: Prof John Frank, UK

02-2.1 MAXIMISING THE RETURN FROM COHORT STUDIES
doi:10.1136/jech.2011.142976a.52

A Leyland, 1A White, 2S Harding, 3C Seaman, 4C Booker. 1MRC|CSO Social and Public Health Sciences Unit, Glasgow, UK; 2MRC Biostatistics Unit, Cambridge, UK; 3Institute of Social and Economic Research, University of Essex, UK

Introduction Cohort studies are important for understanding the aetiology underlying differences in disease incidence. Selective attrition is problematic as those at greater risk of ill-health are more likely to drop out, resulting in homogenous study populations with limited generalisability. Selective attrition may also bias estimates of association. For the benefits of cohort studies to be realised efforts must be made to minimise attrition and statistical methods for the analysis of studies with missing data must be developed to minimise bias.

Methods We describe work examining methods used to maintain participation in cohort studies, identify best practice for reducing attrition and investigate methodologies suitable for the analysis of cohort studies with attrition under different circumstances.

Results A literature search identified factors associated with minimising attrition including study design, recruitment procedures, incentives and retention methods utilised. A questionnaire including such factors was sent to 52 UK-based cohort studies; 25 (78%) returned a questionnaire. Analysis suggested that no one method is most effective, rather it is the combination of methods and study setting which may dictate the overall retention of study participants.

Work with various cohort studies resulted in consideration of the appropriateness of methods for missing data. This has led to a review of inverse probability weighting (IPW) focusing on how and when to use it appropriately. The motivation for combining IPW and multiple imputation, and the theoretical justification for doing so, has been examined. A final development concerns the use of IPW when predictors of missingness are themselves missing.

02-2.2 MEASUREMENT AND MODELLING OF FUNCTIONAL TRAJECTORIES ACROSS THE LIFECOURSE
doi:10.1136/jech.2011.142976a.53

R Hardy, 1F Matthews, 1D Kuh, 2D Lawlor, 3A A Sayer, 4M Benzeval. 1MRC Unit for Lifelong Health and Ageing, London, UK; 2MRC Biostatistics Unit, Cambridge, UK; 3MRC Centre for Causal Analyses in Translational Epidemiology, Bristol, UK; 4MRC Lifecourse Epidemiology Unit, Southampton, UK

Introduction Epidemiological studies are increasingly including measures of function as well as disease status but there are no guiding principles on which to base the choice of measures. The overall aim of this project is to develop recommendations for the measurement of function and the modelling of functional trajectories within and across cohort studies. Continuous and normally distributed measures of biological function, repeated over time, provide dynamic tools for studying the biological imprint of physical and social exposures. Signs of impaired function may act as intermediate markers of underlying disease processes, failure to reach developmental potential, or accelerated ageing, and offer opportunities for early intervention. There is currently no single study which has repeated measures of function from birth to old age. The best description of life course functional trajectories currently will come from the pooling of data from cohorts spanning the whole age range. Harmonisation of measures of function is required to facilitate this, while development of the statistical methods for combining trajectories is necessary.

Methods and Results We illustrate progress towards the ultimate objective of modelling the life course trajectories of cardiovascular, physical and cognitive function using data from multiple cohorts, and investigating risk factors influencing their shape. Using blood pressure as an example, we present results from the modelling of the longitudinal trajectories in multiple UK cohorts of different ages. We discuss issues relating to the comparability of measures both within and between studies, and the development of statistical methods for the synthesis of trajectories across cohorts.

02-2.3 USING GENETIC VARIANTS AS INSTRUMENTAL VARIABLES IN COHORT STUDIES
doi:10.1136/jech.2011.142976a.54

D Lawlor. *MRC Centre for Causal Analyses in Translational Epidemiology, Bristol, UK

Observational epidemiological studies suffer from many potential biases, from confounding and from reverse causation, and this limits their ability to robustly identify causal associations. In other observational sciences, notably econometrics, the use of instrumental variable approaches has been one approach to strengthening causal inferences in non-experimental situations. The use of germ-line genetic variants as instruments for modifiable (non-genetic) risk factors is one form of instrumental variables analysis that can be implemented within observational epidemiological studies. The method has been referred to as “Mendelian randomisation”, and can be considered as analogous to randomised controlled trials. This presentation will briefly define Mendelian randomisation and instrumental variable analysis; demonstrate how the instrumental variable approach differs from multivariable regression (the more common approach to dealing with confounding in observational analysis) and discuss the potential and limitations of genetic variants as instrumental variables. Recent methodological developments that might be used to address some of the limitations will also be discussed.

02-2.4 USING COHORTS TO STUDY LIFECOURSE EPIDEMIOLOGY: THE MRC LIFECOURSE EPIDEMIOLOGY UNIT
doi:10.1136/jech.2011.142976a.55

C Cooper. *MRC Lifecourse Epidemiology Unit, Southampton, UK

The MRC Lifecourse Epidemiology Unit maintains a large number of internationally unique cohort resources permitting evaluation of the developmental origins of chronic disease. Some of these comprise population-based samples of adults in whom detailed phenotyping has been undertaken; DNA has been stored; and birth/infant records have been retrieved (eg, include the Hertfordshire Cohort Study, the Helsinki Cohort Study, and the Delhi Cohort Study). Others comprise more contemporary mother-offspring studies (eg, the Southampton Women’s Survey and the Pune Maternal Nutrition Study). The purpose of the Unit’s research is to elucidate important, preventable causes of common chronic disorders and their complications. In particular, these cohorts permit study of the interplay of causes acting at different stages of the life course, from before conception through to old age. Through an understanding of the causes of these disorders and evaluation of
interventions at appropriate stages in the lifecourse, we aim to provide robust and timely evidence which informs policies to improve population and individual health. A good example is provided by research into osteoporosis and age-related fractures. The Hertfordshire Cohort Study has established that birthweight and weight in infancy are important determinants of adult bone mass, microstructure, geometry and strength. These influence the later risk of fracture. Mother-offspring cohorts have demonstrated the key role played by maternal vitamin D insufficiency during pregnancy, in the intrauterine skeletal development of the offspring. These have led to formulation of intervention studies such as a randomised controlled trial of vitamin D supplementation during pregnancy.

Previous cohort studies have demonstrated associations between lifestyle factors and chronic disease outcomes. However, for many of these factors such as physical activity, the exposure measurement has been relatively imprecise. The development of newer questionnaires that assess different domains of activity (transportation, work, domestic life and recreation) and inactivity (specific sedentary activities) may allow the associations between different aspects of these complex exposures and chronic disease to be disentangled. In general the precision of estimation is enhanced by shortening the time frame of reference. Therefore in order to optimise assessment of “usual” level of exposure it may be preferable to utilise repeated measurement with a questionnaire with a short time of reference rather than single use of one with a longer time frame. The increasing use of objective assessment of lifestyle factors alongside questionnaire based methods is an important step. Many questionnaires and objective instruments are available but need to be selected for a particular study on the basis of fitness for purpose. The MRC Public Health Sciences Network has funded the development of a web-based toolkit describing these different approaches. This toolkit, which is available at http://www.dapa-toolkit.mrc.ac.uk/ will form the basis for future developments including enhancing wider access to computational software.

Previous cohort studies have demonstrated associations between lifestyle factors and chronic disease outcomes. However, for many of these factors such as physical activity, the exposure measurement has been relatively imprecise. The development of newer questionnaires that assess different domains of activity (transportation, work, domestic life and recreation) and inactivity (specific sedentary activities) may allow the associations between different aspects of these complex exposures and chronic disease to be disentangled. In general the precision of estimation is enhanced by shortening the time frame of reference. Therefore in order to optimise assessment of “usual” level of exposure it may be preferable to utilise repeated measurement with a questionnaire with a short time of reference rather than single use of one with a longer time frame. The increasing use of objective assessment of lifestyle factors alongside questionnaire based methods is an important step. Many questionnaires and objective instruments are available but need to be selected for a particular study on the basis of fitness for purpose. The MRC Public Health Sciences Network has funded the development of a web-based toolkit describing these different approaches. This toolkit, which is available at http://www.dapa-toolkit.mrc.ac.uk/ will form the basis for future developments including enhancing wider access to computational software.

Realising the Potential for Interdisciplinary Perspectives in Life Course Epidemiology: A New Birth Cohort Study for the UK

Introduction
It is widely recognised that the UK birth cohorts have generated important new knowledge through life course analyses. However a new data resource is needed to advance understanding of the complex interplay between biology, behaviour, and environment during early development, and its influence on future health and well-being. An innovative design for a new UK Birth Cohort Study (BCS) was developed by a UK-wide investigator network in response to an open call for proposals. The preparatory phase will start in 2012.

Methods
The new UK BCS will recruit over 90,000 pregnant mothers and their partners who will be seen during pregnancy and again, with their child, 4 months and 1 year after birth. Information, biological samples and biophysical assessments collected at these visits will be enhanced by linkage to obstetric records, environmental data collected from the home and a wide range of routine data sources. A further 20,000 pregnant women throughout the UK will be interviewed when their children are aged 4 months and again at 1 year to allow the larger sample to be related to the UK population as a whole. In contrast to earlier UK-wide birth cohorts, the UK BCS will: collect data and biological samples from children and their families before birth and in early childhood; capture the substantial demographic changes that have taken place in the UK in recent years; and have sufficient power to identify effects specific for different ethnic groups.
O2-2.4 Using cohorts to study lifecourse epidemiology: the MRC Lifecourse Epidemiology Unit

C Cooper

J Epidemiol Community Health 2011 65: A21-A22
doi: 10.1136/jech.2011.142976a.55

Updated information and services can be found at:
http://jech.bmj.com/content/65/Suppl_1/A21.4

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

- Cohort studies (794)
- Epidemiologic studies (2838)
- Clinical trials (epidemiology) (175)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/