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ABSTRACT
Background Currently available tools for identifying
individuals at high risk of type 2 diabetes can be invasive,
costly and time consuming. This study aims to develop
and validate a self-assessment tool for identifying
individuals at high risk of type 2 diabetes in the Chinese
general population.
Methods A cross-sectional survey was conducted from
2000 to 2001 in a nationally representative sample of
15 540 Chinese adults aged 35e74 years. The diabetes
risk level (DRL) was assessed by classification and
regression tree (CART) analysis using four predictors:
age, body mass index, waistehip ratio (WHR) and waist
circumference (WC).
Results The significant predictors for type 2 diabetes
were WHR and age for women and WC and age for
men. The categories generated by CART analysis
stratified women into eight DRL and men into five DRL.
The prevalence of type 2 diabetes increased with the
increase in DRL in both women and men. A DRL of 6 or
greater predicted type 2 diabetes status with
a sensitivity of 0.61 (95% CI 0.55 to 0.67), a specificity of
0.71 (95% CI 0.70 to 0.73) in women, and a DRL of 3 or
greater predicted type 2 diabetes status with
a sensitivity of 0.59 (95% CI 0.52 to 0.65) and
a specificity of 0.63 (95% CI 0.62 to 0.65) in men.
Conclusions This study demonstrates that application
of the DRL has identified a substantial proportion of
individuals with type 2 diabetes in the Chinese general
population. It suggests that there is a great potential for
applying the self-assessment tool in healthcare-limited
settings.

The rising prevalence of type 2 diabetes has
a become major public health problem worldwide,
and it has been predicted to affect 366 million
people by the year 2030, of which at least 40
million people would be from China alone.1

Approximately a 1% increase in the prevalence of
type 2 diabetes will result in one million more
patients in China, which imposes a massive social-
economic burden on the community.
Studies have reported that type 2 diabetes is

associated with a number of genetic, environmental
and lifestyle factors.2e7 Recent intervention studies
have also clearly shown that type 2 diabetes could
be prevented or delayed through simple lifestyle
modification among high-risk individuals.8e10

Therefore, the earlier detection of individuals at
high risk of type 2 diabetes is a high priority for
primary prevention. However, currently available
screening tools for identifying individuals at high
risk of type 2 diabetes can be invasive, costly and

time consuming.11e18 Furthermore, most diabetes
risk scores have been developed in western popula-
tions,11 13e15 17 19 20 south Asian12 18 21 22 and Arab
populations23 with application in clinical practice/
primary care services.15 17e19 Such predicting tools
are lacking in the Chinese population. We also note
that different risk scores are not extrapolated across
populations.20 In addition, some of these risk scores
used laboratory tests and required a history of
medication,12 13 15 16 18 which limited their use in
China due to limited healthcare resources, especially
in private-financing healthcare services.24 Easy self-
assessment anthropometric measures have been
suggested to be good indictors for type 2 diabetes in
different populations,25 and might be used as alter-
natives for developing screening tools.
So far, no screening tool for type 2 diabetes has

been reported in the Chinese population, which
results in a large proportion of undiagnosed type 2
diabetes in China.26 In the current study, we aim to
develop and validate a self-assessment tool for
identifying individuals at high risk of type 2 diabetes
in the Chinese general population.

RESEARCH DESIGN AND METHODS
Study population
Our analyses are based on data collected from the
International Collaborative Study of Cardiovascular
Disease in Asia (the InterASIA) conducted in China.
Themethod of this study has been described in detail
elsewhere.25e28 In brief, a four-stage stratified
sampling method was used to select a nationally
representative sample of the general population in
China from 2000 to 2001. A total of 19 012 persons
was randomly selected from 20 primary sampling
units (street districts in urban areas or townships in
rural areas). Of the 19 012 persons, 15 838 partici-
pants (15 540 participants aged 35e74 years)
completed the survey and examination (response
rate 83%). The current study included 994 persons
with type 2 diabetes and 13 129 persons with
normal fasting glucose aged 35e74 years. Partici-
pants with impaired fasting glucose (n¼1121) and
those with missing fasting glucose measurements
(n¼296) were excluded from this analysis.
The InterASIA study was approved by the Insti-

tutional Review Board at the Tulane University
Health Sciences Center and the ethics committee and
other relevant regulatory bodies in China. Informed
consent was obtained from each participant.

Data collection
Data collection was conducted in examination
centres at local health stations or community
clinics by trained research staff using a standard
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questionnaire. Information included age, gender, self-reported
history of diabetes and the previous diagnosis and treatment of
diabetes.

Anthropometric measurements
Body weight, height, waist circumference (WC) and hip
circumference were measured by trained observers according to
a standard protocol in the InterASIA.26 Body mass index (BMI)
was calculated as weight (in kilograms) divided by height (in
metres) squared. Waistehip ratio (WHR) was calculated as WC
divided by hip circumference.

Laboratory measurements
Blood specimen samples were obtained to determine plasma
glucose after at least 12 h of fasting and were collected by the use
of vacuum tubes containing sodium fluoride. The serum glucose
level was measured by using the modified hexokinase enzymatic
method (Hitachi automatic clinical analyser, model 7060, Japan).

Participants without a previous diagnosis of diabetes were
categorised according to the American Diabetes Association diag-
nostic criteria as follows: undiagnosed diabetes (fasting glucose
$7.0 mmol/l) and impaired fasting glucose (6.1e6.9 mmol/l).29

Diabetes was defined as a self-reported history of diabetes plus
undiagnosed diabetes. Obesity was defined as a BMI of 28 kg/m2

or greater, overweight was defined as a BMI of 24 or greater but
less than 28.30

Data analyses
Analysis was conducted in women and men separately. Before
building models, the dataset was randomly split into two subset
samples, 50.2% (n¼7083) of the data for the training sample and the
remaining 49.8% (n¼7040) for the testing sample. Continuous
variables were expressed as median (25th percentile, 75th percentile)
and categorical variables as n (%). The c2 test was used to analyse
categorical data. Differences in continuous variables were evaluated
by the ManneWhitney Wilcoxon test. Classification and regression
tree (CART) analysis was used to develop a simple self-assessment
tool for identifying individuals at high risk of type 2 diabetes. This
procedure repeatedly partitioned the data to create subgroups with
highly homogenous outcomes.31 CART constructs a tree that will
separate the data in the ‘best’ way by finding binary splits on vari-
ables; finds the best splitting variable and the best splitting point at
each stage. The decision rule was determined by the Gini criterion,
a measure of variability within the new subgroups.32 The target
variable has a value of 0 or 1 depending on diabetes status (0 if
absent, or 1 if present). The explanatory variables selected to predict

the risks of type 2 diabetes consist of four easily attainable self-
assessment continuous variables (age, BMI, WC and WHR). Nodes
in the CARTanalysis were constrained to have a minimum size of
400 records in parent nodes and 200 records in final child nodes. The
proportion of subjects having type 2 diabetes was reported in each
node of the tree. A risk stratification system (diabetes risk level;
DRL)was developed based on the final child nodes in CARTanalysis.
A multivariable logistic regression model including the same

predictors was also developed. The predictive performance of
CART analysis was evaluated by using the area under the
receiver operating characteristics curve (AUC), sensitivity, spec-
ificity, the positive predictive value (PPV) and the negative
predictive value (NPV).
All analyses were performed using STATA version 9.2 except

the CARTanalysis was conducted using the SPSS 16.0 statistical
software package. A p value less than 0.05 was considered
statistically significant.

RESULTS
Comparison of the characteristics of the 7083 participants used
to develop the model (training sample) and the 7040 participants
used to test the model (testing sample) are shown in table 1. The
training sample and the testing sample were similar with respect
to age, WHR, BMI, WC and the prevalence of type 2 diabetes.
The overall prevalence of type 2 diabetes was 6.4% (95% CI 5.8%
to 6.9%) and 6.7% (95% CI 6.1% to 7.3%) for women and men,
respectively.
Figures 1 and 2 depict the classification tree along with the

prevalence of type 2 diabetes in each child node. Of the four
common easily known predictors (age, WHR, WC and BMI),
WHR and age were selected by the CART analysis for women,
whereas WC and age were selected for men. WHR was proved to
be the best predictor for women (c2¼149.6, p<0.001) and WC
for men (c2¼64.01, p<0.001). Age was the second most impor-
tant predictor for type 2 diabetes in both women and men,
respectively.
The final child nodes generated by CART analysis stratified

women into eight DRL and men into five DRL (figures 1 and 2).
The prevalence of type 2 diabetes increased with the increase in
DRL in both women and men, as shown in figure 3 (women
c2

trend¼2059.42, p<0.001; men c2
trend¼619.01, p<0.001).

Women with a DRL of 8 (WHR >0.918) and men with a DRL of
5 (WC >84 cm) are at the highest risk of type 2 diabetes.
Sensitivity, specificity, PPV, NPV and likelihood ratios that

predict the presence of type 2 diabetes for a threshold are shown

Table 1 Sociodemographic and clinical characteristics of study participants in the training sample and the testing sample, by gender

Characteristics

Women Men

Training sample Testing sample p Value Training sample Testing sample p Value

Age, years, range 48.2 (41.5, 57.4) 48.1 (41.0, 57.6) 0.59 48.8 (41.7, 58.7) 48.5 (41.3, 58.9) 0.43

WC, cm 77.0 (70.2, 84.2) 76.5 (70.0, 84.0) 0.37 80.8 (73.6, 88.0) 81.0 (73.8, 88.2) 0.31

BMI, kg/m2 23.4 (21.2, 26.0) 23.3 (21.2, 25.8) 0.35 23.4 (21.1, 25.7) 23.3 (21.1, 25.8) 0.64

WHR, unit 0.82 (0.75, 0.87) 0.82 (0.78, 0.87) 0.12 0.87 (0.82, 0.91) 0.87 (0.83, 0.92) 0.20

Overweight, n (%)* 1156 (31.5) 1154 (31.4) 0.95 1121 (32.8) 1083 (32.2) 0.55

Overall obesity, n (%)y 448 (12.2) 414 (11.3) 0.22 338 (9.9) 359 (10.7) 0.31

Central obesity, n (%)z 1460 (39.8) 1419 (38.6) 0.32 1261 (37.0) 1287 (38.2) 0.28

Type 2 diabetes, n (%)x 258 (7.3) 243 (6.6) 0.48 241 (7.1) 252 (7.5) 0.50

Continuous variables presented as median (25th percentile, 75th percentile) and categorical variables as n (%).
*Diagnostic criteria for Chinese population: body mass index (BMI) $25 kg/m2 and BMI <28 kg/m2 was defined as overweight.
yDiagnostic criteria for Chinese population: BMI $28 kg/m2 was defined as obesity.
zDiagnostic criteria for Chinese population: waist circumference (WC) $85 cm for men or WC $80 cm for women was defined as obesity.
xPercentage of diabetes in training/testing sample as number of diabetes/total number in training or testing sample.
WHR, waistehip ratio.
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Figure 2 Predictors of type 2 diabetes and risk stratification by classification and regression tree analysis for men in the training sample. WC, waist
circumference.
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Figure 1 Predictors of type 2 diabetes and risk stratification by classification and regression tree analysis for women in the training sample. WHR,
waistehip ratio.
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in table 2. A threshold DRL of 6 or greater in women identified
62% of individuals with type 2 diabetes with a specificity of 72%,
and a threshold DRL of 3 or greater in men identified 60% of
individuals with type 2 diabetes with a specificity of 63%.

The CARTanalysis was able to stratify similar results in both
training and testing samples (figures 1, 2, 4 and 5). The AUC in

the training sample were not significantly different from those in
the testing sample for both women and men (women 0.71 vs
0.73; men 0.65 vs 0.69), indicating a good prediction above
chance. Other diagnostic statistics were also similar in the two
samples (table 2).
Multivariable (age, WHR, WC and BMI) logistic regression

analyses show that age, WC andWHRwere associated with type
2 diabetes in women (p¼(1+e�(0.048 Age+0.020WC+4.01WHR))�1, and
age, WC, WHR and BMI in men (p¼(1+e�(0.033 Age+0.019WC

+3.691WHR+0.043BMI))�1. There was no difference of AUC between
CARTanalysis and the logistic regressionmodel (data not shown).

DISCUSSION
In this study, a self-assessment tool with two simple predictors
to identify individuals at high risk of type 2 diabetes was
developed and successfully validated by CART analysis in
a Chinese general population. The final child nodes generated by
CART analysis stratified women into eight DRL and men into
five DRL. Nearly two-thirds of individuals with type 2 diabetes
have been identified with a reasonable specificity.
As a developing country, the cost on primary care has already

been a colossal burden in China. Moreover, awareness, treatment
and control of diabetes are relatively low among Chinese
adults.28 Therefore, it will be of great value to develop a simple
tool for identifying individuals at high risk of type 2 diabetes. To
the best of our knowledge, no screening tool for diabetes has been
developed previously in the Chinese population. As the DRL
generated by CARTanalysis in this study can be easily applied in
the general population and can identify individuals with dia-
betes, there is great potential for its application in primary care
settings in resource-limited countries.
The predictive performance and discriminative ability of this

simple tool is highly comparable to those diabetes risk scores
that are composed of different sets of clinical variables.11 13 14 17 18

The AUC of DRL generated by CART analysis in our study is
similar to those in Indian (AUC 0.73),18 Thai (AUC 0.74)12 and
Danish (AUC 0.76)14 studies. However, those diabetes risk scores
included at least four variables and also required medical infor-
mation. Even higher AUC (Germany 0.84; USA 0.85; UK 0.80;
USA 0.82, Spain 0.83 for men, 0.87 for women; and middle east
0.83) have been reported if more risk factors are included, such as
smoking, alcohol consumption and biochemical tests.11 17 19 23 It
is well known that the more variables included in the prediction
tool, the less applicable it is to the general population. Given that
diabetes could be prevented or delayed by changing lifestyle and
physical activity patterns, it seems more sensible to target indi-
viduals at high risk by a simple programme that could be run
easily in the general public.
The DRL in this study is very simple and also relatively easy to

interpret. Compared with other diabetes risk scores, this DRL has
a moderate sensitivity and a similar PPV (11e14%),11 14 15 but
a high NPV (95e96%). For identifying individuals with diabetes,

Table 2 Diagnostic statistics of the DRL for identifying type 2 diabetes in women and men

Diagnostic statistics
(95% CI)

Women (DRL ‡6) Men (DRL ‡3)

Training sample Testing sample Training sample Testing sample

Sensitivity 0.61 (0.55 to 0.67) 0.62 (0.55 to 0.68) 0.59 (0.52 to 0.65) 0.59 (0.52 to 0.65)

Specificity 0.71 (0.70 to 0.73) 0.73 (0.71 to 0.74) 0.63 (0.62 to 0.65) 0.63 (0.61 to 0.64)

Positive predictive value 0.14 (0.12 to 0.16) 0.14 (0.12 to 0.16) 0.11 (0.09 to 0.13) 0.11 (0.09 to 0.13)

Negative predictive value 0.96 (0.95 to 0.97) 0.96 (0.96 to 0.97) 0.95 (0.94 to 0.96) 0.95 (0.94 to 0.96)

Positive likelihood ratio 2.16 (1.94 to 2.42) 2.27 (2.02 to 2.54) 1.61 (1.43 to 1.80) 1.61 (1.43 to 1.80)

Negative likelihood ratio 0.54 (0.47 to 0.64) 0.53 (0.45 to 0.62) 0.65 (0.56 to 0.76) 0.65 (0.55 to 0.76)

DRL, diabetes risk level.

Figure 3 Type 2 diabetes prevalence rates of subgroups with different
diabetic risk levels developed by classification and regression tree
analysis in women and men.
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the DRL has a sensitivity of 61% with a specificity of 71% in
women and a sensitivity of 60% with a specificity of 63% in men.
According toNPV, individuals with lower DRL are unlikely to have
diabetes (approximately 95% probability). This DRL emphasises
people with obesity, especially older people (women >60 years
and men >50 years). Women with a DRL of 8 (WHR>0.918) and
men with a DRL of 5 (WC >84 cm) will then need further blood
tests and a suggestion to change to a healthier lifestyle for primary
prevention. This information is very important for both the
individuals and the health workers when making plans for action.

CART analysis has been proved to perform better than
a logistic regression model in developing diabetes risk scores.11 In
the current study, CART analysis provided similar results to
multiple logistic regression models in terms of sensitivities,
specificities and AUC. The results of CART analysis also
confirmed that central adiposity (eg, WHR and WC) are better
predictors of type 2 diabetes than overall obesity (BMI), which is
consistent with previous studies.25

There are several advantages of the DRL. First, it is developed
in a representative general Chinese population. Our study
employed a multistage stratified random sampling method to
select a representative national sample from the Chinese general
population. Second, the development and validation of the
model in two separate groups (randomised split sample) is an

important strength, which lends support to the robustness and
generalisability of the results. Third, the final model is quite
simple, with only two items in a classification tree form.
Compared with other diabetes risk scores derived from more
variables and also including a blood test for glucose,11e14 17 the
DRL can easily be applied at home in the general population.
Although adding laboratory results would be more predictive,
they were not available in the general public and, thus, were not
included in our analysis. Our goal in this study is to develop
a parsimonious tool, and not primarily to maximise prediction.
Potential limitations of the current analysis must be addressed.
First, the association between the independent variable and type
2 diabetes may not be causal given the cross-sectional nature of
the current study. Second, our study did not include a younger
age group.

CONCLUSION
The CART-based analysis in the current study has created
a simple robust tool with considerable discriminative ability and
is easy to apply in the general public. We strongly believe that
the public health implications of this decision tree are consid-
erable. It is a cost-efficient and practical tool to identify indi-
viduals at high risk of type 2 diabetes in the general population
and also to offer a chance for early prevention measures.
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Figure 4 Predictors of type 2 diabetes and risk stratification by classification and regression tree analysis for women in the testing sample. WHR,
waistehip ratio.
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Figure 5 Predictors of type 2 diabetes and risk stratification by classification and regression tree analysis for men in the testing sample. WC, waist
circumference.
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