Methodology for optimising location of new primary health care facilities in rural communities: a case study in KwaZulu-Natal, South Africa

Frank Tanser

Study objective: To develop a quantitative methodology to optimally site new primary health care facilities so as to achieve the maximum population level increase in accessibility to care. The study aims to test the methodology in a rural community characterised by considerable heterogeneity in population distribution and health care access.

Design: A geographical information system was used to estimate travel time to the nearest primary health care facility for each of the 26,000 homesteads in the subdistrict. The homestead’s travel time estimate was then converted into an impedance to care estimate using distance decay (in clinic use) data obtained from the subdistrict. A map of total person impedance/km² was then produced using a 3 km standard Gaussian filter. The resulting map was used to site a test clinic in the largest contiguous area of high person impedance.

Setting: Hlabisa health subdistrict, KwaZulu-Natal, South Africa.

Main results: The population level increase in accessibility that would be achieved by the construction of the test clinic would be 3.6 times the increase in accessibility achieved by the construction of the newest clinic in the subdistrict. The corresponding ratio for increasing clinic coverage (% of the population within 60 minutes of care) would be 4.7.

Conclusions: The methodology successfully identifies a locality for a new facility that would maximise the population level increase in accessibility to care. The same principles used in this research could also be applied in other settings. The methodology is of practical value in health research and practice and provides a framework for optimising location of new primary health care facilities.
Durban—the third largest city in South Africa. The population consists of about 220 000 Zulu speaking people of which 3.3% are located in a formal urban township (KwaMatsane), 19.9% in peri-urban areas (>400 people/km²), and the remainder (76.8%) are classified as living in a rural area. The rural population lives in scattered homesteads that are not concentrated into villages or compounds as is the case in many other parts of Africa. The area is transected by a Hluwule-Umlolozi game reserve and surrounded by hard boundaries in the form of large perennial rivers, nature reserves, forestry areas, and commercial farmland. Elevation ranges between 30 and 600 metres above sea level. The population distribution is characterised by extreme heterogeneities and density ranges over two orders of magnitude (20–2500 people/km).

A district hospital and 13 fixed primary health care clinics provide the bulk of the primary health care in Hlabisa. In addition, there are 30 mobile clinic points that are visited twice monthly and 130 community health workers, each of whom is expected to regularly visit a group of assigned homesteads. To access primary health care, 60.8% of the population walk to clinic, 38.8% use public transport, and 0.4% use their own transport.

GIS data

The Africa Centre GIS Unit maintains a digital database of 1:50 000 topographical maps and high resolution orthorectified aerial photographs of the Hlabisa subdistrict. The 26 000 homesteads, and all facilities (including clinics) in the health subdistrict were geolocated by global positioning systems to an accuracy of <2 m.

Travel time model

Previously, I designed a model to estimate average travel time to nearest clinic. Briefly, I used a cost analysis within Idrisi Kilimanjaro (Clark University, Worcester, MA, USA) to compute travel time to clinic. The cost analysis uses the friction values (corresponding to differing travelling speeds across differing surfaces) to compute the path of least resistance from every cell on a 30 m × 30 m grid to the most accessible target clinic. The resulting cost surface measures the least cost (in terms of travel time) in moving over the friction surface to the nearest clinic. Using this approach a walking model for pedestrian access and a travel time model for people using public transport were created. These models were calibrated using reported travel times (using a 1% random sample of homesteads) and combined according to the proportion of people predicted to be using public transport (as a function of walking time) to form a hybrid model. This hybrid model thus estimates average travel time from homestead to nearest clinic and takes into account the quality and distribution of the road network, natural barriers such as perennial rivers, and the proportion of the population likely to be using public transport. Using this model, for the Hlabisa subdistrict the estimated median travel time to nearest clinic is 81 minutes and 65% of homesteads travel ≥1 hour to attend clinic. The model was then used to derive clinic catchments and there was a 91% agreement between predicted and reported clinic use.

Person hours of travel time (PHTT) methodology

Estimated average travel times for each of the 26 000 homesteads in the subdistrict were extracted and multiplied by the number of people in the homestead. The resulting values were superimposed onto a 30 m grid in Idrisi Kilimanjaro and subjected to a moving 3 km standard Gaussian filter. The Gaussian filter weights the contribution of cells in the 3 km neighbourhood according to a standard Gaussian (normal) distribution. The greater the distance from the central cell the less contribution of that cell to the final PHTT/km² estimate. The PHTT estimate is then assigned to the central cell and process repeated for the next cell. In the resulting image, the value of each pixel is an estimate of total PHTT/km² and highlights densely populated areas comprising people who have to travel for long periods of time to reach the nearest clinic. I applied an adjustment factor near the boundaries of the subdistrict to ensure that all areas were comparable at a km² scale.

Person impedance methodology

In previous work, we showed there to be a logistic relation between decay in attendance of a specific clinic and travel time. At 50 minutes travel time, use of the clinic is 91% but thereafter decays rapidly to 50% at 81 minutes, and 1% at 150 minutes. I used the mirror of this curve to calculate a measure of impedance (fig 1). At 0 minutes from a facility where 100% of homesteads use that facility, a person is said to be totally unimpeded (impedance factor = 0) and at 180 minutes travel time a person is said to be totally impeded (impedance factor=1) with a logistic continuum between these two extremes. The logistic relation means that people living <50 minutes from a clinic are assigned virtually no impedance, but thereafter the impedance increases sharply until saturation starts to occur at about two hours travel time.

Impedance factors for each of the 26 000 homesteads were extracted and multiplied by the number of people in the homestead. The results were then superimposed onto a 30 m raster grid. I then used the Gaussian filter approach as outlined above (with associated boundary adjustment factor) to calculate the total person impedance/km². This output highlights areas where the placement of the clinic can have a large population level reduction in impedance to care.

Comparing the population level changes in travel time and impedance

I used the outputs of the PHTT and person impedance analyses to identify potential locations for the test clinic. I then derived the predicted catchments for the test clinic and the most recently built clinic in the subdistrict (Gunjaneni) by allocating each cell in the travel time model to its most accessible clinic. The catchment boundaries thus constitute a line of equal travel time between neighbouring clinics. I then used the resulting predicted catchments of each clinic to compare the population level changes in travel time and travel impedance respectively, that would result from the construction of each clinic.
RESULTS
The mean travel time to nearest clinic is shown (fig 2A). As distance to nearest clinic is increased, roads play more of a part in determining access as a result of the proportion of people making use of public transport also increasing.16

A map of the population density is shown (fig 2B). The population is mainly concentrated along the eastern boundary of the area along the national road. The largest population concentration occurs around the southernmost clinic in the urban township of KwaMsane.

Maps of PHTT and person impedance/km² are shown in figure 2C and figure 2D respectively. While the PHTT map identifies several areas in the south of the subdistrict with high PHTT, the majority of persons live <1 hour’s travel time to clinic (fig 2B) and the high PHTT is attributable to the high population concentration in these areas. The person impedance approach is conceptually better than the PHTT approach as it takes into account the non-linear variation in ease of access (impedance) with increasing travel time. The output clearly delineates the areas where high levels of impedance correspond with high population concentrations. As a result the highly populous areas in the south with reasonable access to care (<1 hour) are not highlighted. In this study case, the outputs of both the PHTT and person impedance analyses identified the same locality for optimal placement of the test clinic. As a result, I selected only one site for the test clinic within this locality that was approximately equidistant from the nearest boundaries of

Figure 2 Mean travel time (minutes) to nearest clinic (A), population density/km² (B), person hours travel time (PHTT)/km² (C), and person impedance (PI)/km² (D). The study area is transected by a nature reserve. Clinic catchments (before the construction of Gunjaneni) are shown in black and catchments of the test clinic and Gunjaneni are shown in white.
DISCUSSION

The research has devised a methodology that aids the health planner in efficient placement of a new health facility by maximising the impact of the location of a new clinic on reducing population level impedance to health care. The methodology takes into account both the distribution of the health services (and quality and distribution of the road network, natural barriers, and proportion of the population the subdistrict and was located near the intersection of two main roads. The site for the test clinic and actual placement of Gunjaneni (the most recently built clinic in the subdistrict) are shown with resulting catchments superimposed (fig 2C, 2D).

Although the two clinics being compared are equidistant from their nearest respective clinics, the Gunjaneni population were 14% more impeded in accessing health care in comparison with the population living within the test clinic catchment (mean impedance value of 0.78 compared with 0.68) and lived an additional 10 minutes away from the nearest facility (table 1). However, the differences in population concentration mean that the test clinic would achieve an 8100 person impedance reduction compared with only the 2200 person impedance reduction achieved by the construction of Gunjaneni Clinic (table 1). This would translate into a mean reduction in population level impedance to health care of 0.047 for the test clinic, compared with only 0.013 achieved by Gunjaneni, a 3.6 times difference. The corresponding ratio for population level travel time reduction would be 3.3 (4.1 minutes compared with 1.2 minutes). In terms of clinic coverage (% population>1 hour from care), the construction of the test clinic would achieve 4.7 times the population level impact in comparison with Gunjaneni.

There are other considerations. The test clinic would reduce the burden on the clinic that serves the largest catchment population in the subdistrict (located to north east of the test clinic (fig 2C)) by 55%. By contrast, the construction of Gunjaneni Clinic has further reduced the demands placed on clinic serving one of the smallest catchment populations in the subdistrict (located to the south of Gunjaneni). However, the proportion of the population in the catchment surrounding Gunjaneni (before its construction) that reported using a clinic was lower than that of the population residing in the catchment of the test clinic.15

What this paper adds

The paper outlines a methodology for efficient placement of new health facilities by maximising the impact of the location of a new facility on increasing population level accessibility to primary health care.

Policy implications

The methodology is of practical value to rural health planners and district managers and provides a framework for optimising location of new primary health care facilities that ensures the maximum population access to the services they offer.
Although it may be a principled approach to insist that professional staff travel to remote locations, there is in Hlabisa subdistrict (as in most developing and industrialised countries) a shortage of professional staff, and they are likely to choose to work in areas that are accessible to them. There are also issues of critical mass—it may make sense for service facilities to situate themselves close together, so that when persons travel (very often at considerable expense relative to income) they not only obtain health care but can do shopping, banking and get other government services. There are also important political considerations, with local politicians and politicians vying (as elsewhere in the world) for new public facilities. In the end, placement of health facilities is not guided entirely by rational and measurable considerations.

The potential interaction between any populations and health care facilities can be calculated using gravity models.20 Gravity models sum (at every location) the potential accessibility (discounted for distance on the basis of a hypothetical distance-decay function) to each health care centre to derive a single index of accessibility. Such models are advantageous to use in urban or other environments where catchments are ill defined and catchment boundaries blurred and there is considerable interfacility interaction. In contrast with the gravity model, which assumes a multiplicity of health care facilities and the opportunity for the population to reasonably choose from a number of these facilities, the model I use is well suited to areas where choice is limited regarding care. As such, the model that uses population distribution as well as accessibility to care to achieve maximum population level impact, is more suited to rural settings where patient choice of health care facility is limited. Thus the model defines accessibility with respect to the nearest clinic and not on hypothetical interactions with all clinics within a reasonable distance. The impedance value is not a theoretical concept but is derived from empirical data on distance-decay derived from the analysis of the clinic use patterns of 23,000 homesteads.19 The result is a methodology that achieves a large population impact on health care accessibility by selecting the most efficient (in terms of person impedance) locality for clinic placement. In industrialised countries, patients typically have greater choice of health care facilities, and greater mobility. The decay in use with increasing travel time is much faster with respect to a single facility because patients choose (and are able) to attend more distant facilities. This has led to the use of a negative exponential function to describe the distance-decay in many such settings.20

The method described here could easily be adapted to other settings, or where available data differ. For example, a Euclidean distance model, rather than the travel time model, could be used to derive a less precise (but none the less useful) person impedance estimate. Similarly, person impedance could be calculated at a census tract level and populations proportionally allocated to clinic catchments to derive an estimate of the population level impact. In settings where census data are not available (as is often the case in rural areas of developing countries) high resolution satellite imagery (available at moderate cost) can accurately estimate and geolocate populations. In urban settings where facilities are closer together and the catchment boundaries are blurred the methodology would have to be adapted. One way to do this would be to transform a gravity model’s accessibility estimate into an impedance value and combine it with the population distribution through the use of a Gaussian filter to locate areas of high person impedance.

Better physical accessibility to primary health care is likely to promote increased utilisation of these services. Such increased use may improve the care commonly associated with primary care clinics, such as antenatal care and childhood immunisation, but may also improve compliance with increasingly important chronic diseases, including HIV, that are being treated at these clinics. As the necessary technology continues to become less expensive and more accessible, the proposed method may have an important part to play in the placement of primary health care facilities in rural settings.

ACKNOWLEDGEMENTS

The author is grateful to Martin Dedicoat for his comments on the manuscript.

Funding: this study was supported by Wellcome Trust Grants 065377 (PI M Bennish) and 067181 (PI A J Herbst) to the Africa Centre for Health and Population Studies. The author is partly supported by a South African NRF post-doctoral fellowship grant (SFP2004072900015).

Competing interests: none.

REFERENCES

www.jech.com
Methodology for optimising location of new primary health care facilities in rural communities: a case study in KwaZulu-Natal, South Africa
Frank Tanser

J Epidemiol Community Health 2006 60: 846-850
doi: 10.1136/jech.2005.043265

Updated information and services can be found at:
http://jech.bmj.com/content/60/10/846

These include:

References
This article cites 16 articles, 3 of which you can access for free at:
http://jech.bmj.com/content/60/10/846#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/