LETTERS

If you have a burning desire to respond to a paper published in JECH, why not make use of our “rapid response” option? Log on to our web site (www.jech.com), find the paper that interests you, and send your response via email by clicking on the “eLetters” option in the box at the top right hand corner.

Providing it isn’t libellous or obscene, it will be posted within seven days. You can retrieve it by clicking on “read eLetters” on our homepage.

The editors will decide as before whether to also publish it in a future paper issue.

Smoking verification and the risk of myocardial infarction

We read the paper by Godtfredsen et al with interest.1 The paper reported on the effect of smoking reduction on the incidence of myocardial infarction (MI) and found that although patients who stopped smoking had a decreased risk of MI, those who reportedly reduced their smoking did not. The conclusions drawn were that smoking reduction, rather than complete cessation, did not produce any benefit with regard a reduction of risk of MI.

The major drawback to this study is that the information about smoking was totally reliant on self reported smoking habit. There is abundant evidence that patients who smoke, when questioned about a smoking reduction, will frequently under-report their cigarette consumption or deny smoking altogether. The more significant the effect smoking has, the greater the “social desirability bias”, so increasing the likelihood of denial. To overcome this bias biochemical verification of smoking by measurement of nicotine intake, specifically cotinine, has become almost obligatory.

To improve the accuracy of information about smoking and to facilitate easier nicotine metabolite measurements we developed a six minute point of care test called SmokeScreen.2 The easy to use colorimetric urine test can provide qualitative, semi-quantitative, and quantitative measurements of nicotine intake. Using this test we undertook an audit of smoking habits of 154 new patients attending a large inner city hospital cardiology outpatient clinic, comparing the test identification of smoking with self completed questionnaire of current smoking habit. The results identified 112 (72.7%) patients as non-smokers, 30 (19.5%) as confessed smokers, and 12 (7.8%) as “smoking deceivers”.

We followed this with another study of the same population (n = 85, 33 smokers and 52 never-smokers) to examine the interaction of smoking and risk factors associated with coronary artery disease, as assessed by a biochemical screen and a blood count. Interestingly, none of the parameters measured in the biochemical screen, such as cholesterol, HDL and triglycerides, urea and electrolytes, and liver function tests were associated with smoking habit or quantitative assessment of nicotine intake. Whereas white blood cell count was significantly higher in smokers (p = 0.002), in particular, neutrophils (p = 0.01) and eosinophils (p = 0.02); Lymphocytes, monocytes, and basophiles were higher but failed to reach significance. Quantitative assessment of nicotine intake of the smokers further revealed a positive correlation with white blood cell count (p = 0.0001), neutrophils (p = 0.001), eosinophils (p = 0.004) and lymphocytes (p = 0.02), with monocytes approaching significance (p = 0.7).

It would seem from this pilot study that smoking or the amount of tobacco consumed does not influence the biochemical risk factors for coronary artery disease, such as cholesterol and HDL. However, smoking does seem to increase many of the immune cells associated with both the formation and destabilisation of the atheromatous plaque. It would seem logical therefore that a reduction in nicotine intake would be accompanied by a reduced risk of MI, as supported by our quantitative findings. The reason for the poor association between smoking reduction and subsequent MI in the Godtfredsen et al study may be the inaccuracy of self report. We suggest that identification of smokers with the point of care test is a more valuable method of smoking assessment. Coupling this test with subsequent advice on smoking cessation could have a significant impact on reducing a major risk factor associated with coronary artery disease and decrease cardiovascular events and mortality.

G F Cope, N Battersby
Institute of Research and Development, University of Birmingham, UK

Correspondence to: Dr G F Cope, University of Birmingham, Birmingham Research Park, Vincent Drive, Edgbaston, Birmingham B15 2SU, UK; g.cope.mermaid@ukonline.co.uk

References

Authors’ reply

We appreciate the comments from Cope and Battersby on our paper reporting the association between smoking cessation and smoking reduction and subsequent risk of myocardial infarction. Specifically, they propose that the lack of a beneficial effect of reduced smoking—in contrast with smoking cessation—could be attributable to inaccuracy (under-reporting) of the self reported tobacco consumption. In addition, they raise the important question of which measurement method most accurately reflects tobacco exposure in the individual smoker.

We agree that nowadays almost every study of smoking habits apply one or more measurements of biochemical verification of smoking in addition to self report. It is also correct that in our paper the study participants are divided into the different smoking categories on basis of self reported smoking and changes in smoking. However, as mentioned in the discussion, measurements of expired carbon monoxide (CO) and serum cotinine were undertaken in one of the follow up examinations. We found increasing levels of CO (table 2) and cotinine (not shown) with increasing self reported tobacco consumption, indicating that underreporting of smoking alone cannot explain our results, but clearly misclassification cannot be ruled out in this observational study. Furthermore, a previous review and meta-analysis2 concluded that self reported smoking is an accurate measure of tobacco exposure in population based studies, whereas this is not the case in intervention and clinical studies. Our data were based on a sample of the general population; participants with known coronary heart disease before study entrance were excluded. In addition, information on smoking habits and changes in smoking were part of a large questionnaire initiated in the late 1970s and the 1980s, thus minimising the risk of “social desirability bias” in this study.

Cope and Battersby describe a pilot study using a urine cotinine test for measuring nicotine intake. There are various methods of validating tobacco intake including biochemical markers, and cotinine is one of the better because of its comparatively long half life and the possible linear relation with number of cigarettes smoked. However, cotinine is not very useful in smoking reduction studies as most of the participants in these trials are supplied with nicotine replacement medicaments. Interestingly, the intervention studies of smoking reduction all report that despite nicotine replacement the percentage decline in amount of tobacco is followed by a smaller decline in biochemical markers of smoking exposure.

Evidence of the effects of reduced smoking on risk of coronary heart disease is limited. The few ongoing smoking reduction trials report favourable changes in blood analyses of biochemical markers of atherosclerosis up to two years after smoking reduction. Unfortunately, these studies have a very high “drop out” percentage, but it will be interesting to see the clinical results of a long term follow up in this type of “risk reduction” study.

In summary, we believe that the self reported smoking habits in our study are fairly precise. However, biochemical verification of smoking is necessary in intervention and clinical studies although there are no ideal markers of tobacco exposure specifically with respect to assessment of smoking reduction.

N S Godtfredsen, J Vestbo, M Osler, I Andersen, E Prescott
Institute of Preventive Medicine, Høyrups Allé 28a, Hellerup, Denmark

Correspondence to: Dr N S Godtfredsen, Institute of Preventive Medicine, Høyrups allé 28a, Hellerup, Denmark, DK-2900; ng@ipm.hosp.dk
Reference

Fibrinogen, social position, and risk of heart disease

The report by Jousilahti and colleagues adds to growing evidence of a consistent association between serum inflammatory markers—particularly fibrinogen—and social position.14 The authors interpret their data as suggesting that the fibrinogen-social position link is not merely a reflection of the social pattern ing of prevalent disease, smoking, and obesity (all of which are associated with increased serum fibrinogen and lower social position) as a strong trend of increasing fibrinogen with decreasing social status survived statistical adjustment for these covariates. Fibrinogen, they conclude, is therefore a promising candidate for the “missing link” between social position and cardiovascular health.

The authors’ reasoning implicitly accepts that fibrinogen is a cause of coronary heart disease (CHD). However, this runs contrary to recently published evidence using the principle of “Mendelian randomisation” (the situation where a particular genetic polymorphism influences exposure level of a putative disease risk factor, and should in turn be related to increased risk of disease if the risk factor is indeed a cause).15 In fact we discussed this evidence in a recent commentary on psychosocial explanations of health inequalities. Plasma fibrinogen concentrations are related to a polymorphism in the β-fibrinogen gene, with presence of the “T” allele being associated with higher levels. Among controls of a recent large case-control study, fibrinogen increased by 0.12 g/l per T allele present. Comparing cases with controls, a 0.12 g/l higher fibrinogen was associated with a relative risk of CHD of 1.20 (95% CI 1.13 to 1.26). If increased fibrinogen actually caused heart disease then a similar per allele relative risk of CHD should be seen. In fact the per-allele relative risk of CHD was 1.03 (0.96 to 1.10). People whose genotype would have subjected them to long term raised plasma fibrinogen experienced no substantial increased risk of heart disease, suggesting that observed associations between fibrinogen and CHD risk are not causal. This finding is in keeping with evidence from randomised controlled trials that suggests that drugs lowering fibrinogen do not decrease the risk of CHD.1

Fibrinogen probably predicts cardiovascular events because of reverse causation (atherosclerosis is an inflammatory condition and raises circulating fibrinogen concentrations) and because of confounding—smoking, abstaining from alcohol, not exercising and being poor are all associated with raised fibrinogen and themselves increase the risk—or are markers for factors that increase the risk—of cardiovascular disease.

The data presented by Jousilahti and colleagues illustrate how easy it is to misattribute causality to associations in social epidemiology. Many factors are socially patterned and thus appear as possible candidates for a causal role in the processes that generate any disease outcome that is also socially patterned and thus appear as possible candidates for the “missing link” between social position and therefore a promising candidate for the fibrinogen-social position link is not merely a reflection of the social pattern ing of prevalent disease, smoking, and obesity (all of which are associated with increased serum fibrinogen and lower social position) as a strong trend of increasing fibrinogen with decreasing social status survived statistical adjustment for these covariates. Fibrinogen, they conclude, is therefore a promising candidate for the “missing link” between social position and cardiovascular health.

The authors’ reasoning implicitly accepts that fibrinogen is a cause of coronary heart disease (CHD). However, this runs contrary to recently published evidence using the principle of “Mendelian randomisation” (the situation where a particular genetic polymorphism influences exposure level of a putative disease risk factor, and should in turn be related to increased risk of disease if the risk factor is indeed a cause). In fact we discussed this evidence in a recent commentary on psychosocial explanations of health inequalities. Plasma fibrinogen concentrations are related to a polymorphism in the β-fibrinogen gene, with presence of the “T” allele being associated with higher levels. Among controls of a recent large case-control study, fibrinogen increased by 0.12 g/l per T allele present. Comparing cases with controls, a 0.12 g/l higher fibrinogen was associated with a relative risk of CHD of 1.20 (95% CI 1.13 to 1.26). If increased fibrinogen actually caused heart disease then a similar per allele relative risk of CHD should be seen. In fact the per-allele relative risk of CHD was 1.03 (0.96 to 1.10). People whose genotype would have subjected them to long term raised plasma fibrinogen experienced no substantial increased risk of heart disease, suggesting that observed associations between fibrinogen and CHD risk are not causal. This finding is in keeping with evidence from randomised controlled trials that suggests that drugs lowering fibrinogen do not decrease the risk of CHD.

Fibrinogen probably predicts cardiovascular events because of reverse causation (atherosclerosis is an inflammatory condition and raises circulating fibrinogen concentrations) and because of confounding—smoking, abstaining from alcohol, not exercising and being poor are all associated with raised fibrinogen and themselves increase the risk—or are markers for factors that increase the risk—of cardiovascular disease.

The data presented by Jousilahti and colleagues illustrate how easy it is to misattribute causality to associations in social epidemiology. Many factors are socially patterned and thus appear as possible candidates for a causal role in the processes that generate any disease outcome that is also socially patterned and thus appear as possible candidates for the “missing link” between social position and therefore a promising candidate for the fibrinogen-social position link is not merely a reflection of the social pattern ing of prevalent disease, smoking, and obesity (all of which are associated with increased serum fibrinogen and lower social position) as a strong trend of increasing fibrinogen with decreasing social status survived statistical adjustment for these covariates. Fibrinogen, they conclude, is therefore a promising candidate for the “missing link” between social position and cardiovascular health.

The authors’ reasoning implicitly accepts that fibrinogen is a cause of coronary heart disease (CHD). However, this runs contrary to recently published evidence using the principle of “Mendelian randomisation” (the situation where a particular genetic polymorphism influences exposure level of a putative disease risk factor, and should in turn be related to increased risk of disease if the risk factor is indeed a cause). In fact we discussed this evidence in a recent commentary on psychosocial explanations of health inequalities. Plasma fibrinogen concentrations are related to a polymorphism in the β-fibrinogen gene, with presence of the “T” allele being associated with higher levels. Among controls of a recent large case-control study, fibrinogen increased by 0.12 g/l per T allele present. Comparing cases with controls, a 0.12 g/l higher fibrinogen was associated with a relative risk of CHD of 1.20 (95% CI 1.13 to 1.26). If increased fibrinogen actually caused heart disease then a similar per allele relative risk of CHD should be seen. In fact the per-allele relative risk of CHD was 1.03 (0.96 to 1.10). People whose genotype would have subjected them to long term raised plasma fibrinogen experienced no substantial increased risk of heart disease, suggesting that observed associations between fibrinogen and CHD risk are not causal. This finding is in keeping with evidence from randomised controlled trials that suggests that drugs lowering fibrinogen do not decrease the risk of CHD.

Fibrinogen probably predicts cardiovascular events because of reverse causation (atherosclerosis is an inflammatory condition and raises circulating fibrinogen concentrations) and because of confounding—smoking, abstaining from alcohol, not exercising and being poor are all associated with raised fibrinogen and themselves increase the risk—or are markers for factors that increase the risk—of cardiovascular disease.

The data presented by Jousilahti and colleagues illustrate how easy it is to misattribute causality to associations in social epidemiology. Many factors are socially patterned and thus appear as possible candidates for a causal role in the processes that generate any disease outcome that is also socially patterned and thus appear as possible candidates for the “missing link” between social position and therefore a promising candidate for the fibrinogen-social position link is not merely a reflection of the social pattern ing of prevalent disease, smoking, and obesity (all of which are associated with increased serum fibrinogen and lower social position) as a strong trend of increasing fibrinogen with decreasing social status survived statistical adjustment for these covariates. Fibrinogen, they conclude, is therefore a promising candidate for the “missing link” between social position and cardiovascular health.

The authors’ reasoning implicitly accepts that fibrinogen is a cause of coronary heart disease (CHD). However, this runs contrary to recently published evidence using the principle of “Mendelian randomisation” (the situation where a particular genetic polymorphism influences exposure level of a putative disease risk factor, and should in turn be related to increased risk of disease if the risk factor is indeed a cause). In fact we discussed this evidence in a recent commentary on psychosocial explanations of health inequalities. Plasma fibrinogen concentrations are related to a polymorphism in the β-fibrinogen gene, with presence of the “T” allele being associated with higher levels. Among controls of a recent large case-control study, fibrinogen increased by 0.12 g/l per T allele present. Comparing cases with controls, a 0.12 g/l higher fibrinogen was associated with a relative risk of CHD of 1.20 (95% CI 1.13 to 1.26). If increased fibrinogen actually caused heart disease then a similar per allele relative risk of CHD should be seen. In fact the per-allele relative risk of CHD was 1.03 (0.96 to 1.10). People whose genotype would have subjected them to long term raised plasma fibrinogen experienced no substantial increased risk of heart disease, suggesting that observed associations between fibrinogen and CHD risk are not causal. This finding is in keeping with evidence from randomised controlled trials that suggests that drugs lowering fibrinogen do not decrease the risk of CHD.
of air pollution on asthma hospitalisation and the possible impact that autocorrelations in the data would have on our risk estimates. In our study, the effects of certain gaseous pollutants on asthma hospitalisation were found to differ between boys and girls 6 to 12 years of age. Some of these differences were statistically significant, for example, the regression coefficient for six to seven day SO\textsubscript{2} effect was significantly greater for girls than for boys (p < 0.001). Although individual results can be examined for statistical significance in this manner, we prefer to base conclusions on the broad risk patterns in the data that emerge after our analysis of a number of gaseous pollutants and exposure periods. Collectively, these results suggest a differential effect of gaseous air pollutants on asthma hospitalisation in girls as compared with boys.

We agree that it is probable that some children would be admitted to hospital for asthma more than once during the study period, and consequently, some autocorrelation may exist in our admission series. Generalised estimation equations (GEE) can be used to address this issue if readmissions can be identified. Unfortunately, our data do not include personal identifiers needed to identify readmissions. However, the residuals of asthma hospitalisation count data did not display notable "intraclass" type correlation, and then it is not obvious that the repeated asthma hospital admissions have induced sizable additional variation. In addition, in a separate analysis using a different dataset from Vancouver in which asthma readmissions were identifiable, the results based on all admissions were similar to those based on first admission. This second analysis suggests that the effect of autocorrelation on our presented risk estimates within our asthma admission series is small.

M Lin, Y Chen
Department of Epidemiology and Community Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada

R T Burnett
Safe Environments Directorate, Health Canada, Ottawa, Ontario, Canada

P J Villeneuve
Department of Public Health Sciences, University of Toronto, Toronto, Ontario, Canada

D Krewski
Mcloughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, Ontario, Canada

Table 1 Effect of NHS smoking cessation services on the relative risk of smoking in people living in the most and least deprived quintiles using hypothetical smoking rates

<table>
<thead>
<tr>
<th>Deprivation quintile</th>
<th>Pre-intervention Smoking rate, %</th>
<th>Number of smokers</th>
<th>Relative risk (95% CI)</th>
<th>Post-intervention Smoking rate, %</th>
<th>Number of quitters</th>
<th>Relative risk (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Least deprived</td>
<td>25</td>
<td>46766</td>
<td>1.00 (1.00 to 1.01)</td>
<td>2.50</td>
<td>826</td>
<td>2.50 (2.50 to 2.63)</td>
</tr>
<tr>
<td>Least deprived</td>
<td>25</td>
<td>84200</td>
<td>1.25 (1.25 to 1.26)</td>
<td>2.25</td>
<td>826</td>
<td>2.25 (2.25 to 2.36)</td>
</tr>
<tr>
<td>Least deprived</td>
<td>5</td>
<td>59353</td>
<td>1.00 (1.00 to 1.01)</td>
<td>2.50</td>
<td>826</td>
<td>2.50 (2.50 to 2.63)</td>
</tr>
<tr>
<td>Least deprived</td>
<td>50</td>
<td>168400</td>
<td>1.25 (1.25 to 1.26)</td>
<td>2.25</td>
<td>826</td>
<td>2.25 (2.25 to 2.36)</td>
</tr>
<tr>
<td>Least deprived</td>
<td>15</td>
<td>28060</td>
<td>1.00 (1.00 to 1.01)</td>
<td>2.50</td>
<td>826</td>
<td>2.50 (2.50 to 2.63)</td>
</tr>
<tr>
<td>Least deprived</td>
<td>39</td>
<td>131352</td>
<td>1.25 (1.25 to 1.26)</td>
<td>2.25</td>
<td>826</td>
<td>2.25 (2.25 to 2.36)</td>
</tr>
</tbody>
</table>

*Data from Lowey et al; ‡sensitivity estimates including data from Lowey et al; §data calculated by us; †relative risk of smoking in most deprived compared with least deprived quintile.

Reference

Smoking cessation services may not reduce inequalities

Given the oft quoted proposition that health promotion interventions frequently increase, rather than decrease, socioeconomic inequalities in health (SEIH), we were interested to read the article by Lowey et al. However, we believe that the title of this article is misleading, that the authors have not analysed the data to its fullest potential, and that a number of the conclusions drawn are unjustified.

The authors do not present any data on the magnitude of inequalities in smoking in the areas studied either before or after the introduction of smoking cessation services. Without such data, conclusions relating to the impact of the intervention on inequalities in smoking rates by deprivation quintile cannot be drawn. As the authors note, the lack of data on overall smoking rates in the different deprivation quintiles means that one cannot immediately determine the impact of the intervention on smoking rates and hence inequalities. However, it is possible to carry out sensitivity analyses based on estimated smoking rates to investigate the potential impact of the intervention on inequalities in smoking.

Table 1 shows the number of male smokers before and after the intervention, using data published in the paper and hypothetical pre-intervention smoking rates representing perfect equality (25% in both the least and most deprived quintiles), extreme inequality (5% in the least deprived, and 50% in the most deprived quintiles) and the degree of inequality quoted in the paper using data from the General Household Survey (15% in the least deprived and 39% in the most deprived quintiles). We have also calculated relative risks of smoking in the most deprived, compared with the least deprived, quintile before and after the intervention as a measure of inequality. In all three scenarios, it can be seen that the quit rates achieved by the intervention in people living in the most and least deprived quintiles have induced notable "intraclass" type correlation, and then it is not obvious that the repeated smoking cessation services are successfully attracting significant number of people from deprived areas’", seems of limited validity. Only 1.13% (3799 of 336 800) of people from the most deprived quintile actually accessed services. Even if 50% of people in the most deprived quintile were smokers, this still only represents 2.26% of smokers in this quintile.

We believe that the proposition that health promotion interventions may often increase, rather than decrease, overall SEIH is feasible, and worthy of further consideration. Analogies such as those attempted by Lowey et al and completed by us, are essential for confirming or refuting the validity of this hypothesis. As we have shown, simple statistics can be used to quantify and compare the degree of inequality within a population. Authors should be careful to ensure that their claims are substantiated by the data they present and be prepared to extend analysis with sensitivity models where necessary to test relevant hypotheses.

References

Authors’ reply

Adams and White fall shy of refuting that smoking cessation services are reducing inequalities. However, using our data and

www.jech.com
speculative levels of smoking, they examine how smoking cessation services might have changed the relative risk of smoking between the least and most derived areas. Like Adams and White we are aware of data from the national household survey on prevalence of smoking according to deprivation. Furthermore, since then a smoking prevalence survey has been published for two of the primary care trusts (one relatively affluent, Bebington and West Wirral and one relatively deprived, Birkenhead and Wallasey) within our study area. Prevalence of smoking for these was measured at 13% and 25% respectively.

Using these figures and those from the General Household Survey (15% smokers in least deprived areas and 39% in the most deprived) we have tested whether greater proportions of smokers are quitting from deprived areas. Data from our study showed that the proportions of males quitting from deprived areas are significantly higher (table 1). In our original paper we chose not to publish any such analyses as the actual prevalence of smoking across our study areas was not known. Instead, in our comments we acknowledged the urgency with which such data are needed.

We would not dispute that currently changes in smoking prevalence resulting from smoking cessation services are relatively modest. However, this is to be expected as only a fraction of all smokers are currently accommodated by such services. Furthermore, disproportionate effects on areas of high deprivation are also reduced by a greater drop out rates of people recruited from those most deprived areas. Again this is an issue we have suggested is tackled as a matter of urgency.

In reality, smoking cessation services can never dramatically affect relative risks of smoking (between least and most deprived areas) while the number of people they see represent such small proportions of the smoking population. However, we have shown that modest investment in such services has had an impact disproportionately on more deprived populations. Consequently, greater investment in smoking cessation services (as part of a suite of interventions to reduce smoking) may even deliver the changes in relative risk sought by Adams and White.

Table 1 Estimated proportions of male smokers quitting by deprivation quintile

<table>
<thead>
<tr>
<th>Survey source</th>
<th>Grouping</th>
<th>Population (aged over 17 years)</th>
<th>Smoking rate (%)</th>
<th>Estimated smokers</th>
<th>Quit smoking</th>
<th>Smokers quitting (%)</th>
<th>x^2</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Household</td>
<td>Least deprived quintile</td>
<td>187064</td>
<td>15</td>
<td>28060</td>
<td>85</td>
<td>0.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Most deprived quintile</td>
<td>336800</td>
<td>39</td>
<td>131352</td>
<td>826</td>
<td>0.63</td>
<td>43.2</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>Bebington and West Wirral PCT</td>
<td>42288</td>
<td>13</td>
<td>5497</td>
<td>95</td>
<td>1.73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary care trusts</td>
<td>Wirral PCT</td>
<td>68028</td>
<td>25</td>
<td>17007</td>
<td>387</td>
<td>2.28</td>
<td>5.94</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>Birkenhead and Wallasey PCT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The x^2 test compares the proportion quitting with the proportion not quitting between groupings.

References

Fibrinogen, social position, and risk of heart disease

J Macleod and G Davey Smith

J Epidemiol Community Health 2004 58: 157
doi: 10.1136/jech.58.2.157

Updated information and services can be found at:
http://jech.bmj.com/content/58/2/157.1

These include:

References
This article cites 9 articles, 6 of which you can access for free at:
http://jech.bmj.com/content/58/2/157.1#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/