Socioeconomic position, occupational exposures, and gender: the relation with locomotor disability in early old age

J Adamson, K Hunt, S Ebrahim

The direction and magnitude of sex differences in health vary according to the particular health condition and phase of the life cycle. In examining gender differences in health it is necessary to assess the contribution made by the particular characteristics of women and men, for example, wealth, health behaviours, and the distribution of labour both inside and outside of the home. Socioeconomic inequalities in disability are likely to result from lifetime exposures to both poor living conditions and adverse occupational exposures. However, it is not clear whether such factors would play similar parts for men and women given the degree of gender segregation in the workplace that persisted throughout the 20th century. Therefore, the aim of this analysis was to assess gender and class inequalities in locomotor disability making allowance for indicators of economic hardship and lifetime occupational exposures. The analysis concentrates on men and women in early old age, a comparatively neglected group in research on gender differences in health.

METHODS

Findings are based on data reported in 1990/91 by 858 respondents born in the early 1930s who are participating in the West of Scotland Twenty-07 study, a longitudinal study of social inequalities in health. Further details of the design and sampling have been described elsewhere. Ethical approval was obtained for the study. The main outcome measure was locomotor disability: those reporting positively to any of the 17 items of a questionnaire adapted from the Office of National Statistics surveys of disability were classified as disabled. These items incorporated ability to walk, climb stairs, bending and straightening, and number of falls. The measures of socioeconomic position that were used in the analysis included: (1) occupational class—occupation of head of household ranked into five classes from social class (SOC) I (highest) to SOC V (lowest); (2) car ownership—yes/no; (3) housing tenure—owner occupier/other; (4) household income—in pounds per week adjusted for household size and composition; (5) area deprivation assessed using the Carstairs Index, which was derived from 1991 census variables (from 1 (least deprived) to 7 (most deprived)). Respondents were asked to estimate the number of years they had been exposed to 13 conditions relating to the physical and psychological workplace environment during their working lives and included: work in very noisy conditions, work in very dusty conditions, work in very hot conditions, work in very cold conditions, work in very wet conditions, work with fumes or chemicals, work with a lot of vibration, work in a bent or uncomfortable position, work which was monotonous and repetitive, work which was too hectic or fast, work causing a lot of stress and worry, hard tiring physical work, and outdoor work. For this analysis, these data were categorised into none compared with one or more years of exposure.

The relation between locomotor disability and the measures of occupational exposure, socioeconomic position, and gender were assessed using χ² or t tests and univariable logistic regression. All variables on occupational exposure were tested for interaction with gender. A series of logistic regressions were then conducted to consider the relations between social class and gender with locomotor disability controlling for other measures of socioeconomic position (including household income) and those occupational exposures significantly associated with locomotor disability (for either men or women) in the univariable analysis. All multivariable analysis was conducted using complete data.

RESULTS

Prevalence of locomotor disability among this cohort (aged about 58 years) was 27.2% (95% CI 22.7 to 31.7). The odds of locomotor disability were increased by all measures of lower socioeconomic position and all measures of more adverse occupational exposures relating to the "physical" environment in univariable analyses (see table 1).

When adjusting for gender, those in manual social classes were more likely to have locomotor disability than those in the non-manual social classes (OR 2.74, 95% CI 1.90 to 3.93 p<0.001). This relation was attenuated after adjustment for additional measures of socioeconomic position (OR 1.67, 95% CI 1.12 to 2.50, p<0.012). When those occupational exposures found to be associated with locomotor disability in the univariable analysis were then included in the model, the association between social class and locomotor disability was further attenuated and was no longer statistically significant at the 5% level (OR 1.39, 95% CI 0.91 to 2.11, p=0.128). This would suggest that most of the observed association between social class and locomotor disability, at early old age, is explained by a combination of degree of affluence and occupational exposures.

Women were about 60% more likely to report locomotor disability compared with men, after adjusting for household social class (OR 1.63, 95% CI 1.17 to 2.27, p=0.004). Adjustment for additional measures of socioeconomic position slightly attenuated this association (OR 1.49, 95% CI 1.06 to 2.10, p=0.023). However, with further adjustment for cumulative occupational exposures, the association became much stronger, and women were over two times more likely than men to report locomotor disability (OR 2.27, 95% CI 1.47 to 3.49, p<0.001).

There was no evidence of any interactions between gender and the occupational exposures with the exception of exposure to dust. This may have led to some residual confounding for this exposure in the logistic regression analysis and may have resulted in a slight over-estimation of the increased risk of locomotor disability among women. However, it is unlikely that any residual confounding relating to exposure to dust would explain all of the observed gender difference. Given the lack of previous research postulating this interaction, this result should be interpreted with caution and may have occurred by chance given multiple significance testing.
The magnitude of gender differences in locomotor disability may be masked by variables relating to socioeconomic position and occupational exposures. Our findings are consistent with other studies in showing that women in early old age are at greater risk of disability than men, but controlling for socioeconomic position and occupational exposures shows that the extent of the association between gender and locomotor disability is underestimated. Our findings suggest that social class inequality in locomotor disability is largely explained by adverse socioeconomic factors and occupational exposures. By contrast, the gender difference in locomotor disability is augmented after adjustment for these variables. Making allowance for the effects of adverse occupational exposure increases the gender difference as these exposures are themselves strongly associated with disability but are much more common among men than women.

While locomotor disability towards the end of their working lives is better explained by occupational exposures among men than women, it is probable that adverse non-occupational factors (for example, obesity) play a part in explaining gender differences in locomotor disability. These gender differences in the explanatory power of occupational exposures may reflect the kinds of jobs available to men and women in the second half of the 20th century.

ACKNOWLEDGEMENTS

We would like to thank the study respondents and the nurse interviewers and colleagues on the West of Scotland Twenty-07 study. We are also grateful to Sally McIntyre, Sara Brookes, and Rachael Goorberman-Hill for helpful comments on an earlier draft. Bristol is the lead centre in the MRC HSRC.
Authors’ affiliations
J Adamson, S Ebrahim, Department of Social Medicine, University of Bristol, Bristol, UK
K Hunt, Social and Public Health Sciences Unit, University of Glasgow, Glasgow, UK

Funding: The West of Scotland Twenty-07 study is funded by the MRC.

Correspondence to: Dr J Adamson, Department of Social Medicine, University of Bristol, Canynge Hall, Whiteladies Road, Bristol BS8 2PR, UK; joy.adamson@bris.ac.uk

Accepted for publication 17 October 2002

REFERENCES

THE JECH GALLERY
The right water and the right to water

Twenty per cent of the world’s population lack access to clean water, 80% of them being rural dwellers. Some 2.3 billion people each year suffer from diseases linked to water, and a child dies every eight seconds from contaminated water. Clean and safe water has been considered an important step towards development. In fact, the single public health intervention that achieved most in the 20th century was an improvement in water and sanitation. In November 2002, the United Nations Committee on Economic, Cultural and Social Rights issued a statement declaring access to water a human right and stating that water is a social and cultural good, not merely an economic commodity. The image, from the Peruvian rainforest, shows a water barrel, and, next to it, smaller containers for cooking, washing, and cleaning. Malaria, diarrhoea, and malnutrition are the area’s neighbours.

J J Miranda
International Health and Medical Education Centre, University College London, London N19 5LW, UK; j.miranda@ucl.ac.uk

www.jech.com
Socioeconomic position, occupational exposures, and gender: the relation with locomotor disability in early old age
J Adamson, K Hunt and S Ebrahim

J Epidemiol Community Health 2003 57: 453-455
doi: 10.1136/jech.57.6.453

Updated information and services can be found at:
http://jech.bmj.com/content/57/6/453

These include:

References
This article cites 1 articles, 0 of which you can access for free at:
http://jech.bmj.com/content/57/6/453#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

- Environmental issues (205)
- Health service research (832)
- Sociology (974)
- Epidemiologic studies (2838)
- Longitudinal studies (284)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/