Diabetes mellitus, family history, and colorectal cancer

A population based, cross sectional study from East Anglia showed a relative risk of colorectal cancer of 2.9 in subjects with history of type II diabetes. The association was similar in men and women, but apparently stronger in women, but apparently stronger in men. The association was similar in men and women, but apparently stronger in women. The association was similar in men and women, but apparently stronger in women.

Although the association was similar in men and women, but apparently stronger in women, the association was similar in men and women, but apparently stronger in women. The association was similar in men and women, but apparently stronger in women.

Table 1 Considers history of diabetes mellitus and family history. Twenty eight cases and 23 controls reported ever history of diabetes. The corresponding multivariate OR was 1.8 (95% CI 1.0 to 3.2). The OR was 1.3 (95% CI 0.6 to 2.7) in men and 3.6 (95% CI 1.0 to 12.1) in women. Family history of colorectal cancer in first degree relatives was reported by 18 cases and 12 controls, corresponding to an overall OR of 3.2 (95% CI 1.5 to 7.1); the OR was 2.1 (95% CI 0.8 to 5.9) for men and 4.9 (95% CI 1.5 to 16.7) for women. None of the subjects with diabetes reported family history of the disease.

This study further confirms and quantifies subjects with family history of colorectal cancer in first degree relatives have an about threefold excess risk, and that diabetes mellitus is a correlate of colorectal cancer risk, and can explain about 3% of cases in this population.

The observation that the OR was persistently increased in subjects who had been diagnosed with diabetes for five or more years (OR=4.1, 95%CI 1.6 to 10.8) weighs against surveillance bias—that is, more careful ascertainment of intestinal neoplasms in the few years around the diagnosis of diabetes. Although we had no information on type of diabetes, only two cases and two controls were diagnosed with diabetes below age 45. Thus, the inference applies essentially to type II, insulin dependent diabetes.

The hospital based design represents an optimal framework for assessing comparability of medical histories, which were satisfactorily reproducible, thus making information bias unlikely. With reference to confounding, the association was not appreciably modified by several potential distorting factors, including body weight and physical activity, which may indeed be steps in the causal pathways of both diabetes and colorectal cancer. This study was also unable to show a substantial modifying effect of family history on diabetes risk, possibly on account of its limited power to analyse interactions.

Besides providing clues to our understanding colorectal carcinogenesis, the confirmed association of an excess colorectal cancer risk in subjects with family history of diabetes may have relevant implications for the management of diabetics.

Acknowledgements

Funding: this work was partly supported by the Swiss National Science Foundation (grant no 32–31330.91) and by the Swiss Cancer Research Fund (KFS, Contract AKT no 72 and 700–8).

F Levi, C Pasche, F Lucchini

Cancer Epidemiology Unit and Cancer Registries of Vaud and Neuchâtel, Institut universitaire de médecine sociale et préventive, CHUV-Falaises 1, 1011 Lausanne, Switzerland
these associations. This cancer, confirming previous analyses of cancer. Their study indicates that both type II diabetes, family history, and colorectal cancer. As Dr Levi and colleagues indicate, their study may be increased by exogenous mutagens and these mutations occur spontaneously and may be increased by exogenous mutagens and genetic predisposition. Indeed, familial aggregation may reflect both epigenetic processes and genomic factors that may increase the risk of colorectal cancer. With increasing glucose intolerance and in early type II diabetes, hyperinsulinaemia is a compensatory response to maintain glucose homeostasis in people who become resistant to insulin action. It is characterised by raised fasting plasma insulin and an exaggerated insulin response to an oral glucose load. Recently, prospective observational studies have shown that high insulin levels and its metabolic correlates are associated with an increased risk of colorectal cancer.1 As a result, it has been suggested that insulin may directly promote colorectal carcinogenesis via activation of either its own receptor, or those of insulin-like growth factor-I (IGF-I). An alternative model proposes that consumption of excess dietary energy may result in the development of insulin resistance with increased circulating levels of insulin, triglycerides, and non-esterified fatty acids. These circulating factors may, in turn, initiate a general proliferative response from colon epithelial cells and hence promote colorectal carcinogenesis.2

Because of the strong interrelation between insulin and the growth hormone (GH)/IGF-I axis, chronic hyperinsulinaemia may also indirectly promote colorectal carcinogenesis by inducing pathophysiological changes to circulating concentrations of IGF-I and its binding proteins. Specifically, as a result of insulin associated changes in IGF-I binding protein concentrations, increased levels of blood insulin may lead to increases in the bioavailability of IGF-I. For many cell types, IGF-I is a potent anti-apoptotic factor and the hyperinsulinaemia induced increase in IGF-I bioavailability may promote the survival of transformed and mutated cells that would normally undergo apoptosis.3

The association between nutrition and growth is partly mediated via a complex biological interaction among insulin, GH, IGF-I, and its binding proteins.4 Consequently, the interrelation between insulin and the GH/IGF-I axis may also provide one of several potential mechanisms through which previously identified environmental factors, such as diets, anthropometry, and associated lifestyle styles, may operate to increase the risk of colorectal cancer.5 6 7 8 9

Manual of childhood infections, 2nd edn

After all the books covering different aspects on childhood infections, it may come as a surprise as to the actual usefulness of this second edition of Manual of childhood infections. It could not have been easy to include such a lot of information in only 514 pages. This book has two main virtues. Firstly, it is practical, as we can see in sections about emerging and re-emerging infections, common presenting symptoms or types of conditions, specific information on each individual infection, public health actions, essential web sites, antibiotic doses, refugees and internationally adopted children, laboratory diagnosis, ancillary and exactly needed tables, and so forth. Secondly, it includes clear written data, issues and descriptions as are only found in classic books.

For people working in the clinical field, it is a great aid to have this revised and updated companion book on the table or in the pocket (although may be it is too wide for that).

References