Diabetes mellitus, family history, and colorectal cancer

A population based, cross sectional study from East Anglia showed a relative risk of colorectal cancer of 2.9 in subjects with history of type II diabetes. The association was similar in men and women, but apparently stronger in subjects with family history of colorectal cancer. This confirms previous data indicating that insulin—and its structural homologue insulin-like growth factor-1 (IGF-I)—may promote colorectal carcinogenesis, although the issue, and any related risk quantification, remain open to discussion.

To provide further information on the issue, we considered data from a case-control study conducted in the Swiss Canton of Vaud. Briefly, between 1992 and 2000 trained interviewers collected information on 286 cases (174 men, 112 women) with incident, histologically confirmed colon or rectal cancer (age range: 26–74; median age 65 years) who had been admitted to the University Hospital of Lausanne, Switzerland.

Controls were 590 subjects (269 men, 281 women) aged <75 years (range, 27 to 74 years; median age 59 years) residing in the same geographical area. They were admitted to the University Hospital of Lausanne for a wide spectrum of acute non-neoplastic conditions unrelated to long term diet modifications, including traumas (33%, mostly sprains and fractures), non-traumatic orthopaedic conditions (31%, mostly low back pain and disk disorders), surgical conditions (19%, mostly abdominal, such as acute appendicitis, kidney stones or strangulated hernia), and miscellaneous other disorders (17%, including acute medical, eye, nose and throat, and skin diseases).

All interviews were conducted in hospital during the admission diagnosis. Sixteen per cent of subjects (16% cases; 15% controls) approached for interview refused. The structured questionnaire included information on sociodemographic characteristics and lifestyle habits (for example, smoking, alcohol consumption, and physical exercise[^5]), anthropometric factors, and a food frequency dietary section. A problem oriented medical history was also elicited, including a specific question on diabetes, and age at diagnosis.

Table 1 Odds ratios (OR) of colorectal cancer (and corresponding 95% confidence intervals (95% CI)) for history of diabetes mellitus and family history of colorectal cancer among 286 cases and 550 controls. Vaud, Switzerland, 1992–2000

<table>
<thead>
<tr>
<th>Sex</th>
<th>Number of cases: number of controls</th>
<th>Multivariate OR* (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>History of diabetes†</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>M</td>
<td>153:251</td>
</tr>
<tr>
<td></td>
<td>21:18</td>
<td>1.30 (0.63 to 2.68)</td>
</tr>
<tr>
<td>Yes</td>
<td>F</td>
<td>105:276</td>
</tr>
<tr>
<td></td>
<td>7.5</td>
<td>3.56 (1.05 to 12.11)</td>
</tr>
<tr>
<td>No</td>
<td>Total§</td>
<td>258:527</td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td>28:23</td>
</tr>
<tr>
<td>Family history¶</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>M</td>
<td>163:262</td>
</tr>
<tr>
<td></td>
<td>11.7</td>
<td>2.12 (0.76 to 5.90)</td>
</tr>
<tr>
<td>Yes</td>
<td>F</td>
<td>105:276</td>
</tr>
<tr>
<td></td>
<td>7.5</td>
<td>4.91 (1.45 to 16.69)</td>
</tr>
<tr>
<td>No</td>
<td>Total¶</td>
<td>268:538</td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td>18:12</td>
</tr>
</tbody>
</table>

*Adjusted for age, smoking status, BMI, education, and alcohol consumption; †adjusted for family history of colorectal cancer; ‡reference category; ††adjusted for sex; ¶adjusted for history of diabetes.

Odds ratios (OR), and the corresponding 95% confidence intervals (CI), were derived from multiple logistic regression equations, including terms for sex, age, education, smoking, alcohol drinking, and family history of colorectal cancer.

Table 1 considers history of diabetes mellitus and family history. Twenty eight cases and 23 controls reported ever history of diabetes. The corresponding multivariate OR was 1.8 (95% CI 1.0 to 3.2). The OR was 1.3 (95% CI 0.6 to 2.7) in men and 3.6 (95% CI 1.0 to 12.6) in women. Family history of colorectal cancer in first degree relatives was reported by 18 cases and 12 controls, corresponding to an overall OR of 3.2 (95% CI 1.5 to 7.1); the OR was 2.1 (95% CI 0.8 to 5.9) for men and 4.9 (95% CI 1.5 to 16.7) for women. None of the subjects with diabetes reported family history of the disease.

This study further confirms and quantifies that subjects with family history of colorectal cancer in first degree relatives have an about threefold excess risk, and that diabetes mellitus is a correlate of colorectal cancer risk, and can explain about 3% of cases in this population. The observation that the OR was persistently increased in subjects who had been diagnosed with diabetes for five or more years (OR=4.1, 95%CI 1.6 to 10.8) weighs against surveillance bias—that is, more careful ascertainment of intestinal neoplasms in the few years around the diagnosis of diabetes. Although we had no information on type of diabetes, only two cases and two controls were diagnosed with diabetes below age 45. Thus, the inference applies essentially to type II, insulin independent diabetes.

The hospital based design represents an optimal framework for assessing comparability of medical histories, which were satisfactorily reproducible, thus making information bias unlikely. With reference to confounding, the association was not appreciably modified by several potential distorting factors, including body weight and physical activity, which may indeed be steps in the causal pathways of both diabetes and colorectal cancer. This study was also unable to show a substantial modifying effect of family history on diabetes risk, possibly on account of its limited power to analyse interactions.

Besides providing clues to our understanding colorectal carcinogenesis, the confirmed association of an excess colorectal cancer risk in subjects with history of diabetes may have relevant implications for the management of diabetics.

Acknowledgements

Funding: this work was partly supported by the Swiss National Science Foundation (grant no 32–31330.91) and by the Swiss Cancer Research Fund (KFS, Contract AKT no 72 and 700–8).

F Levi, C Pasche, F Lucchini
Cancer Epidemiology Unit and Cancer Registries of Vaud and Neuchâtel, Institut universitaire de médecine sociale et préventive, CHUV-Falaises 1, 1011 Lausanne, Switzerland
type II diabetes, hyperinsulinemia is a compensatory response to maintain glucose homoeostasis in people who become resistant to insulin action. It is characterised by raised fasting plasma insulin and an exaggerated insulin response to an oral glucose load.1 As a result, it has been suggested that insulin may directly promote colorectal carcinogenesis via activation of either its own receptor, or those of insulin-like growth factor-I (IGF-I). An alternative model proposes that consumption of excess dietary energy may result in the development of insulin resistance with increased circulating levels of insulin, triglycerides, and non-esterified fatty acids. These circulating factors may, in turn, initiate a general proliferative response from colon epithelial cells and hence promote colorectal carcinogenesis.

Because of the strong interrelation between insulin and the growth hormone (GH)/IGF-I axis, chronic hyperinsulinemia may also indirectly promote colorectal carcinogenesis by inducing pathophysiological changes to circulating concentrations of IGF-I and its binding proteins. Specifically, as a result of insulin associated changes in IGF-I binding protein concentrations, increased levels of blood insulin may lead to increases in the bioavailability of IGF-I. For many cell types, IGF-I is a potent anti-apoptotic factor and the hyperinsulinemia induced increase in IGF-I bioavailability may promote the survival of transformed and mutated cells that normally undergo apoptosis.2 The association between nutrition and growth is partly mediated via a complex biological interaction among insulin, GH, IGF-I, and its binding proteins. Consequently, the interrelation between insulin and the GH/IGF-I axis may also provide one of several potential mechanisms through which previously identified environmental factors, such as diets, anthropology, and associated lifestyle, may operate to increase the risk of colorectal cancer.1,11

M S Sandhu, K-T Khaw
Department of Public Health and Primary Care, Institute of Public Health, University of Cambridge School of Clinical Medicine, UK
Correspondence to: Dr M S Sandhu; manj.sandhu@srl.cam.ac.uk

References

 Authors’ reply
We thank Dr Levi and colleagues for their contribution to our previous report relating to type II diabetes, family history, and colorectal cancer. Their study indicates that both type II diabetes and family history are risk factors for colorectal cancer. We thank Dr Levi and colleagues for their encouragement to carry out larger scale analyses which may help clarify the risk of colorectal cancer associated with both type II diabetes and family history of colorectal cancer. Their study indicates that both type II diabetes and family history are risk factors for colorectal cancer. We thank Dr Levi and colleagues for their encouragement to carry out larger scale analyses which may help clarify the risk of colorectal cancer associated with both type II diabetes and family history of colorectal cancer.

Manual of childhood infections, 2nd edn

After all the books covering different aspects of childhood infections, it may come as a surprise as to the actual usefulness of this second edition of Manual of childhood infections. It could not have been easy to include such a lot of information in only 514 pages. This book has two main virtues. Firstly, it is practical, as we can see in sections about emerging and re-emerging infections, common presenting symptoms or types of conditions, specific information on each individual infection, public health actions, essential web sites, antibiotic doses, refugees and internationally adopted children, laboratory diagnosis, ancillary and exactly needed tables, and so forth. Secondly, it includes clear written data, issues and descriptions as are only found in classic books.

For people working in the clinical field, it is a great aid to have this revised and updated companion book on the table or in the pocket (although may be it is too wide for that).
Diabetes mellitus, family history, and colorectal cancer

F Levi, C Pasche, F Lucchini and C La Vecchia

J Epidemiol Community Health 2002 56: 479-480
doi: 10.1136/jech.56.6.479

Updated information and services can be found at:
http://jech.bmj.com/content/56/6/479

These include:

References
This article cites 13 articles, 8 of which you can access for free at:
http://jech.bmj.com/content/56/6/479#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/