Aetiological heterogeneity of Alzheimer's disease

EDITOR,—It has regularly been noted that familial cases of Alzheimer's disease (AD) tend to be of relatively early onset. This implies that there must be at least one further aetiological class, comprising sporadic cases that share some common exposure, and that tend to develop later in life than the familial cases. It can now be reported that cases of AD attributable to residence in areas where the public water supply has a relatively high content of aluminium do constitute such a class.

The largest data set so far studied in relation to waterborne aluminium comprises records of 2258 age and sex matched pairs of patients discharged from hospitals in the Province of Ontario during 1985, one member of each pair having a diagnosis of AD. Age at diagnosis was not documented for these cases but it is reasonable to assume that hospital patients with this diagnosis who were older at the time of discharge had also been older on the average, at the time of onset.

Preliminary analysis of the Ontario data showed that the relative prevalence of hospitalised AD cases increased monotonically through four ranges of aluminium concentration in the public water supply (from <0.1 mg/l to >0.200 mg/l). With the four ranges of aluminium collapsed to two (under and over 0.1 mg/l) these data have now been broken out by age and sex to obtain the results shown in table 1. Although the overall prevalence of AD in areas with the higher aluminium concentration was only 28%, five of the six estimates for ages beyond 75 were higher than this.

Table 1 Estimated relative risk of Alzheimer's disease associated with residence in areas having a concentration of aluminium in municipal drinking water of 0.1 mg/l or more. Based on subsets of the Ontario data classified by age and sex

<table>
<thead>
<tr>
<th>Age group</th>
<th>Number of cases/controls</th>
<th>Estimated relative risk: men</th>
<th>Estimated relative risk: women</th>
</tr>
</thead>
<tbody>
<tr>
<td><70</td>
<td>325</td>
<td>1.06</td>
<td>1.05</td>
</tr>
<tr>
<td>70–74</td>
<td>381</td>
<td>1.05</td>
<td>1.22</td>
</tr>
<tr>
<td>75–79</td>
<td>507</td>
<td>1.60</td>
<td>1.29</td>
</tr>
<tr>
<td>80–84</td>
<td>547</td>
<td>1.29</td>
<td>1.47</td>
</tr>
<tr>
<td>>85</td>
<td>498</td>
<td>1.24</td>
<td>1.46</td>
</tr>
</tbody>
</table>

The statistical significance of the apparent age pattern is readily assessed by means of a permutation test procedure. Considering that there are 4+3+2+1 = 10 older-younger comparisons available within each sex, and a further 20 between older and younger age groups of unlike sex, we note that 29 of 40 such comparisons in table 1 show a higher relative risk in the older age group. A computer program was used to generate re-assignments of the estimated relative risk values to the 10 non-overlapping cells of table 1 and to count, for each such permutation, how many of the 40 older-younger comparisons had the higher value for the older group. After drawing a random sample (but with replacement) of 30 000 from the total of 3 628 800 possible permutations, there were found to have been only 1209 (4.03%) in which 29 or more comparisons had the higher value in the older group. Thus there is conventionally significant evidence against the null hypothesis of no age related aluminium effect and favouring the alternative hypothesis of an aluminium effect more strongly expressed in the age range where it has been judged—on completely separate evidence—that cases of AD are less genetically determinate.

DAVID HEWITT
Community Health, University of Toronto, Canada
Correspondence to: Professor Hewitt, 89 Blythwood Road, Toronto, Ontario, Canada M4N 1A3.

A survey of smoking among Italian doctors

EDITOR,—A survey of smoking in a representative sample of Italian doctors was conducted by the Istituto Doxa (the Italian branch of the Gallup Group) between 20 and 22 January 1999, within the framework of a European project coordinated by the British Medical Association. The sample was obtained from the official lists of the Federazione Nazionale degli Ordini dei Medici Chirurghi e degli Odontoiatri, stratified by age, sex and geographical area.

A total of 501 doctors (384 men, 117 women, mean age 45 years) were interviewed; 218 were general practitioners. Table 1 gives their distribution according to smoking status, sex and age group. Of these, 121 (24.2%) were current smokers of ≥1 cigarettes per day, 17 (3.4%) were occasional smokers, 133 (26.5%) ex-smokers, and 230 (45.9%) never smokers. With reference to number of cigarettes smoked, 12.8% reported smoking <15 cigarettes per day, 9.4% 15 to 24, and 2.0% ≥25 cigarettes per day. The prevalence of current smoking was similar in men (24.5%) and women (23.1%), and in subsequent age groups. Women, however, were more frequently never smokers (57.3% versus 42.4%), and less frequently ex-smokers. Likewise, younger doctors (<40 years) were more frequently never smokers (58.2%).

The overall smoking prevalence among Italian doctors is thus similar to that of the general population of Italian adults (25.3% in 1995).1 While male doctors smoked less frequently than the male general population (24.5% versus 34.1%), female doctors smoked more frequently than the female general population (23.1% versus 17.2%).1

The main message of this survey is that smoking prevalence remains exceedingly high among Italian doctors, and comparable to the general Italian population for both sexes combined, although it has declined since the mid-1980s.2 Indeed, female Italian doctors smoke more than their general population counterpart.

CARLO LA VECCHIA
Laboratory of Epidemiology, Istituto di Ricerche Farmacologiche “Mario Negri”, Milan and Istituto di Statistica Medica, Università degli Studi di Milano, Milan, Italy
VILMA SCARPINO
Istituto DOXA, Milan, Italy
ELIBRILE MALVEZZI
Lega Italiana per la Lotta contro i Tumori, Milan, Italy
GIOVANNI BALDI
Federazione Nazionale degli Ordini, dei Medici Chirurghi e degli Odontoiatri, Rome, Italy

Table 1 Smoking habits among a representative sample of 501 Italian doctors, 1999

<table>
<thead>
<tr>
<th>Smoking status</th>
<th>Total</th>
<th>Number</th>
<th>Men</th>
<th>Women</th>
<th><40</th>
<th>41–50</th>
<th>>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current smokers</td>
<td>24.2</td>
<td>121</td>
<td>24.5</td>
<td>27.3</td>
<td>22.8</td>
<td>26.8</td>
<td>21.9</td>
</tr>
<tr>
<td>Occasional smokers*</td>
<td>3.4</td>
<td>17</td>
<td>3.6</td>
<td>14.3</td>
<td>8.2</td>
<td>17.0</td>
<td>26.6</td>
</tr>
<tr>
<td>Ex-smokers</td>
<td>26.5</td>
<td>133</td>
<td>29.4</td>
<td>17.1</td>
<td>14.8</td>
<td>31.8</td>
<td>36.8</td>
</tr>
<tr>
<td>Never smokers</td>
<td>45.9</td>
<td>230</td>
<td>42.4</td>
<td>57.3</td>
<td>58.2</td>
<td>38.4</td>
<td>38.6</td>
</tr>
</tbody>
</table>

*Less than one cigarette per day.

Correction

An authors’ error occurred in the paper by Dr Eachus and others (1999;58:603–11). The index of inequality is incorrectly called the relative index of inequality, while what is reported is the slope index of inequality.
Aetiological heterogeneity of Alzheimer’s disease

DAVID HEWITT

J Epidemiol Community Health 2000 54: 320
doi: 10.1136/jech.54.4.320

Updated information and services can be found at:
http://jech.bmj.com/content/54/4/320.1

These include:

References
This article cites 1 articles, 0 of which you can access for free at:
http://jech.bmj.com/content/54/4/320.1#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/