Air pollution and mortality in a cohort of patients with chronic obstructive pulmonary disease: a time series analysis

Judith Garcia-Aymerich, Aurelio Tóbias, Josep Maria Antó, Jordi Sunyer

Many studies have shown an association between current daily levels of air pollution and daily mortality by respiratory and cardiovascular causes in the general population. However, the weak associations observed and the ecological nature of the exposure to air pollutants have created some doubts about plausibility of a causal relation. Specificity, which increases the plausibility of causal inference although its lack does not negate it, could be increased using a population more susceptible a priori. Hence, we assessed the association between daily levels of air pollutants and daily mortality in a cohort of chronic obstructive pulmonary disease (COPD) patients in Barcelona for the years 1985 to 1989. We hypothesised that patients with COPD are more likely to die after increased exposure to urban air pollution than the general population.

Methods

All patients attending emergency room services for either asthma or COPD were recruited during the years 1985 to 1989 in Barcelona. Vital status was obtained through record linkage of the people of the cohort with the Catalonia Mortality Registry for the years 1985 to 1989. A total of 9987 people (of the 15 517 in the initial cohort) had a diagnosis of COPD, 3245 of whom died in the period 1985 to 1989 and were used in this analysis. Cardiovascular mortality refers to codes 390 to 459 and respiratory mortality to codes 460 to 519 of the International Classification of Diseases (ICD-9).

Daily information on levels of black smoke, sulphur dioxide (SO_2), nitrogen dioxide (NO_2), ozone (O_3), temperature and relative humidity was collected from the city network.

Poisson regression time series models were fitted for each pollutant (in a log-linear form) and each different category of mortality following the APHEA methodology and adding the natural logarithm of the number of subjects at risk (that is, those still alive) as an offset. The analyses were done using Stata, release 5.0.

Results

The daily mean number of deaths was 1.8 for all causes mortality, ranging from 0 to 9, and 0.7 (0 to 5) and 0.5 (0 to 4) for respiratory and cardiovascular mortality, respectively. Levels of air pollutants have been published elsewhere.

Table 1 shows the estimated association between air pollutants and mortality in our cohort compared with the estimates for the general population. Associations between one hour maximum of SO_2, 24 hours average of NO_2 and one hour maximum of NO_2 and mortality among COPD patients were stronger than associations obtained with the general population, mainly related to respiratory diseases.

Discussion

Daily mortality in COPD patients is related to daily levels of all six pollutants, for all, respiratory and cardiovascular causes. This association is stronger than in the general population only for peaks of SO_2 and daily means and peaks of NO_2. Particles, measured as black smoke, and daily mean of SO_2, the pollutants classically associated with mortality, showed similar or weaker associations for COPD patients than for the general population. Changes in the profile of urban air pollutants, with a currently more pronounced photochemical component, could explain in part these effects.

Caution is necessary when comparing with the general population given the small range of

![Table 1 Estimated relative risks and 95% confidence limits for total, respiratory and cardiovascular mortality for an increase of 50 µg/m³ in air pollutants, in the general population and a cohort of COPD patients in Barcelona](http://jech.bmj.com/content/54/5/73)

<table>
<thead>
<tr>
<th>Black smoke</th>
<th>24 h</th>
<th>lag</th>
<th>SO_2 24 h</th>
<th>lag</th>
<th>SO_2 1 h</th>
<th>lag</th>
<th>NO_2 24 h</th>
<th>lag</th>
<th>NO_2 1 h</th>
<th>lag</th>
<th>O_3 1 h</th>
<th>lag</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total mortality</td>
<td></td>
</tr>
<tr>
<td>General population</td>
<td>1.056</td>
<td>0.3</td>
<td>1.078</td>
<td>0.3</td>
<td>1.013</td>
<td>1</td>
<td>1.043</td>
<td>0.3</td>
<td>1.017</td>
<td>1</td>
<td>1.024</td>
<td>1</td>
</tr>
<tr>
<td>COPD</td>
<td>1.027</td>
<td>0.2</td>
<td>1.041</td>
<td>0.2</td>
<td>1.036</td>
<td>0</td>
<td>1.145</td>
<td>0.2</td>
<td>1.023</td>
<td>0</td>
<td>1.040</td>
<td>0</td>
</tr>
<tr>
<td>Respiratory mortality</td>
<td></td>
</tr>
<tr>
<td>General population</td>
<td>1.051</td>
<td>0.3</td>
<td>1.062</td>
<td>0.3</td>
<td>1.017</td>
<td>0</td>
<td>1.043</td>
<td>0.3</td>
<td>1.013</td>
<td>0</td>
<td>1.035</td>
<td>0</td>
</tr>
<tr>
<td>COPD</td>
<td>1.071</td>
<td>0.2</td>
<td>1.041</td>
<td>0.2</td>
<td>1.050</td>
<td>0</td>
<td>1.161</td>
<td>0.2</td>
<td>1.084</td>
<td>0</td>
<td>1.057</td>
<td>0</td>
</tr>
<tr>
<td>Cardiovascular mortality</td>
<td></td>
</tr>
<tr>
<td>General population</td>
<td>1.059</td>
<td>0.3</td>
<td>1.091</td>
<td>0.3</td>
<td>1.016</td>
<td>1</td>
<td>1.031</td>
<td>0.3</td>
<td>1.019</td>
<td>1</td>
<td>1.029</td>
<td>1</td>
</tr>
<tr>
<td>COPD</td>
<td>1.019</td>
<td>0.2</td>
<td>1.040</td>
<td>0.2</td>
<td>1.067</td>
<td>3</td>
<td>1.072</td>
<td>0.2</td>
<td>1.032</td>
<td>3</td>
<td>1.031</td>
<td>3</td>
</tr>
</tbody>
</table>

daily deaths that led to wide confidence intervals. This also precluded an adequate fit using time series models, according to the analysis of residuals. Results did not change using generalised additive models (not shown).

Respiratory mortality showed stronger associations for COPD patients than for the general population for all pollutants excepting averages of SO$_2$, while cardiovascular mortality did so only for peaks of SO$_2$ and the two measures of NO$_2$. This suggests that the susceptibility of COPD patients to air pollution is mainly related to their respiratory condition.

Funding: supported in part by grants from the Fondo Investigaciones Sanitarias, Madrid, Spain (FIS, no 96/0042-01), and the Generalitat de Catalunya (CIRIT 1997 SGR 00079). Judith Garcia-Aymerich has a fellowship from Instituto de Salud “Carlos III” (no exp 4365).

Conflicts of interest: none.

Air pollution and mortality in a cohort of patients with chronic obstructive pulmonary disease: a time series analysis
Judith Garcia-Aymerich, Aurelio Tobías, Josep Maria Antó and Jordi Sunyer

J Epidemiol Community Health 2000 54: 73-74
doi: 10.1136/jech.54.1.73

Updated information and services can be found at:
http://jech.bmj.com/content/54/1/73

These include:

References
This article cites 3 articles, 1 of which you can access for free at:
http://jech.bmj.com/content/54/1/73#BIBL

Email alerting
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections
- Epidemiologic studies (2838)
- Mortality and morbidity (1463)
- Air pollution (103)
- Environmental issues (205)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/